Текст книги "Большая Советская Энциклопедия (ПЛ)"
Автор книги: Большая Советская Энциклопедия
Жанр:
Энциклопедии
сообщить о нарушении
Текущая страница: 16 (всего у книги 38 страниц)
Смола в реактопластах может отверждаться самопроизвольно (чем выше температура, тем больше скорость) или с помощью полифункционального низкомолекулярного вещества – отвердителя.
Реактопласты с любым наполнителем изготавливают, применяя в качестве связующего феноло-альдегидные смолы, часто эластифицированные поливинилбутиралем (см. Поливинилацетали), бутадиен-нитрильным каучуком, полиамидами, поливинилхлоридом (такие материалы называют фенопластами), и эпоксидные смолы, иногда модифицированные феноло– или анилино-формальдегидными смолами или отверждающимися олигоэфирами.
Высокопрочные П. м. с термостойкостью до 200 °С производят, сочетая стеклянные волокна или ткани с отверждающимися олигоэфирами, феноло-формальдегидными или эпоксидными смолами. В производстве изделий, длительно работающих при 300 °С, применяют стеклопластики или асбопластики с кремнийорганическим связующим; при 300—340 °С – полиимиды в сочетании с кремнезёмными, асбестовыми или углеродными волокнами; при 250—500 °С в воздушной и при 2000—2500 °С в инертной средах – фенопласты или пластики на основе полиамидов, наполненные углеродным волокном и подвергнутые карбонизации (графитации) после формования изделий.
Высокомодульные П. м. [модуль упругости 250—350 Гн/м2 (25 000—35 000 кгс/мм2)} производят, сочетая эпоксидные смолы с углеродными, борными или монокристаллическими волокнами (см. также Композиционные материалы). Монолитные и лёгкие П. м., устойчивые к вибрационным и ударным нагрузкам, водостойкие и сохраняющие диэлектрические свойства и герметичность в условиях сложного нагружения, изготавливают, сочетая эпоксидные, полиэфирные или меламино-формальдегидные смолы с синтетическими волокнами или тканями, бумагой из этих волокон.
Наиболее высокие диэлектрические свойства (диэлектрическая проницаемость 3,5—4,0) характерны для материалов на основе кварцевых волокон и полиэфирных или кремнийорганических связующих.
Древесно-слоистые пластики широко используют в промышленности стройматериалов и в судостроении.
Объём производства и структура потребления пластмасс. Пластические материалы на основе природных смол (канифоли, шеллака, битумов и др.) известны с древних времён. Старейшей П. м., приготовленной из искусственного полимера – нитрата целлюлозы, является целлулоид, производство которого было начато в США в 1872. В 1906—10 в России и Германии в опытном производстве налаживается выпуск первых реактопластов – материалов на основе феноло-формальдегидной смолы. В 30-х гг. в СССР, США, Германии и др. промышленно развитых странах организуется производство термопластов – поливинилхлорида, полиметилметакрилата, полиамидов, полистирола. Однако бурное развитие промышленности пластмасс началось только после 2-й мировой войны 1939—45. В 50-х гг. во многих странах начинается выпуск самой крупнотоннажной П. м.– полиэтилена.
В СССР становление промышленности П. м. как самостоятельной отрасли относится к периоду довоенных пятилеток (1929—40). Производство пластмасс составило (в тыс. т): в 1940 – 24, в 1950 – 75, в 1960 – 312, в 1970 – 1673, в 1973 – около 2300. Основные предприятия сосредоточены в Европейской части (84% общесоюзного производства П. м.). К их числу относятся орехово-зуевский завод «Карболит», Казанский завод органического синтеза, Полоцкий химический комбинат, Свердловский завод пластмасс, Владимирский химический завод, Горловский химический комбинат, Московский нефтеперерабатывающий завод. В перспективе в связи с созданием крупнейших Томского и Тобольского нефтехимических комплексов на базе Тюменских нефтяных месторождений, развитием Омского нефтехимического комплекса и соответствующих заводов пластмасс около 30% их производства будет приходиться на восточные районы. Основные действующие предприятия в этих районах – кемеровский завод «Карболит», Тюменский завод пластмасс.
Производство П. м. в 1973 в некоторых капиталистических промышленно развитых странах характеризуется следующими данными (в тыс. т): США – 13200, Япония – 6500, ФРГ – 6500, Франция – 2500, Италия – 2300, Великобритания – 1900.
В 1973 мировое производство полимеров для П. м. достигло ~ 43 млн. т. Из них около 75% приходилось на долю термопластов (25% полиэтилена, 20% поливинилхлорида, 14% полистирола и его производных, 16% прочих пластиков). Существует тенденция к дальнейшему увеличению доли термопластов (в основном полиэтилена) в общем производстве П. м.
Хотя доля термореактивных смол в общем выпуске полимеров для П. м. составляет всего около 25%, фактически объём производства реактопластов выше, чем термопластов, из-за высокой степени наполнения (60—80%) смолы.
Применение П. м. в различных областях техники характеризуют данные (табл. 2).
Производство П. м. развивается значительно интенсивнее, чем таких традиционных конструкционных материалов, как чугун и алюминий (табл. 3).
Потребление П. м. в строительстве непрерывно возрастает. При увеличении мирового производства П. м. в 1960—70 примерно в 4 раза объём их потребления в строительстве возрос в 8 раз. Это обусловлено не только уникальными физико-механическими свойствами полимеров, но также и их ценными архитектурно-строительными характеристиками. Основные преимущества П. м. перед др. строительными материалами – лёгкость и сравнительно большая удельная прочность. Благодаря этому может быть существенно уменьшена масса строительных конструкций, что является важнейшей проблемой современного индустриального строительства. Наиболее широко П. м. (главным образом рулонные и плиточные материалы) используют для покрытия полов и др. отделочных работ (см. также Полимербетон), герметизации, гидро– и теплоизоляции зданий, в производстве труб и санитарно-технического оборудования. Их применяют и в виде стеновых панелей, перегородок, элементов кровельных покрытий (в т. ч. светопрозрачных), оконных переплётов, дверей, пневматических строительных конструкций, домиков для туристов, летних павильонов и др.
П. м. занимают одно из ведущих мест среди конструкционных материалов машиностроения. Потребление их в этой отрасли становится соизмеримым (в единицах объёма) с потреблением стали. Целесообразность использования П. м. в машиностроении определяется прежде всего возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин – уменьшается масса, повышаются долговечность, надёжность и др. Из П. м. изготовляют зубчатые и червячные колёса, шкивы, подшипники, ролики, направляющие станков, трубы, болты, гайки, широкий ассортимент технологической оснастки и др.
Основные достоинства П. м., обусловливающие их широкое применение в авиастроении,– лёгкость, возможность изменять технические свойства в большом диапазоне. За период 1940—70 число авиационных деталей из П. м. увеличилось от 25 до 10 000. Наибольший прогресс в использовании полимеров достигнут при создании лёгких самолётов и вертолётов. Тенденция ко всё более широкому их применению характерна также для производства ракет и космических аппаратов, в которых масса деталей из П. м. может составлять 50% от общей массы аппарата. С использованием реактопластов изготовляют реактивные двигатели, силовые агрегаты самолётов (оперение, крылья, фюзеляж и др.), корпуса ракет, колёса, стойки шасси, несущие винты вертолётов, элементы тепловой защиты, подвесные топливные баки и др. Термопласты применяют в производстве элементов остекления, антенных обтекателей, при декоративной отделке интерьеров самолётов и др., пено– и сотопласты – как заполнители высоконагруженных трёхслойных конструкций.
Области применения П. м. в судостроении очень разнообразны, а перспективы использования практически неограничены. Их применяют для изготовления корпусов судов и корпусных конструкций (главным образом стеклопластики), в производстве деталей судовых механизмов, приборов, для отделки помещений, их тепло-, звуко– и гидроизоляции.
В автомобилестроении особенно большую перспективу имеет применение П. м. для изготовления кабин, кузовов и их крупногабаритных деталей, т.к. на долю кузова приходится около половины массы автомобиля и ~ 40% его стоимости. Кузова из П. м. более надёжны и долговечны, чем металлические, а их ремонт дешевле и проще. Однако П. м. не получили ещё большого распространения в производстве крупногабаритных деталей автомобиля, главным образом из-за недостаточной жёсткости и сравнительно невысокой атмосферостойкости. Наиболее широко П. м. применяют для внутренней отделки салона автомобиля. Из них изготовляют также детали двигателя, трансмиссии, шасси. Огромное значение, которое П. м. играют в электротехнике, определяется тем, что они являются основой или обязательным компонентом всех элементов изоляции электрических машин, аппаратов и кабельных изделий. П. м. часто применяют и для защиты изоляции от механических воздействий и агрессивных сред, для изготовления конструкционных материалов и др.
Тенденция ко всё более широкому применению П. м. (особенно плёночных материалов, см. Плёнки полимерные) характерна для всех стран с развитым сельским хозяйством. Их используют при строительстве культивационных сооружений, для мульчирования почвы, дражирования семян, упаковки и хранения с.-х. продукции и т.д. В мелиорации и с.-х. водоснабжении полимерные плёнки служат экранами, предотвращающими потерю воды на фильтрацию из оросительных каналов и водоёмов; из П. м. изготовляют трубы различного назначения, используют их в строительстве водохозяйственных сооружений и др.
В медицинской промышленности применение П. м. позволяет осуществлять серийный выпуск инструментов, специальной посуды и различных видов упаковки для лекарств. В хирургии используют пластмассовые клапаны сердца, протезы конечностей, ортопедические вкладки, туторы, стоматологические протезы, хрусталики глаза и др.
Лит.: Энциклопедия полимеров, т, 1—2, М., 1972—74; Технология пластических масс, под ред. В. В. Коршака, М., 1972; Лосев И. П., Тростянская Е. Б., Химия синтетических полимеров, 3 изд., М., 1971; Пластики конструкционного назначения, под ред. Е. Б. Тростянской, М., 1974.
Е. Б. Тростянская.
Табл. 1.—Свойства пластмасс.
Основные компоненты | Плот-ность, г/см3 | Термо-стойкость, ° С | Твердость, Мн/м2(кгс/мм2) | Модуль упру-гости при рас-тяжении, Гн/м2 (кгс/мм2) | Ударная вязкость, кдж/м2 | Разрушающее напряжение, Мн/м2(кгс/мм2) | |||
полимер | наполнитель | при разрыве | при сжатии | при изгибе | |||||
Термопласты | |||||||||
Полиэтилен | – | 0,945 | 60—80 | 45—60 (4,5—6,0) | 0,4—0,55 (40—55) | Не разру-шается | 20—40 (2—4) | 40—80 (4—8) | 20—30 (2—3) |
Поливинил-хлорид | – | 1,38 | 60—70 | 130—160 (13—16) | 3—4 (300—400) | 100—120 | 40—60 (4—6) | 80—120 (8—12) | 80—120 (8—12) |
Полистирол | – | 1,047 | 75—85 | 140—150 (14—15) | 3—4 (300—400) | 10—15 | 35—40 (3,5—4) | 80—110 (8—11) | 80—90 (8—9) |
Полистирол | Эластомер | 1,03 | 70—80 | 110—120 (11—12) | 1,8—2,5 (180—250) | 25—35 | 27—30 (2,7—3) | – | 40—50 (4—5) |
Полистирол | Стекловолокно (l = 2—4 мм; 30% по массе) | 1,4 | 100—110 | 180—190 (18—19) | 6,8—8 (680—800) | 17—20 | 70—80 (7—8) | – | 100—120 (10—12) |
Полиамид-6 | – | 1,14 | 60—70 | 100—120 (10—12) | 2,3—2,8 (230—280) | 10—170 | 60—90 (6—9) | 50—65 (5—6,5) | 90—140 (9—14) |
Полиамид-6 | Стекловолокно (l = 2—4 мм; 20% по массе) | 1,35 | 120—130 | 200—250 (20—25) | 8,4 (840) | 20—40 | 180 (18) | 180—200 (18—20) | 200—280 (20—28) |
Поликарбонат | – | 1,2 | 110—130 | 150—160 (15—16) | 2,2—2,6 (220—260) | 120—140 | 50—75 (5—75) | 80—85 (8—8,5) | 80—100 (8—10) |
Поликарбонат | Стекловолокно (l = 2—4 мм) | 1,42 | 200—220 | 250—280 (25—28) | 6,5—7,5 (650—750) | 90—110 | 80—90 (8—9) | 100—110 (10—11) | 140—150 (14—15) |
Реактопласты | |||||||||
Отвержденная феноло-фор-мальдегид– ная смола | – | 110—130 | 220—250 (22—25) | 3—4 (300—400) | 3—4 | 30—50 (3—5) | – | – | |
То же | Древесная мука (50% по массе) | 1,4 | 100 | 200—240 (20—24) | 7—8 (700—800) | 4—4,5 | 40—50 (4—5) | 150 (15) | 60—70 (6—7) |
То же | Кварцевая мука (50% по массе) | 1,9 | 150 | – | 8—10 (800—1000) | 3—3,5 | 40—50 (4—5) | 60—70 (6—7) | 60—80 (6—8) |
То же | Асбестовое волокно (50% по массе) | 1,85 | 200—250 | – | 16—25 (1600—2500) | 21 | 50—70 (5—7) | 100—110 (10—11) | 80 (8) |
То же | Древесный шпон (75% по массе) | 1,3 | 125 | 200—240 (20—24) | 28 (2800) | 80 | 250—280 (25—28) | 160—180 (16—18) | 260—280 (26—28) |
Отвержденная эпоксидная смола | – | 1,27 | – | 160—180 (16—18) | 3—3,5 (300—350) | – | 60—70 (6—7) | – | – |
То же | Стекловолокно непрерывное однонаправленное (70% по массе) | 2,1 | 160—180 | – | 50—56 (5000—5600) | 100—140 | 1800—2000 (180—200) | 1200—1400 (120—140) | 2000—200 (200—220) |
То же | Стеклоткань (70% по массе) | 1,79—1,94 | 120—160 | – | 22—31 (2200—3100) | – | 450—480 (45—48) | 450—500 (45—50) | 650—700 (65—70) |
То же | Углеродное волокно непрерывное однонаправленное (60% по массе) | 1,52 | 160—200 | – | 180—230 (18000—23000) | 40—50 | 1000—1200 (100—120) | 600—800 (60—80) | 800—1000 (80—100) |
То же | Полибензимидазольное волокно непрерывное однонаправленное (60% по массе) | 1,36 | 180—200 | – | 120—150 (12000—15000) | – | 200—250 (20—25) | 300—350 (30—35) | 500—600 (50—60) |
То же | Стекловолокно, хаотичное распределение (70% по массе) | 1,7—1,85 | 130—180 (13—18) | 100—130 (10—13) | 240—300 (24—30) |
Табл. 2.—Структура потребления пластмасс в различных странах, % от общего потребления*.
Область применения | СССР | США | Япония | ФРГ | ГДР |
Строительство | 35 | 28 | 28 | 33 | 28 |
Машиностроение | 25 | 23 | 25 | 20 | 18 |
Легкая промышленность и товары народного потребления | 24 | 31 | 35 | 35 | 32 |
Электротехника и электроника | 10 | 12 | 10 | 8 | 16 |
Сельское хозяйство | 6 | 6 | 2 | 4 | 6 |
Табл. 3.—Развитие мирового производства пластмасс, чёрных металлов и алюминия, млн. т
Наименование материала | 1950 | 1960 | 1965 | 1970 |
Пластмассы….. | 1,5 | 7,5 | 14,5 | 30 |
Черные ме-таллы………. | 133,6 | 258,6 | 324,7 | 560 |
Аллюминий….. | 1,5 | 4,5 | 6,1 | 11,3 |
Пластическое обеспечение функции
Пласти'ческое обеспе'чение фу'нкции, обновление энергообразующих, опорных и др. структур дифференцированных клеток, осуществляемое путём биосинтеза белка и необходимое для сохранения физиологической функции клеток и органов в условиях целостного организма. П. о. ф. основано на тесной взаимосвязи между генетическим аппаратом дифференцированной клетки и её физиологической функцией. В некоторых дифференцированных клетках белки и образованные ими структуры быстро разрушаются (например, митохондрии печёночных клеток существуют 6—7 суток), однако функция и структура дифференцированной клетки сохраняются длительное время. Это возможно потому, что процесс разрушения структур более или менее полностью уравновешивается деятельностью генетического аппарата клетки, обеспечивающего синтез специализированных клеточных белков и на его основе – новообразование разрушенных структур. Совершенство обновления и устойчивость физиологической функции могут быть достигнуты в том случае, если интенсивность синтеза белка будет постоянно соответствовать интенсивности функционирования и разрушения структур. Информация, направленная из цитоплазмы в ядро и сигнализирующая об уровне физиологической функции, имеет значение обратной связи, регулирующей активность генетического аппарата и предупреждающей разрушение клеточных структур. Уровень физиологической функции, оказывая влияние на активность генетического аппарата, имеет определяющее значение в П. о. ф. Синтез белков и превращение энергии в дифференцированных клетках органа определяются, таким образом, интенсивностью функционирования его структур (ИФС), регулирующей активность генетического аппарата. Активация генетического аппарата дифференцированных клеток при усилении их функций обеспечивает не только сохранение дифференцировки клеток путём синтеза высокоспециализированных белков, но и опережающее увеличение массы энергообразующих структур по сравнению с увеличением массы функционирующих структур. Взаимосвязь «ИФС Û активность генетического аппарата» имеет определяющее значение в П. о. ф. и является необходимым звеном в механизме приспособления организма к среде. Предполагают, что отставание интенсивности синтеза специфических белков, образующих клетки, от интенсивности функционирования и разрушения клеточных структур может быть причиной многих патологических процессов.
Лит.: Меерсон Ф. 3., О взаимосвязи физиологической функции и генетического аппарата клетки, М., 1963.
Ф. З. Меерсон.
Пластичности теория
Пласти'чности тео'рия, раздел механики, в котором изучаются деформации твёрдых тел за пределами упругости. П. т. изучает макроскопические свойства пластических тел и непосредственно не связана с физическим объяснением свойств пластичности. П. т. занимается методами определения распределения напряжений и деформаций в пластически деформируемых телах.
Для определения пластических свойств металлов производятся эксперименты по растяжению – сжатию плоского или цилиндрического образца и деформированию тонкостенной цилиндрической трубки, находящейся под действием растягивающей силы, крутящего момента и внутреннего давления, т. е. эксперименты, позволяющие вести независимый отсчёт усилий и деформаций. Диаграмма зависимости «напряжение – деформация» (рис. 1) характеризует деформацию данного материала. П. т. идеализирует поведение реальных материалов при пластическом деформировании, пользуясь различными гипотезами. Обычно в П. т. диаграмму «напряжение – деформация» апроксимируют схемой (рис. 2), состоящей из двух участков: отрезка прямой OA, соответствующего упругому состоянию материала, и отрезка AC, соответствующего состоянию пластичности.
При пластическом деформировании напряженное и деформированное состояния материала существенно зависят от истории нагружения. Так, вторичное нагружение образца (после его разгрузки – прямая PM,рис. 1) повышает предел упругости материала (точка М вместо точки А) – т. н. упрочнение или наклёп. Поэтому данному напряжённому состоянию могут соответствовать различные пластические деформации в зависимости от того, какой последовательностью напряжённых состояний оно достигнуто. Определение модели пластического тела состоит в установлении связи между тензорами, определяющими сложное напряжённое и деформированное состояния материалов.
Одной из наиболее распространённых является теория малых упругопластических деформаций (деформационная теория), которая формулирует соотношения между интенсивностью напряжений
и интенсивностью деформаций в той же точке
где sx, sy, sz — нормальные напряжения в координатных площадках, проходящих через данную точку, txy, tyz, tzx – касательные напряжения, ex, ey, ez — деформации удлинения, gxy, gyz, gzx — деформации сдвига. Для случая, когда интенсивность деформаций в данной точке возрастает, принимается, что величины si и ei связаны между собой независимо от вида напряжённого состояния. Деформационная П. т., строго говоря, применима лишь в случае простого нагружения, когда все компоненты напряжённого состояния возрастают пропорционально одному параметру.
Более общей является теория течения, связывающая приращения деформаций и напряжении с компонентами напряжений.
П. т. играет большую роль в технике, т.к. тесно связана с важнейшими вопросами проектирования конструкций, исследованием технологических процессов пластического деформирования металлов и т. и. Важные приложения П. т. относятся и к теории устойчивости пластинок и оболочек.
Лит.: Ильюшин А. А., Пластичность, Основы общей математической теории, М., 1963; Ишлинский А. Ю., Пластичность, в кн.: Механика в СССР за 30 лет, М.—Л., 1950; Качанов Л. М., Основы теории пластичности, М., 1956; Надаи А., Пластичность и разрушение твёрдых тел, пер. с англ., М., 1954; Прагер В., Ходж Ф. Г., Теория идеально пластических тел, пер. с англ., М., 1956.
А. С. Вольмир.
Рис. 1. Диаграмма зависимости «напряжение – деформация» (s – e) для образца из мягкой малоуглеродистой стали: OA – упругая деформация; точка А – предел упругости (точнее – предел пропорциональности); В – предел текучести; BC – площадка текучести; MP – прямая разгрузки.
Рис. 2. Идеализированные схемы зависимости (s – e): а – идеально-пластический материал; б – материал с линейным упрочнением; в – материал с нелинейным упрочнением.
Пластичность (в искусстве)
Пласти'чность (пластика) в искусстве, качество, присущее скульптуре, художественная выразительность объёмной формы. Исходное значение многозначного термина «П.»– эмоциональность, художественная цельность и образная убедительность лепки объёма в скульптуре, гармоническое соотношение выразительности моделировки и ощущения весомости, внутренней наполненности формы. Слово имеет и более широкое значение и относится к выразительности объёмной формы во всех искусствах пластических — архитектуре, живописи, графике, декоративно-прикладном искусстве, т. е. П. связывается как с изображением объёма на плоскости, так и с созданием реального неизобразительного объёма. В самом широком значении П.– скульптурность, выпуклость, отчётливость (в т. ч. в поэзии, музыке, литературном изложении) и вообще гармоническое единство образа, наглядное, ощутимое явление прекрасного. В движении, танце П.– изящество, плавность, сходные со скульптурой. Применительно к произведениям искусства термин употребляется и в его физическом значении, обозначая способность материала принимать др. форму под давлением и сохранять сё (например, П. мягких скульптурных материалов – глины, воска, пластилина; П. мазков, фактуры масляной краски).
Лит.: Кантор А., Пластичность, «Творчество», 1973, №9; Hetzer Th., Vom Plastischen in der Malerei, в его кн.: Aufsätze und Vorträge, [Bd] 2, Lpz., [1957], S. 131—69.
А. М. Кантор.