355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Шахбазян » Амбарцумян » Текст книги (страница 2)
Амбарцумян
  • Текст добавлен: 15 октября 2016, 06:07

Текст книги "Амбарцумян"


Автор книги: Юрий Шахбазян



сообщить о нарушении

Текущая страница: 2 (всего у книги 22 страниц)

Установлено, что Вселенная или, как говорят астрономы, имея в виду наблюдаемую, исследуемую её часть, Метагалактика, содержит примерно 100 миллиардов галактик, а каждая галактика примерно столько же звёзд. Самое главное: как галактики во Вселенной, так и звёзды в галактиках распределены неравномерными отдельными группами – скоплениями. И, что существенно, скопления звёзд и галактик находятся на различных этапах своего развития, то есть скопления звёзд и галактик могут быть молодыми и старыми.

По мере увеличения количества астрономических наблюдений «спокойное небо» Аристотеля переставало казаться спокойным. Конечно, изменения светимости и движения небесных объектов во Вселенной трудно обнаружить, так как они происходят в течение сотен и миллионов лет, не считая быстропеременных звёзд и галактик. Однако астрономы со времён Гиппарха научились оставлять информацию о небесных объектах (координаты и яркость) своим последователям, и новые поколения астрономов, составляя новые каталоги небесных объектов и сравнивая свои наблюдения с наблюдательными данными прежних эпох, получали неоценимые сведения о их перемещениях и изменениях яркости звёзд за много сотен лет.

Чтобы не запутаться в основных астрономических понятиях и величинах, мы совершим небольшой поверхностный экскурс по страницам описательной астрономии, чтобы читатель мог лучше почувствовать, что такое звёзды и галактики, как они светят, с какими энергиями излучения мы имеем дело, какими величинами их описывают.

За несколько тысячелетий до нас внимательные наблюдатели неба – пастухи, мореплаватели и участники караванных переходов – приходили к убеждению, что звёзды и планеты (так же как Луна и Солнце) по-разному меняют своё положение на небе. Планеты перемещаются из одного созвездия в другое, а звёзды неподвижны одна относительно другой. Солнце занимает центральное положение и выделяется своими размерами и массой, превосходя во много раз все остальные вместе взятые тела Солнечной системы. Планеты тоже излучают энергию, но это лишь ослабленная энергия излучения Солнца, отражённая от их холодной поверхности. Звёзды не принадлежат Солнечной системе. На самом деле и звёзды перемещаются в пространстве относительно друг друга, но они так далеки от нас, что видимые их перемещения ничтожны. Но если звёзды так далеки, что излучают почти так же, как планеты, они должны излучать во много раз мощнее, чем планеты. Такой ход рассуждений привёл к мысли, что звёзды – это тела, по своей природе сходные с Солнцем. Галилей в 1718 году сравнил наблюдаемые им положения ярких звёзд с положениями этих же звёзд, которые были определены ещё древнегреческими астрономами. Оказалось, хотя древние греки не очень точно определяли их положение (ошибка составляла несколько минут), что за прошедшие почти две тысячи лет Сириус сместился почти на полградуса, а Арктур – на целый градус. Ещё более существенные заключения удалось сделать после получения и анализа спектров звёзд. Впервые их получил в 1824 году Фраунгофер[15]15
  Йозеф Фраунгофер (1787–1826) – немецкий физик, знаменитый оптик.


[Закрыть]
, а в 1864 году Секки[16]16
  Анджело Пьетро Секки (1818–1878) – итальянский священник и астроном, директор обсерватории


[Закрыть]
пришёл к выводу, что звёзды, как и Солнце, состоят из газа, имеющего высокую температуру, и что по температуре звёзд можно построить их спектральную классификацию. Это значит, что звёзды излучают огромное количество энергии в пространство и поэтому, теряя эту энергию, не могут не изменяться. Они должны проходить какой-то путь эволюции. Значение исследования звёзд велико также для успешного изучения природы самого Солнца, сыгравшего решающую роль в возникновении и поддержании жизни на Земле. И, самое главное для нашего повествования, возникает новый вопрос: связаны ли каким-нибудь образом между собой звёзды? Влияют ли они друг на друга? Не образуют ли звёзды, в свою очередь, обособленные системы, различного типа звёздные скопления, эволюционирующие по каким-то своим законам?

Видимые звёздные величины и светимость звёзд

Остановимся ещё на таком важном вопросе – как в астрономии определяют яркость звёзд и галактик. Если в безлунную ночь взглянуть на небо, то наряду с яркими звёздами глаз видит менее яркие звёзды и множество совсем слабых. Это различие блеска при некоторых оговорках подчёркивает самую замечательную особенность звёздного неба – его глубину. Но эта глубина или, точнее, определение расстояния до звёзд – важнейшая и сложная проблема.

Световым потоком (I) называется количество энергии излучения звезды, падающее на единицу поверхности, перпендикулярной к лучу зрения в единицу времени. Оказалось, что световые потоки звёзд сильно отличаются друг от друга. Например, световой поток Солнца в 2·1010 раз больше светового потока Сириуса. Столь большое различие в световых потоках звёзд делает неудобным использование этой величины. Вместо неё употребляют так называемую видимую звёздную величину m, которая определяется соотношением:

m = -2,5 lg I + C.

Здесь C — некоторая постоянная, выбранная так, чтобы видимые звёздные величины соответствовали шкале древнегреческого астронома Гиппарха, который во II веке до н. э. впервые разделил звёзды на шесть величин в зависимости от их блеска. Разделение на звёздные величины Гиппарх производил на глаз, причём так, чтобы звёзды первой величины казались настолько ярче звёзд второй величины, насколько те кажутся ярче звёзд третьей величины, и т. д. Гиппарху не было известно свойство человеческого глаза воспринимать геометрические соотношения яркости, как арифметические. Человеческий глаз устроен так, что, если в люстре последовательно зажигается 1, 3, 9, 27, 81…, то есть в каждый следующий раз в три раза больше одинаковых лампочек, то нам кажется, что освещённость в комнате всё время увеличивается на одну и ту же величину. Это свойство не только зрения, но и других органов чувств, которое выработалось в процессе эволюции, чтобы, с одной стороны, воспринимать слабые раздражения и, следовательно, обеспечивать нужную реакцию организма на эти раздражения, а с другой стороны, чтобы смягчить влияние сильных раздражений и тем самым оберегать организм от их травмирующего действия. Приведённая формула как раз обладает тем свойством, что если световой поток (/) изменяется в геометрическом отношении, то видимая звёздная величина (m) изменяется в арифметическом отношении, то есть увеличение светового потока в 100 раз соответствует уменьшению видимой звёздной величины m ровно на пять единиц. Согласно предложению Гиппарха, назвавшего самые яркие звёзды звёздами первой величины, чем больше блеск звезды, тем меньше её видимая звёздная величина. Наибольшим блеском обладает Сириус, звёздная величина которого отрицательна: —1,6. Видимая звёздная величина Солнца – 26,7, а Луны в полнолуние – 12,5. Различие видимых звёздных величин не может быть объяснено одним различием расстояний до них. Например, Сириус вдвое дальше, чем α Центавра, а его видимая звёздная величина меньше, то есть блеск больше. Очевидно, это можно объяснить тем, что Сириус излучает больше световой энергии, чем α Центавра. Количество световой энергии, излучаемой звездой в единицу времени, называется её светимостью. Световой поток звезды зависит от её расстояния до наблюдателя. Светимость же звезды от положения наблюдателя не зависит. Это непосредственная важнейшая физическая характеристика звезды. Например, светимость Солнца равна 4·1026 джоулей в секунду.

Известно, что для удобства сравнения предметов их располагают мысленно на одном и том же расстоянии – разница тотчас определяется. Расположим все звёзды от нас на расстоянии 10 парсек[17]17
  Парсек является сокращением от «параллакс в секунду», то есть если параллакс звезды, измеренный с Земли, составляет 1 угловую секунду, то расстояние до неё определяется как 1 парсек. Один парсек составляет 3,26 световых лет или 3·1013 км.


[Закрыть]
. Для этого ближайшим звёздам пришлось бы отодвинуться, а большинству звёзд приблизиться к нам. Сравнивая теперь видимые звёздные величины звёзд, мы могли бы судить о том, какая звезда излучает больше энергии в пространство. Звёздные величины звёзд, находящихся на одном расстоянии, могли бы служить мерой их светимости. Звёздная величина звезды, находящейся на расстоянии 10 парсек, называется абсолютной звёздной величиной (М).

Самую большую информацию дают спектры небесных объектов. Если на пути света от его источника поставить стеклянную призму, лучи с большей длиной волны отклонятся на меньший угол, а лучи с меньшей длиной волны отклонятся на больший угол. В результате на экране появится радуга – спектр источника излучения, – чередующаяся от красного до фиолетового цвета: красный, оранжевый, жёлтый, зелёный, голубой, синий, фиолетовый. Дети легко запоминают последовательность чередования красок по мнемонической присказке: К-аждый – Охотник – Ж-елает – 3-нать – Г-де – С-идит – Ф-азан. За фиолетовым краем находятся ещё более коротковолновые области: ультрафиолетовая, рентгеновская и область у-излучения. За красным краем ещё более длинноволновые области, чем красная: инфракрасная и радиоволны. Эти области спектра глаз не воспринимает. Их излучение регистрируется только приборами. На непрерывном фоне спектров звёзд появляются тёмные, а у некоторых звёзд ещё и яркие линии. Эти линии показывают, что над ослепительно светящейся поверхностью звёзд имеется атмосфера, состоящая из различных газов. Каждый газ даёт линии в определённых местах спектра. Сравнивая положение этих линий с лабораторными спектральными линиями, астрономы определяют состав и температуру звёздных атмосфер. Спектры всех звёзд различны. Однако, расположив их в определённом порядке, получим ряд спектров, где любые два соседних будут очень мало отличаться друг от друга. Для удобства вся последовательность звёздных спектров разбита на семь участков (спектральная классификация): О – В – A – F – G – К – М – N. Запоминают так: O – B(б) – оже – А – F(ф) – G(г) – анистан – K-уда – M-ы – N(н) – есёмся. Или: О – В-е – А – F-air – G-irl – К-iss – М-е. (Группа N не всегда фигурирует в спектральной классификации.) Эта классификация часто подвергается более тонкой градации. Например, А0, А7, F1 и т. д. Явление линейной последовательности спектров указывает на то, что спектры звёзд зависят главным образом от какого-то одного фактора. Этим фактором оказалась температура звезды, которая согласуется с механизмом образования линий в спектрах звёзд.

Известно, что атом всякого элемента может поглощать свет. При этом он поглощает свет совершенно определённых частот. Когда атом поглотит порцию световой энергии или, как говорят, световой квант данной частоты, он переходит в возбуждённое состояние, определяемое тем, что его внешний электрон удаляется от ядра атома. В возбуждённом состоянии атом находится ничтожную долю секунды, после чего электрон возвращается на своё обычное место, а атом при этом излучает порцию световой энергии. Когда свет от раскалённой поверхности звезды проходит через её более холодную атмосферу, находящиеся там атомы различных элементов поглощают свет определённых, свойственных этим атомам, частот. Если атом поглотит квант достаточно высокой частоты, обладающий высокой энергией, то внешний электрон будет не просто перемещён несколько дальше, а будет оторван от ядра; атом станет ионизированным. С другой стороны, чем выше температура звезды, тем больше световой энергии она излучает. Но от температуры звезды зависит и состав квантов её излучения. Чем выше температура, тем больше доля высокочастотных квантов и меньше доля низкочастотных, что определяет разнообразие спектров звёзд.

Чтобы иметь представление о цвете звёзд, проследим, как меняется цвет раскалённого металлического слитка по мере повышения его температуры. Он меняется от тускло-красного к жёлтому, а затем к ослепительно белому цвету. Так и звёзды. У холодных звёзд класса М цвет красноватый. У класса К — оранжевый. Наше Солнце и другие звёзды класса G — жёлтые. У класса F светло-жёлтый цвет. Звёзды класса А кажутся совершенно белыми, а B и O голубоватыми. Звёзды класса O, имеющие очень высокую температуру, будут иметь фиолетовый оттенок. Но в астрономии, как в любой точной науке, все понятия выражаются количественно, и поэтому цвет в астрономии не только качество, но и величина (количество). Цвет в астрономии измеряют. Делают это очень просто. Фотографируют звезду на двух пластинках. Одна из них обыкновенная, чувствительная к синим и фиолетовым лучам. Вторая пластинка покрыта особым светочувствительным слоем, более чувствительным к жёлтым и красным лучам и менее чувствительным к синим и фиолетовым лучам. Такая пластинка по способности воспринимать свет различных цветов близка к человеческому глазу. Ведь глаз человека в ходе эволюции выработал наибольшую чувствительность к лучам того цвета, который преобладает в излучении освещающего нашу планету Солнца, – к лучам жёлтого цвета. По почернению на той и другой пластинке определяют видимую звёздную величину звезды. Видимая звёздная величина, определённая при помощи обыкновенной пластинки, обозначается mpg и называется фотографической звёздной величиной, а видимая звёздная величина, полученная при помощи второй пластинки, обозначается mpv и называется фотовизуальной звёздной величиной. Разность этих величин называется показателем цвета:

CI = mpg – mpv.

Следовательно, у красной звезды показатель цвета CI положительный, а у голубых звёзд – отрицательный. По показателю цвета можно приближённо определить спектральный класс и температуру звезды.

Исследования Крабовидной туманности

А теперь перейдём к изложению замечательной истории возникновения и развития Крабовидной туманности. Эта туманность в астрономической науке играет исключительную роль. Недаром среди астрономов бытует шутка, что современную астрофизику можно разделить на физику Крабовидной гуманности и… всё остальное.

Дело в том, что Крабовидная туманность возникла и развивалась на глазах у астрономов – уникальный случай! – и, более того, в ней был обнаружен весь спектр загадочных астрономических явлений, которые присутствуют во многих объектах Вселенной.

В 1054 году, тогда, когда ещё не было ни телескопов, ни фотографии, китайские и японские астрономы[18]18
  Есть упоминание и в армянских источниках.


[Закрыть]
, каждую ночь внимательно наблюдая за изменениями, происходящими в звёздном мире, обнаружили в созвездии Тельца новую звезду, назвали её «звездой – гостьей», срисовали её, установили её координаты и продолжали за ней наблюдать.

На глазах у ошеломлённых наблюдателей эта звезда, с каждым днём увеличивая свой блеск, превзошла по яркости Венеру – самое яркое светило неба после Солнца и Луны – и была видна даже днём.

Это было всего 950 лет тому назад и, как выяснилось в дальнейшем, это был, выражаясь современным языком, мощный взрыв сверхновой[19]19
  Сверхновые – звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Законченной теории сверхновых звёзд пока не существует.


[Закрыть]
.

С тех пор астрономы не переставали следить за «звездой – гостьей». Дальнейшие наблюдения показали, что в окрестности этой звезды начала образовываться расползающаяся туманность, а яркость звезды начала убывать. Поскольку туманность расположена от нас далеко – на расстоянии 1000 парсек, то заметное, хотя и медленное, увеличение туманности означало, что скорость удаления образующих её газов огромна. Последние точные измерения установили, что газы от центральной звезды выбрасываются со скоростью свыше 1000 км/с.

Так «на наших глазах», всего за 950 лет, в результате вспышки сверхновой звезды образовалась Крабовидная туманность, которая теперь уже досконально изучена.

Чем же она замечательна?

В первую очередь, конечно, тем, что туманность, бесспорно, образовалась в результате мощного взрыва звезды. Кстати, гипотеза о том, что туманности образуются из активной звезды, а не наоборот, была высказана в начале XX века замечательным математиком, физиком и астрономом Анри Пуанкаре[20]20
  Жюль Анри Пуанкаре (1854–1912) – французский математик, физик и философ, глава Парижской академии наук, член Французской академии и ещё более тридцати академий мира, в том числе иностранный член-корреспондент Петербургской академии наук. Создатель теории относительности (вместе с Хендриком Лоренцом).


[Закрыть]
. Очень интересно то, что нигде в современной астрономической литературе этот факт не упоминается. Единственную ссылку на эту гипотезу можно обнаружить только у Амбарцумяна.

Затем астрономы заметили в центральной части Крабовидной туманности две близко расположенные друг к другу слабые звёздочки 16-й величины. И вот оказалось, что южная из этих звёзд – отнюдь не обычная звезда, а нечто совершенно особенное. Это был пятый «кембриджский» пульсар[21]21
  Пульсирующие источники радиоизлучения были открыты в 1967 году. Импульсы пульсаров повторяются с периодом от нескольких сотых долей до сотен секунд.


[Закрыть]
.

Пульсары

Оказалось, что период колебания излучения «кембриджского» пульсара рекордно мал – 0,033 секунды. Первым объяснением, которое пришло в голову, была идея, что эти импульсы – искусственные сигналы, посылаемые внеземными цивилизациями. Их регулярность и казавшиеся закономерными модуляции наводили на мысль о сверхмощных радиомаяках, передающих межзвёздную навигационную информацию. Против этого выдвигался, в частности, следующий аргумент: если маяк посылает свои сигналы во всех направлениях, то и излучаемая мощность должна быть невероятно велика – 1020 ватт, что более чем в миллион миллиардов (1015) раз превышает мощность обычной радиостанции. Для того чтобы выработать такую энергию, космическая станция должна была бы сжигать в виде топлива целые планеты. Но если это радиоизлучение имеет направленное действие (работает, как грандиозный параболоид), то почему узкий пучок направлен именно на нас? Если же пульсары нацелены на нас случайно, и имеются другие такие же, действующие в разных других направлениях, то можно сделать вывод, что их общее число в Галактике невообразимо велико – в таком случае Галактика должна кишеть сверхцивилизациями. Есть и другие аргументы, исключающие отождествление пульсаров с внеземной цивилизацией.

Есть теория, которая полагает, что пульсары – это быстро вращающиеся белые карлики. На одной стороне такой звезды имеется взрывающаяся область (происходит инжекция материи в одном направлении), интенсивно излучающая радиоволны, которые мы принимаем лишь тогда, когда звезда обращена к нам этой стороной. Но и у этой теории имеются свои трудности: никак нельзя представить себе обычный белый карлик, который вращался бы так быстро. Звезда размером с Землю, вращающаяся с периодом 0,033 секунды, имела бы на поверхности скорость около 1 300 000 км/с, то есть намного больше скорости света. Можно представить пульсар, как многоинжектирующую систему ситоподобной конфигурации (многопрожекторного типа) и т. д.

Пульсар интерпретируется сейчас как быстро вращающаяся намагниченная нейтронная звезда малого размера (она плотнее, чем белый карлик). Однако механизм его мощного рентгеновского и радиоизлучения до сих пор окончательно не ясен.

Установлено, что пульсар в Крабовидной туманности, инжектируя релятивистские электроны или, по некоторым гипотезам, испуская гравитационное излучение, со временем замедляется, вызывая тем самым и радио– и рентгеновское излучение туманности. Если бы пульсар «выключился», то через несколько месяцев прекратилось бы жёсткое рентгеновское излучение туманности, а через сотню лет кончилось бы её оптическое излучение.

В 1953 году И. С. Шкловский[22]22
  Иосиф Самуилович Шкловский (1916–1985) – советский астроном, астрофизик, член-корреспондент АН СССР, автор девяти книг и более трёхсот научных публикаций, лауреат Ленинской премии за концепцию искусственной кометы, основатель раздела радиоастрономии в современной астрофизике.


[Закрыть]
предположил, что механизм оптического излучения Крабовидной туманности, по крайней мере, на 95 процентов обусловлен сверхэнергичными (релятивистскими) электронами, движущимися в магнитном поле туманности. Таким образом, было показано, что излучение Крабовидной туманности является синхротронным[23]23
  Такое излучение впервые обнаружено физиками на синхрофазотроне.


[Закрыть]
(или, как говорят физики, магнитно-тормозным, или, как говорят «оптические» астрофизики, является нетепловой непрерывной эмиссией).

Шкловским были предсказаны наличие магнитного поля туманности и, следовательно, поляризация её излучения. Вскоре в Бюракане ленинградским астрофизиком В. А. Домбровским[24]24
  Виктор Алексеевич Домбровский (1913–1972) – советский учёный-астроном, астрофизик.


[Закрыть]
впервые была обнаружена поляризация этой туманности, а молодым астрофизиком Э. Е. Хачикяном (ныне академиком) было исследовано распределение поляризации по туманности. В 1957 году к анализу механизмов непрерывной эмиссии Крабовидной туманности и к проблеме её нетеплового излучения обратился Виктор Амазаспович в работе «О плотных облаках релятивистских электронов».

Он подтвердил мнение Шкловского, что в Крабовидной туманности значительная и даже основная часть тормозного излучения в магнитном поле испускается в оптических частотах.

Однако Амбарцумян указал на возможность существования и другого механизма возникновения излучения. А именно, если имеется сравнительно плотное облако релятивистских электронов достаточно большого размера, то концентрация фотонов, испускаемых при тормозном излучении, увеличивается, и эффект рассеяния электронов на этих фотонах (обратный Комптон-эффект) становится весьма значительным. В результате излучение, являющееся следствием рассеяния электронов на фотонах, может во много раз превзойти тормозное излучение, особенно если при заданном магнитном поле энергия электронов велика.

Виктор Амазаспович в этой работе напоминает о том, как В. Бааде[25]25
  Вальтер Бааде (1893–1969) – немецкий астроном. Исследовал переменные и сверхновые звёзды.


[Закрыть]
в 1942 году обнаружил появляющиеся время от времени в Крабовидной туманности новые яркие сгущения и волокна, которые, вероятно, являются довольно плотными облаками релятивистских электронов.

Аналогичным примером, где можно подозревать существование сравнительно плотных облаков релятивистских электронов, являются вспышки нетепловой непрерывной эмиссии иррегулярно переменных звёзд типа Т Тельца. Светимость у отдельных звёзд типа Т Тельца становится в 20 или 30 раз больше, чем в минимуме. У этих звёзд во время вспышки возникает нетепловая непрерывная эмиссия. Изучение этих загадочных переменных объектов находится в центре внимания астрофизиков мира.

В упомянутой работе Виктора Амазасповича впервые рассматривается вопрос о том, с каким из двух возможных механизмов излучений мы имеем дело в этих явлениях: со случаем, когда преобладает тормозное излучение в магнитном поле, или со случаем, когда, наоборот, преобладает излучение из-за рассеяния на собственных фотонах облака. Решение этого вопроса существенно, так как продолжительность излучения в этих случаях оказывается совершенно разной.

В результате Виктором Амазасповичем было получено фундаментальное соотношение параметров обоих явлений – формула, позволяющая по наблюдаемым величинам получить ответ на вопрос: какой из процессов (магнитно-тормозной или обратный Комптон-эффект) является преобладающим.

С развитием астрофизических методов наблюдений и вводом в строй крупнейших телескопов во многих обсерваториях мира количество обнаруженных разнообразных туманностей, образовавшихся в результате активности центральной звезды, сильно увеличилось (планетарные, кометарные туманности и т. д.). Большой вклад в эти работы сделали бюраканские астрофизики. Таким образом, можно утверждать, что именно Крабовидная туманность своим наглядным примером взрыва сверхновой и образования туманности из звезды указала путь к познанию космогонической эволюции Галактики.

Но многие исследователи считали появление Крабовидной туманности явлением редким, уникальным и не могущим служить примером для космогонических обобщений. Требовались новые доказательства универсальности факта образования туманностей из звёзд. Особое место среди нестационарных объектов занимают переменные звёзды с разнообразными и фантастическими проявлениями вспышечной активности.

Такими объектами являются, например, звёзды типа FU Ориона (Фуоры), которые вдруг, за короткий промежуток времени, повышали свою светимость в наблюдаемой части спектра более чем в 100 раз, после чего удивительным образом долгие годы сохраняли повышенную светимость.

Ни одна из теорий внутреннего строения звёзд не в состоянии объяснить подобное явление. Обнаружение новых Фуоров до сих пор является важным и престижным делом в астрофизике нестационарных объектов.

Были обнаружены удивительные переменные звёзды. Так, например, стало известно, что одна из вспышек сверхновой в соседней галактике превысила суммарную мощность излучения миллиардов звёзд этой галактики! А за период яркого свечения сверхновой, который длится около года, она излучает такое количество энергии, на которое нашему Солнцу понадобилось бы свыше миллиарда лет. При этом сверхновая выбрасывала огромные массы газа с космическими скоростями. Изучение таких удивительных механизмов излучения становится главной задачей астрофизиков – единомышленников Амбарцумяна.

В 1934 году Виктор Амазаспович создал в Ленинградском государственном университете, впервые в СССР, кафедру теоретической астрофизики, а в 1946 году Бюраканскую астрофизическую обсерваторию в Армении.

Как в Ленинграде, так и в Бюракане, определяя область астрофизических исследований и направление работ, он нацеливал своих сотрудников исключительно на решение самых важных и злободневных проблем астрофизики – на совершенствование методов теории переноса излучения и на их приложение в астрофизике, а также методов обнаружения и исследования нестационарных объектов Вселенной. Эти бурно развивающиеся области астрофизики в конечном счёте имели космогоническую направленность, которую мы подробно рассмотрим.

Научное творчество Амбарцумяна началось именно тогда, когда бушующая Вселенная во всём своём неспокойном, поражающем многообразии лежала перед учёными. Астрономия созрела для новых фундаментальных открытий. Здесь уместно вспомнить высказывание великого Ампера[26]26
  Андре Мари Ампер (1775–1836) – французский учёный, один из основоположников электродинамики. Построил первую теорию магнетизма.


[Закрыть]
: «Счастливы те, кто развивает науку в годы, когда она не завершена, но когда в ней назрел уже решительный переворот».

Да, но каким образом черпали такое же вдохновение в бушующей Вселенной замечательнейшие русские поэты? Фёдор Тютчев:

 
…Небесный свод, горящий славой звездной,
Таинственно глядит из глубины, —
И мы плывём, пылающею бездной
Со всех сторон окружены.
 

Или Борис Пастернак:

 
…И страшным, страшным креном
К другим, каким-нибудь
Неведомым вселенным
Повёрнут Млечный Путь…
 

А теперь попробуем рассказать, какими судьбами в этот фантастический и сказочный мир прекрасного, в мир астрономии, пришёл Виктор Амбарцумян и совершил столько удивительных открытий.


    Ваша оценка произведения:

Популярные книги за неделю