355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ТР) » Текст книги (страница 14)
Большая Советская Энциклопедия (ТР)
  • Текст добавлен: 8 октября 2016, 23:36

Текст книги "Большая Советская Энциклопедия (ТР)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 14 (всего у книги 56 страниц)

Трансфокатор

Трансфока'тор (от транс... и фокус ), сочетание телескопической насадки с объективом , представляющее собой оптическую систему с переменным фокусным расстоянием. Механические перемещения отдельных элементов насадки Т. обеспечивают плавное изменение масштаба изображения объекта в определённом диапазоне. При этом фокусное расстояние Т. меняется, а резкость наводки объектива и относительное отверстие остаются неизменными. Чаще всего Т. применяется в качестве киносъёмочного объектива для создания эффектов наезда и отъезда киносъёмочного аппарата в тех случаях, когда перемещение аппарата относительно объекта нежелательно. Так как аберрационные расчёты (см. Аберрации оптических симтем ) телескопических насадки и объектива, как правило, производят раздельно, одна и та же насадка может применяться с различными объективами.

  Л. А. Ривкин.

Трансформатор

Трансформа'тор (от лат. transformo – преобразую) в технике, устройство для преобразования каких-либо существенных свойств энергии или объектов (устройств). Наиболее распространены трансформаторы электрические и гидротрансформаторы (см. Гидродинамическая передача ), представляющие собой устройства для изменения (заданным образом) физических величин, характеризующих соответственно электрическую и механическую энергию (например, для изменения напряжения, тока, крутящего момента).

Трансформатор напряжения

Трансформа'тор напряже'ния , измерительный трансформатор электрический , предназначенный для преобразования высокого напряжения в низкое в цепях измерения и контроля. Применение Т. н. позволяет изолировать цепи вольтметров, частотометров, электрических счётчиков, устройств автоматического управления и контроля и т.д. от цепи высокого напряжения и создаёт возможность стандартизации номинального напряжения контрольно-измерительной аппаратуры (чаще всего его принимают равным 100 в ). Т. н. подразделяются на трансформаторы переменного напряжения (обычно их называют просто Т. н.) и трансформаторы постоянного напряжения.

  Первичная обмотка (ПО) трансформатора переменного напряжения (см. рис. 1 , а, б) состоит из большого числа (w1 ) витков и подключается к цепи с измеряемым (контролируемым) напряжением U1 параллельно. К зажимам вторичной обмотки (ВО) с числом витков w2 (w2 << w1 ) подсоединяют измерительные приборы (или контрольные устройства). Так как внутреннее сопротивление последних относительно велико, Т. н. работает в условиях, близких к режиму холостого хода, что позволяет (пренебрегая потерями напряжения в обмотках) считать U1 и U2 приблизительно равными соответствующим эдс и пропорциональными w1 и w2 , то есть U1 w2 » U2 w1 . Зная отношение (трансформации коэффициент ), можно по результатам измерения низкого напряжения в ВО определять высокое первичное напряжение. Приближённый характер соотношения между U1 и U2 обусловливает наличие погрешности по напряжению и угловой погрешности найденной величины U1 . В компенсированных Т. н. производится компенсация этих погрешностей. Т. н. устанавливают главным образом в распределительных устройствах высокого напряжения. Их выпускают в однофазном и трёхфазном исполнении. Большинство Т. н. на напряжения свыше 6 кв – маслонаполненные. Т. н. на напряжения свыше 100 кв делают, как правило, каскадными. Лабораторные Т. н. – обычно многопредельные.

  О трансформаторах постоянного напряжения см. в ст. Измерительный трансформатор .

  Лит.: Вавин В. Н., Трансформаторы напряжения и их вторичные цепи, Л., 1967; Электрические измерения, под ред. Е. Г. Шрамкова, М., 1972.

  Г. М. Вотчицев.

Рис. 1б. Измерительный трансформатор напряжения. Трансформатор напряжения на 400 кв .

Измерительный трансформатор напряжения. Схема включения.

Трансформатор с регулированием под нагрузкой

Трансформа'тор с регули'рованием под нагру'зкой , силовой трансформатор электрический , допускающий изменение трансформации коэффициента (а следовательно, амплитуды вторичного напряжения) без разрыва цепи нагрузки. Применяется преимущественно при необходимости перераспределения мощности (как активной, так и реактивной) между различными потребителями (мощность перераспределяется в результате изменения напряжения питающего тока). Наиболее распространены трансформаторы со ступенчатым изменением вторичного напряжения, осуществляемым либо переключением секций обмоток (то есть изменением числа витков в обмотках), либо включением в цепь нагрузки дополнительного (так называемого вольтодобавочного) трансформатора с регулируемым (также ступенями) вторичным напряжением. Процесс переключения секций обычно полностью автоматизируют. Плавное регулирование напряжения производят перемещением токосъёмного контакта по оголённому участку обмотки (как в лабораторных регулировочных автотрансформаторах ) либо взаимным перемещением обмоток и элементов магнитопровода.

  Лит . см. при ст. Трансформатор электрический .

  М. И. Озеров.

Трансформатор СВЧ

Трансформа'тор СВЧ, трансформатор полного сопротивления, устройство для преобразования полного электрического сопротивления СВЧ линии передачи (полого или диэлектрического радиоволновода , коаксиальной длинной линии , полосковой линии ) с целью согласования её с нагрузкой либо, наоборот, для получения требуемого их рассогласования. Применяется в сверхвысоких частот технике . К Т. СВЧ относят также устройства для преобразования типов волн в радиоволноводах.

  Согласующее (рассогласующее) действие Т. в большинстве его конструкций основано на использовании трансформирующих свойств отрезков линии передачи, в которых имеются неоднородности. Последние вызывают отражения (возмущения) волн, что приводит к изменению эквивалентных активного и (или) реактивного сопротивлений соответствующего участка линии передачи. Для создания неоднородностей применяют штыри, диафрагмы, короткозамкнутые шлейфы , диэлектрические втулки, стыки радиоволноводов, имеющих различные размеры поперечного сечения, и т.д.

  В общем случае Т. можно рассматривать как пассивный линейный четырехполюсникс распределёнными параметрами, обладающий пренебрежимо малыми потерями, вход которого подключен к генератору (источнику СВЧ энергии), а выход – к нагрузке. Входное сопротивление Zвх такого четырехполюсника зависит от волнового сопротивления r отрезка волновода (линии), его длины l , рабочей длины волны в волноводе l и полного сопротивления нагрузки Zн . Варьируя эти величины, получают необходимую трансформацию полного сопротивления. Например, если l = , то Zвх = r2 /Zн ; в случае чисто активной нагрузки Zвх = Rвх = r2 / Rн тоже чисто активное. Такой – так называемый четвертьволновый – Т. (рис. 1 , а, б) применяют для согласования двух линий с разными r . Если величина согласуемой нагрузки изменяется в широких пределах, используют короткозамкнутые шлейфы (Zн = 0, Zвх = jr tg2p/l), длину которых регулируют, например, при помощи поршня. Существуют 1-, 2– и 3-шлейфовые Т. (рис. 1 , б). Вместо шлейфов нередко применяют так называемые реактивные штыри (рис. 2 ) , диэлектрические втулки (рис. 1 , г), диафрагмы. Распространены Т., выполненные на основе двойного тройникас замкнутыми накоротко Е – и Н -плечами (рис. 1 , д).

  Степень согласования при помощи Т. характеризуется величиной коэффициента стоячей волны (КСВ). Как правило, согласование считают удовлетворительным, если КСВ ~1,2—1,3 (при проведении точных измерений 1,05—1,1). Существуют Т. с фиксированными параметрами и настраиваемые. Настройка Т. обычно производится по максимуму мощности, поступающей в нагрузку (точную настройку осуществляют с применением измерительной линии или панорамного измерителя КСВ). Различают Т. узкополосные (у которых при перестройке КСВ остаётся ниже заданного уровня в полосе частот шириной не свыше 1% от средней частоты) и широкополосные (5—10% и более).

  Т. СВЧ для преобразования типов волн выполняют в виде согласованных (КСВ £ 1,2) переходов – коаксиально-волноводных, полосково-волноводных, волноводно-волноводных. Основной элементы таких Т. – возбудители волн определённых типов (металлические штыри, щели, решётки различной конфигурации) и устройства для подавления волн нежелательных типов (плавные протяжённые переходы, поглотители, фильтры и т.п.).

  Лит.: Лебедев И. В., Техника и приборы СВЧ, 2 изд., т. 1, М., 1970; Валитов Р. А., Сретенский В. Н., Радиотехнические измерения, М., 1970.

  В. Н. Сретенский.

Рис. 2. Внешний вид трёхштыревого волноводного трансформатора: 1 – волновод; 2 – головки микрометрических винтов для регулирования глубины погружения штырей в волновод; 3 – соединительные фланцы.

Рис. 1. Трансформаторы СВЧ: четвертьволновые с фиксированным сопротивлением – коаксиальный (а) и волноводный (б); перестраиваемые – коаксиальный двухшлейфовый (в), коаксиальный с диэлектрическими втулками (г); волноводный на основе двойного тройника (д); 1, 2 – перемещаемые поршни; 3, 4 – перемещаемые диэлектрические втулки; 5 – Н-плечо; 6 – вход трансформатора; 7 – Е-плечо; 8 – вход трансформатора; D – диаметр наружного проводника коаксиальной линии; d1 , d2 и d – диаметры внутреннего проводника коаксиальной линии соответственно со стороны генератора, нагрузки и на трансформаторном участке; b1 , b2 и b – размеры меньшей стороны поперечного сечения прямоугольного волновода соответсвенно со стороны генератора, нагрузки и на трансформаторном участке; l – расстояние между центрами диэлектрических втулок; l – рабочая длина волны в линии; e – диэлектрическая проницаемость; пунктирными прямоугольниками отмечено положение перемещаемых поршней в Е– и Н– плечах тройника.

Трансформатор силовой

Трансформа'тор силово'й , электрический трансформатор, служащий для преобразования энергии переменного тока в электрических сетях энергетических систем, в радиотехнических устройствах, системах автоматики и др. и работающий при постоянном действующем значении напряжения. Частота тока Т. с. в большинстве стран, включая СССР, равна 50 гц , в США и некоторых других странах – 60 гц . Т. с. представляет собой наиболее распространённый класс трансформаторов. Построены (к 1975) Т. с. мощностью до 1300 Мва и напряжением до 750 кв . Подробнее см. в ст. Трансформатор электрический .

Трансформатор тока

Трансформа'тор то'ка , измерительный трансформатор электрический , предназначенный для измерения и контроля больших токов с использованием стандартных измерительных приборов и устройств автоматического управления и контроля. Одновременно Т. т. служат для изоляции аппаратуры от потенциала сети, в которой производится измерение (контроль). Т. т. подразделяются на трансформаторы переменного тока (обычно их называют просто Т. т.) и трансформаторы постоянного тока.

  Первичная обмотка (ПО) трансформатора переменного тока (см. рис. 2 , а, б) состоит из одного или нескольких (w1 ) витков провода относительно большого сечения и включается последовательно в цепь измеряемого (контролируемого) тока. Вторичная обмотка (ВО) состоит из большого числа (w2 ) витков провода сравнительно малого сечения; к ней подключают приборы и устройства с пренебрежимо малым внутренним сопротивлением (амперметры, счётчики, реле и т.п.). Отличительной особенность Т. т. – независимость тока I1 в ПО от режима работы ВО (практически ВО короткозамкнута). Первичная магнитодвижущая силаI1 w1 уравновешивается магнитодвижущей силой I w1 , возбуждающей основной магнитный поток в сердечнике, и магнитодвижущей силой I2 w2 , определяющей размагничивающее действие тока I2 . В нормальных условиях работы Т. т. I w1 обычно составляет 1—3% от I1 w1 , то есть I1 w1 » I2 w2 . Последнее соотношение позволяет (при известном трансформации коэффициенте ) определять большой ток I , измеряя относительно слабый ток I2 . Поскольку I w1 всё же отлична от нуля, найденная величина I1 имеет погрешность по току (определяемую относительной величиной I w1 ) и погрешность по углу (определяемую сдвигом фаз токов I и I2 ). В некоторых Т. т. (компенсированных) производится компенсация погрешностей измерения. Номинальное значение тока I2 у большинства Т. т. равно 5 а . В силу того что Т. т. используют в цепях, в которых возможно возникновение токов короткого замыкания, к обмоткам таких трансформаторов дополнительно предъявляют требование кратковременно выдерживать токи, существенно превосходящие номинальные.

  Т. т. классифицируют по назначению (измерительные, защитные, промежуточные, лабораторные), способу установки (наружные, внутренние, встроенные в электрические аппараты и машины, накладные, надеваемые на проходные изоляторы, переносные), числу ступеней (одноступенчатые, каскадные), способу крепления (проходные, в том числе клещи электроизмерительные , опорные), числу витков ПО (одновитковые, или стержневые, многовитковые), рабочему напряжению (низкого напряжения, высокого напряжения), виду изоляции обмоток (с сухой, бумажно-масляной, компаундной изоляцией).

  О трансформаторах постоянного тока см. в ст. Измерительный трансформатор .

  Лит.: Бачурин Н. И., Трансформаторы тока, М., 1964; Электрические измерения. Общий курс, под ред. А. Ф. Фремке, 4 изд., Л., 1973.

  М. И. Озеров.

Трансформатор электрический

Трансформа'тор электри'ческий , статическое (не имеющее подвижных частей) устройство для преобразования переменного напряжения по величине. В основе действия Т. э. лежит явление индукции электромагнитной . Т. э. состоит из одной первичной обмотки (ПО), одной или нескольких вторичных обмоток (ВО) и ферромагнитного сердечника (магнитопровода ), обычно замкнутой формы (см. рис. ). Все обмотки расположены на магнитопроводе и индуктивно связаны между собой (см. Индуктивность взаимная ). Иногда вторичной обмоткой служит часть ПО (или наоборот); такие Т. э. называются автотрансформаторами . Концы ПО (вход трансформатора) подключают к источнику переменного напряжения, а концы ВО (его выход) – к потребителям. Переменный ток в ПО приводит к появлению в магнитопроводе переменного магнитного потока . В реальных Т. э. часть магнитного потока замыкается вне магнитопровода, образуя так называемые потоки рассеяния; однако в высококачественные Т. э. потоки рассеяния малы по сравнению с основным потоком (потоком в магнитопроводе).

  Основной поток Ф создаёт в ПО и ВО эдс e1 и e2 : e1 = – w1 d Ф /dt и e1 = – w1d Ф / dt , где w1 и w2 – числа витков в соответствующих обмотках. Отношение e1 /e2 = w1 /w2 = k называют коэффициентом трансформации. Напряжения, токи и эдс в обмотках (без учёта эдс, наводимых потоками рассеяния) связаны соотношениями:

  u1 + e1 = ir1

  и

  u2 + i2r2 = e2 ,

  где r1 и r2 , u1 и u2 , i1 и i2 – активные сопротивления обмоток, напряжения и токи в них. Если напряжение u1 , приложенное к ПО, синусоидальное, то магнитный поток Ф и эдс e1 и e2 будут также синусоидальными, поэтому при анализе работы Т. э. удобно рассматривать действующие значения эдс E1 и E2 , напряжений U1 и U2 и токов I1 и I2 . В случае режима холостого хода (ВО разомкнута), пренебрегая активным сопротивлением в ПО и учитывая, что I2 = 0, имеем U1 + E1 = 0 и U2 = E2 , то есть (без учёта знака)

 

  Основной магнитный поток в режиме холостого хода создаётся относительно малым намагничивающим током (током холостого хода I ) в ПО. Если Т. э. нагружен (ВО подключена к нагрузке и по ней протекает ток), магнитодвижущая сила ВО (произведение I2w2 ) компенсируется соответствующим увеличением магнитодвижущей силы ПО (I1w1Iw1 ) и величина основного магнитного потока остаётся практически такой же, как и в режиме холостого хода (то есть сохраняется условие U1 + E1 = 0). Отсюда, пренебрегая током холостого хода, имеем: I1w1 I2w2 .

  Т. э. был впервые использован в 1876 П. Н. Яблочковым в цепях электрического освещения. В 1890 М. О. Доливо-Добровольский разработал трёхфазный Т. э. Дальнейшее развитие Т. э. заключалось в совершенствовании их конструкции, увеличении мощности и кпд, улучшении изоляции обмоток. В настоящее время (середина 70-х гг. 20 в.) существует множество типов Т. э., получивших распространение в различных областях техники.

  Основной вид Т. э. – силовые трансформаторы, среди которых наиболее представительную группу составляют двухобмоточные силовые Т. э., устанавливаемые на линиях электропередачи (ЛЭП). Такие Т. э. повышают напряжение тока, вырабатываемого генераторами электростанций, с 10—15 кв до 220—750 кв , что позволяет передавать электроэнергию по воздушным ЛЭП на несколько тыс. км . В местах потребления электроэнергии при помощи силовых Т. э. высокое напряжение преобразуют в низкое (220 в , 380 в и др.). Многократное преобразование электроэнергии требует большого количества силовых Т. э., поэтому их суммарная мощность в энергосистеме в несколько раз превышает мощность источников и потребителей энергии. Мощные силовые Т. э. имеют кпд 98—99%. Их обмотки изготовляют, как правило, из меди, магнитопроводы – из листов холоднокатаной электротехнической стали толщиной 0,5—0,35 мм , имеющей высокую магнитную проницаемость и малые потери на гистерезис и вихревые токи . Магнитопровод и обмотки силового Т. э. обычно помещают в бак, заполненный минеральным маслом, которое используется для изоляции и охлаждения обмоток. Такие Т. э. (масляные) обычно устанавливают на открытом воздухе, что требует улучшенной изоляции выводов и герметичности бака. Т. э. без масляного охлаждения называются сухими. Для лучшего отвода тепла Т. э. снабжают трубчатым радиатором, омываемым воздухом (в ряде случаев – водой). В грозоупорных трансформаторах применяют обмотки, конструкция которых устраняет появление опасных напряжений на изоляции. Иногда два или более Т. э. включают последовательно (см. Каскадный трансформатор ). В ряде случаев используют трансформаторы с регулированием под нагрузкой . Среди сухих силовых Т. э. обширный класс составляют трансформаторы малой мощности с большим числом вторичных обмоток (многообмоточные); их часто применяют в радиотехнических устройствах и системах автоматики.

  Помимо силовых, существуют Т. э. различных типов, предназначенные для измерения больших напряжений и токов (см. Измерительный трансформатор , Трансформатор напряжения , Трансформатор тока ), снижения уровня помех проводной связи (см. Отсасывающий трансформатор ), преобразования напряжения синусоидальной формы в импульсное (см. Пик-трансформатор ), преобразования импульсов тока и напряжения (см. Импульсный трансформатор ), выделения переменной составляющей тока, разделения электрических цепей на гальванически не связанные между собой части, их согласования и т.д. Радиочастотные Т. э. служат для преобразования напряжения ВЧ; их изготовляют с магнитопроводом из магнитодиэлектрика либо без магнитопровода; в радиопередатчиках мощность таких Т. э. достигает нескольких сотен квт .

  Лит.: Петров Г. Н., Электрические машины, 3 изд., ч. 1, М., 1974; Вольдек А. И., Электрические машины, Л., 1974.

  В. С. Хвостов.

Схема простейшего электрического трансформатора: 1 и 2 – первичная и вторичная обмотки соответственно с числом витков w1 и w2 ; 3 – сердечник; Ф – основной магнитный поток; Ф1 и Ф2 – потоки рассеяния; I1 и I2 – токи в первичной и вторичной обмотках; U1 – напряжение на первичной обмотке; Rн – сопротивление нагрузки.

Трансформаторная подстанция

Трансформа'торная подста'нция , подстанция электрическая , предназначенная для повышения или понижения напряжения в сети переменного тока и для распределения электроэнергии. Повысительные Т. п. (сооружаемые обычно при электростанциях) преобразуют напряжение, вырабатываемое генераторами, в более высокое напряжение (одного или нескольких значений), необходимое для передачи электроэнергии по линиям электропередачи (ЛЭП). Понизительные Т. п. преобразуют первичное напряжение электрической сети в более низкое вторичное. В зависимости от назначения и от величины первичного и вторичного напряжений понизительные Т. п. подразделяются на районные, главные понизительные и местные (цеховые). Районные Т. п. принимают электроэнергию непосредственно от высоковольтных ЛЭП и передают её на главные понизительные Т. п., а те (понизив напряжение до 6, 10 или 35 кв ) – на местные и цеховые подстанции, на которых осуществляется последняя ступень трансформации (с понижением напряжения до 690, 400 или 230 в ) и распределение электроэнергии между потребителями.

  В состав Т. п. входят трансформаторы силовые (обычно 1 или 2), распределительные устройства , устройства автоматического управления и защиты, а также вспомогательные сооружения. На ряде мощных понизительных Т. п. (на 220—330—500—750 кв ) применяют автотрансформаторы , что снижает потери электроэнергии (на 30—35%), расход меди (на 15—25%) и стали (на 50—60%). Распределительное устройство Т. п. может иметь 1 или 2 системы сборных шин либо не иметь их. Наиболее распространены Т. п. с одной системой сборных шин, обычно секционированной выключателями и разъединителями; на некоторых Т. п. дополнительно устанавливают обходную (байпасную) систему шин, позволяющую вести профилактические и ремонтные работы, не прекращая электроснабжение потребителей.

  Т. п. изготовляют, как правило, на заводах и доставляют на место установки в полностью собранном виде или же отдельными блоками. Такие Т. п. называют комплектными (рис. 1 ). В СССР серийно выпускаются комплектные Т. п. мощностью от 20 до 31 500 ква с первичным напряжением 6, 10, 35, 110 и 220 кв и вторичным от 0,22 до 10 кв . Перспективно применение Т. п., у которых в качестве изоляции высоковольтных коммутационных аппаратов используется элегаз (SF6 ), обладающий высокой электрической прочностью и дугогасительной способностью. Применение элегаза позволяет значительно уменьшить габариты высоковольтных аппаратов и всей Т. п. в целом.

  Местоположение Т. п. определяется её назначением и характером нагрузок. Т. п. с вторичным напряжением 6, 10, 35 и 110 кв размещают, как правило, в центре территории, на которой находятся потребители электроэнергии, что сокращает потери электроэнергии при её передаче и расход материалов при устройстве электросетей. При размещении цеховых Т. п. учитываются конфигурация производственных помещений, расположение технологического оборудования, условия окружающей среды, требования пожарной безопасности и др. Оборудование Т. п. может размещаться на открытой площадке (рис. 2 ) либо в закрытом помещении (например, в отдельном здании).

  Лит.: Ермилов А. А., Электроснабжение промышленных предприятий, 2 изд., М., 1971; Электротехнический справочник, 5 изд., т. 2, М., 1975.

  Б. А. Князевский.

Рис. 1. Двухтрансформаторная комплектная трансформаторная подстанция (понизительная) 2 КТП-1600 на 10 кв (СССР).

Рис. 2. Открытая часть мощной трансформаторной подстанции (понизительной) на 220 кв (СССР).


    Ваша оценка произведения:

Популярные книги за неделю