355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Шахбазян » Амбарцумян » Текст книги (страница 16)
Амбарцумян
  • Текст добавлен: 15 октября 2016, 06:07

Текст книги "Амбарцумян"


Автор книги: Юрий Шахбазян



сообщить о нарушении

Текущая страница: 16 (всего у книги 22 страниц)

Весьма определённо на совещании выступил В. А. Домбровский: «Теории В. А. Амбарцумяна А. И. Лебединский и Л. Э. Гуревич противопоставили концепцию гравитационной конденсации звёзд из диффузного вещества. На первый взгляд кажется, что эта концепция объясняет многие явления, однако на самом деле она представляет собой лишь схему, ничего по существу не объясняющую. Да иного и трудно ожидать, когда всё многообразие мира пытаются объяснить механической схемой. В результате, вместо действенной теории, способной объяснить процессы происхождения звёзд, перед нами плод кабинетного творчества, искусственная концепция, не выдерживающая испытания при соприкосновении с фактическим материалом наблюдений».

Полное отсутствие прямых или косвенных наблюдательных данных, показывающих возможность образования звёзд из диффузного вещества, делало уязвимым всё абстрактное теоретизирование Лебединского. Аргументы Амбарцумяна оказались более весомыми. Об этом мы подробно говорили в предыдущих главах.

Но В. А. Амбарцумяна ожидал другой, более серьёзный подход к задаче о конденсации в диффузной среде, чем избитая гравитационная модель группы Лебединского.

Здесь следует остановиться на исследованиях академика Г. А. Шайна и А. Б. Северного. Г. А. Шайном и В. Ф. Газе была обнаружена «конденсированная» материя, имеющая характер утолщений в виде волокон некоторых туманностей (волокнистые туманности NGC 6960, 6992 в созвездии Лебедя, Возничем и др.). Это сильно обрадовало Северного, и он предложил хорошо разработанную теоретическую модель магнитно-гидродинамического механизма такой конденсации. Правда, намного раньше Шайн также указывал, что в газовых туманностях известную роль играют сильные магнитные поля, и процессы магнитно-гидродинамического характера. Северный получил систему уравнений магнитогравитационной устойчивости однородной среды в поле собственного тяготения при внешнем магнитном поле и рассмотрел, в качестве примера, малые колебательные движения сильно ионизованного однородного газа в поле собственной гравитации и постоянном внешнем магнитном поле. Эти уравнения, если из них исключить вихревой член, превращаются в основное уравнение обычной теории гравитационной неустойчивости однородной среды. Таким образом, Северный значительно продвинул теорию гравитационной конденсации вещества, но несколько поторопился назвать волокна протозвёздными зародышами в анизотропной среде. Более того, он провёл аналогию между волокнами туманности и неустойчивыми звёздными цепочками Амбарцумяна как областями звездообразования. Исследования Шайна и Северного на совещании вызвали большой энтузиазм среди астрофизиков, придерживающихся классического направления в космогонии. В особенности восхищался Я. П. Терлецкий, заявив, что он тоже независимо пришёл к этому выводу: «Работа Северного представляется мне очень интересной и важной. Действительно, согласно его расчётам, получается, что при наличии магнитного поля вещество туманностей должно концентрироваться в виде волокон, подобных тем, которые наблюдал Г. А. Шайн».

Роль магнитных полей, действительно, оказалась существенной для излучения газовых туманностей. Казалось, что, наконец, найден феномен конденсации в туманности и что концепция Амбарцумяна терпит крах. Однако в вопросах структуры излучения газовых туманностей астрофизики оказались единодушны относительно механизма излучения релятивистских электронов – магнитно-тормозного (синхротронного) излучения, которое мы подробно рассматривали в шестой главе.

На этом совещании академик Г. А. Шайн в своём докладе частично подтвердил другим способом факт существования О-ассоциаций Амбарцумяна, который отрицали многие астрофизики во главе с Воронцовым-Вельяминовым.

Шайн обратил внимание на то, что некоторые большие диффузные газовые туманности в нашей Галактике имеют очень большую массу, порядка тысяч солнечных масс. В таких системах, включающих горячие звёзды и газ, масса газовой материи во много раз превосходит суммарную массу включенных звёзд. Однако для полной уверенности в существовании таких систем в Галактике необходимо было точное определение расстояний до газовых туманностей, чего астрономы не умели делать. По этой причине поиск и исследование гигантских газовых образований Шайн и Газе стали производить во внегалактических системах. Ошибка определения расстояния до таких туманностей не превышала 35 процентов. Эти расстояния надёжно определялись по многочисленным цефеидам, по новым звёздам и по красному смещению. Исследованию подверглись три наиболее яркие газовые туманности в М33 (в созвездии Треугольника) и три в М31 (в созвездии Андромеды). Использовались исследования гигантских газовых образований NGC 604, 595, 2070 и некоторых других. Измерения показали, что яркие газовые туманности, содержащие от сотен до десятков тысяч солнечных масс, представляются вероятными. Подтвердился и тот факт, что на каждую звезду класса O-B приходится от ста до тысячи солнечных масс газа. Кроме того, эти туманности содержат не только гигантские газовые массы, но также и очень большие концентрации белых сверхгигантов (О – В), то есть могут быть связаны с большими скоплениями или ассоциациями горячих звёзд. Таким образом, по существу, в гигантских газовых туманностях были обнаружены системы звёзд, удовлетворяющие условиям для O-ассоциаций Амбарцумяна: большие диаметры (порядка 80 парсек), значительная и относительная и абсолютная плотность звёзд О-В и несомненная генетическая связь этих звёзд. Конечно, можно было рассматривать этот результат Шайна как второе, независимое доказательство существования звёздных ассоциаций, если бы не одно обстоятельство. Вопрос динамической устойчивости этих систем Шайн странным образом отказывался обсуждать. А для Амбарцумяна нестационарность ассоциаций стояла на первом месте, была решающим космогоническим фактором, указывающим место звездообразования. У Шайна звёздные ассоциации связаны с большими газовыми туманностями, но он полностью обошёл вниманием хорошо известные звёздные ассоциации, существующие вне газовых туманностей. Таким образом, у Шайна газовое вещество не всегда является каким-то вторичным явлением, например, результатом выброса из горячих звёзд, и роль газа может быть в иных случаях, по его мнению, доминирующей.

В заключительном слове В. А. Амбарцумян подробно остановился на всех вопросах и проблемах, вызвавших недоумение и несогласие его оппонентов. В основном это относилось к основному оппоненту – Воронцову-Вельяминову.

«Мне кажется, что причиной ошибок Б. А. Воронцова-Вельяминова в отношении звёздных ассоциаций является то, что он всё-таки, к сожалению, не понял до конца всей совокупности идей, связанных со звёздными ассоциациями и сопредельными вопросами звёздной динамики. Б. А. Воронцов-Вельяминов по какому-то недоразумению считает до сих пор, что звёздные ассоциации являются разреженными, как бы пустыми кавернами (коридоры прозрачности) в общем звёздном поле Галактики.

Воронцов-Вельяминов говорил о сверхустойчивых скоплениях, но всякий, знающий элементы звёздной динамики, скажет, что звёздные скопления обладают очень небольшой устойчивостью и быстро разрушаются. По-видимому, он совершенно забыл о том, что тезис о продолжающемся возникновении звёзд в Галактике был впервые обоснован как раз в результате доказательства неустойчивости скоплений. На это указывали здесь другие выступающие.

Наконец, меня поразило утверждение Б. А. Воронцова-Вельяминова о том, что расчёты, основанные на теории вероятностей, его ни в чём не могут убедить… Я не знаю, как такое заявление могло возникнуть. Ведь теория вероятностей – это такая же математическая наука, как арифметика или алгебра. Что же останется от астрономии, если мы откажемся применять в наших работах математические расчёты?»

Несогласие с концепцией А. И. Лебединского и Л. Э. Гуревича Амбарцумян сформулировал просто: «Они должны отказаться от чисто механических схем, от чисто механических теорий, должны учесть всё разнообразие сил, действующих в звёздах и звёздных системах. И хотя вопрос о конкретных формах существования дозвёздной материи ещё не ясен, всё же следует отметить, что не следует ограничивать себя только диффузным веществом и звёздами. Это было бы совершенно неправильно».

В завершение он отметил, что большинство (одиннадцать) докладчиков согласны с его концепцией звёздных ассоциаций, и поблагодарил их.

Любопытно, что относительно механизма конденсации при магнитно-гидродинамическом образовании звёздных зародышей в волокнистых газовых туманностях, предложенного Г. А. Шайном и А. Б. Северным, В. А. Амбарцумян не высказал своего мнения. В последующем многие возвращались к этим идеям, но большого успеха не было достигнуто. Магнитно-гидродинамические процессы широко исследуются сейчас в связи с проблемами физики Солнца.

Председательствующий Б. В. Кукаркин в своём заключительном слове заметил, что в совещании участвовало свыше трёхсот специалистов из ста научных учреждений. Назвал замечательными исследования В. А. Амбарцумяна, В. Г. Фесенкова и Г. А. Шайна.

Так страна провела широкое обсуждение великой проблемы происхождения и развития звёзд.

Следующее космогоническое совещание было посвящено проблеме происхождения космических лучей.

Третье совещание: происхождение космических лучей

Совещание состоялось в мае 1953 года. Приняли участие свыше двухсот специалистов, в основном физики и астрофизики.

Задача происхождения космических лучей имеет вековую историю. Исследования показали, что космические лучи представляют собой поток частиц, движущихся почти со скоростью света, и обладают колоссальными энергиями. Было установлено, что они имеют заведомо внеземное происхождение. Несмотря на успешные многочисленные исследования космических лучей, происхождение первичных частиц, источники их генерации, механизм ускорения, причины вариаций интенсивности пока не нашли удовлетворительного объяснения. Более того, вся трагедия изучения космических лучей, с астрофизической точки зрения, заключается в том, что неизвестно, от какого конкретного космического объекта (звезды, туманности, галактики) исходит данный поток корпускул. Космические лучи, образующиеся в недрах самых активных звёзд и галактик, проходя и блуждая между галактическими и межгалактическими магнитными полями, меняя многократно своё направление, теряют для земного наблюдателя направление на первичный объект излучения. Это очень досадное обстоятельство. Несмотря на это, исследование космических лучей интенсивно производится с высокогорных станций, с высотных атмосферных и внеатмосферных станций. Особенно интересны вариации интенсивности космических лучей при повышении солнечной активности (магнитных бурях). Как правило, при большой солнечной активности интенсивность космических лучей падает.

Большое место в докладах было уделено рассмотрению теоретических механизмов ускорения космических лучей. В частности, многие докладчики предлагали различные варианты усовершенствования и уточнения теории ускорения частиц Энрико Ферми.

И. С. Шкловский напомнил участникам, что «…радиоастрономия внесла существенные изменения в то тяжёлое положение, в котором была наука о природе и происхождении космических лучей. Радиоастрономия сделала космические релятивистские частицы наблюдаемыми». То есть радиоастрономы по анализу радиоспектра могут выделить области генерации космических лучей. Далее он и другие участники совещания приводят соображения, что источниками космических лучей являются, по крайней мере, сверхновые звёзды.

Четвёртое совещание: нестационарные звёзды

Интерес к космогонии нестационарных объектов был очень высок, и созрела необходимость широкого обмена мнениями о результатах астрофизических исследований переменных, новых и сверхновых звёзд – исследований разнообразных нестационарных процессов.

Совещание состоялось в октябре 1954 года. Было сделано большое количество интересных докладов по физике новых, сверхновых и иррегулярно переменных звёзд. Особенно интересны были доклады Мустеля, Копылова, Соболева, Шкловского, Седова, Масевич, Петухова, Воронцова-Вельяминова, Минина, Шайна, Горбацкого, Крата, Кукаркина, Паренаго, Домбровского, Амбарцумяна.

Амбарцумян чувствовал себя на конференции по анализу переменных объектов как рыба в воде. Путеводной звездой в исследованиях Амбарцумяна являлся поиск новых, уникальных физических процессов и явлений во Вселенной среди именно нестационарных объектов. Он непрерывно думал о неспокойных объектах и благодаря удивительной памяти не только помнил о многочисленных разнообразных нестационарных звёздах, но и неожиданным образом мог сопоставлять в уме их бесчисленные спектроскопические, фотометрические, морфологические, кинематические и динамические характеристики. Амбарцумян редко повторно обращался к научным статьям и умел виртуозно анализировать различные объекты и сравнивать их в уме. Он часто интуитивно опережал возможность или безнадёжность строгого математического описания того или иного физического явления.

Взрывные переменные звёзды, новые, сверхновые, увеличивающие интенсивность своего блеска до миллиардов раз, составили главный костяк дискуссии на совещании.

В исследовании новых звёзд большой интерес вызвали попытки объяснения механизма вспышек, причём вспышек повторяющихся. Естественно, отправным моментом здесь явился вопрос, чем новые звёзды, как неустойчивые объекты, отличаются от звёзд не вспыхивающих. Например, по светимости, спектру, размерам и распределению в Галактике новые близки к ядрам планетарных туманностей. Но есть и существенная разница между ними – выброшенные оболочки планетарных туманностей расширяются крайне медленно, тогда как оболочки, выброшенные новыми звёздами, расширяются быстрее. Конечно, космогоническую проблему природы новых звёзд нельзя решить, если направить усилия только на изучение физических процессов во время вспышки. Не менее важно знать, как живёт звезда между вспышками. Подробное изучение спектров на разных этапах вспышки новой звезды выполнил Мустель и пришёл сразу к двум гипотезам. Первая сводилась к разным поведенческим манипуляциям выброшенной оболочки, а вторая – к расширению и убыванию фотосферы звезды вместе со звездой. Теоретические расчёты, сделанные В. В. Соболевым, в общем, согласовывались с результатами наблюдения. Однако анализ кривой блеска пока не мог привести к однозначному выводу, какая из рассматриваемых гипотез описывает расширение новой. Во всех случаях, к сожалению, речь не шла о раскрытии первопричины вспышки новой, а рассматривался процесс после совершившегося взрыва.

Оценка величины выбрасываемой массы при вспышке новой очень важна и была получена многими астрофизиками. Тут первыми были В. А. Амбарцумян и Н. А. Козырев, которые в 1933 году рассчитали массу выброшенной оболочки новой. Неожиданно она оказалась весьма малой, примерно в сто тысяч раз меньше массы Солнца. Вопрос об оценке массы, теряемой новой звездой во время вспышки, очень сложен, так как должны быть определены как масса главной оболочки сразу же после максимума блеска, так и масса, которая выбрасывается в форме непрерывного истечения после максимума блеска. Такую работу после Амбарцумяна и Козырева проделали И. М. Копылов, Э. Р. Мустель и Ш. Г. Горделадзе в СССР и Гапошкины[170]170
  Сергей Илларионович Гапошкин (1898–1984) и Сесилия Хелина Пейн-Гапошкина (1900–1979) – американские астрономы. Совместные труды по переменным звёздам.


[Закрыть]
в Гарварде. Любопытно, что разные методы расчёта дали почти одинаковый результат.

И. М. Копылов привёл распределение новых звёзд в соседней галактике М31 (туманность в Андромеде). Они оказались сконцентрированными в основном в центральной части галактики. Он обратил внимание на ту особенность вспышек новых, что «чем меньше светимость звезды, тем медленнее последующее падение блеска». Он также показал, что пространственное распределение планетарных туманностей и новых в галактике практически одинаково. Однако в галактике появляется одна планетарная туманность за два года, а за это время здесь же вспыхивает не менее ста новых звёзд. Приводились веские доводы в пользу того, что взрывные переменные являются наиболее молодыми звёздами.

И. С. Шкловский привёл убедительные данные, свидетельствующие о том, что остатки сверхновых являются сильными источниками радиоизлучения, но не подтвердил наличие радиоизлучения от центральных областей и ядер галактик.

Несколько умозрительных схем взрыва новых звёзд предложили в своём докладе Л. Э. Гуревич и А. И. Лебединский. Причину возникновения взрыва новых они видели в нарастании энергии ядерных источников, расположенных в центральной области звезды, в которой сосредоточена её основная масса. Они считали, что взрыв происходит вследствие того, что тепловыделение при ядерных реакциях растёт с температурой гораздо быстрее, чем теплоотдача из области периферических источников энергии наружу, и при медленном разогреве может быть достигнута такая критическая температура, выше которой тепловыделение протекает быстрее, чем теплоотдача. С этого момента квазистационарное состояние становится невозможным, и начинается сравнительно быстрый рост температуры на внутренней границе области периферических источников энергии. Кроме этой схемы, они рассмотрели и другую возможность достаточно быстрого постепенного повышения температуры звезды. На такую возможность указал ещё в 1942 году Чандрасекар. После «выгорания» водорода в центральной части звезды в ней образуется постепенно растущая изотермическая область. Эта область при достижении определённых критических размеров нарушает стационарное состояние звезды. Нестационарность возникает, когда имеет место разность масс безводородной и содержащей водород частей звезды. Далее Чандрасекар предполагал, что происходит гравитационное сжатие, коллапс звезды с последующим её взрывом. Оценки этой модели были даны нами в предыдущих главах.

Всякий выброс материи из звёзд является признаком её нестационарности. Такому важному вопросу, как образование туманности, диффузной материи, вследствие выброса её из звёзд, посвятил свой доклад академик Г. А. Шайн. В конце 1940-х годов Фесенковым, Масевич, О. Струве и Кратом было показано, что эволюция звёзд главной последовательности сопровождается значительной потерей массы путём выброса или истечения материи из звезды (до 95 процентов первоначальной массы). Замечено также, что звёзды классов О-В и нестационарные звёзды WR окружены газовыми оболочками и кольцами. Шайн пытался выяснить, какой именно, случайный или генетический, характер носит связь звезды и туманности, то есть, могло ли быть так, что туманность образовалась независимо от звезды. Шайн и Газе в 1953 году утверждали, что около 50 процентов всех звёзд WR и О ассоциируются с туманностями, и потому в генетической связи между этими звёздами и туманностями не приходится сомневаться.

Но есть удивительный факт в ассоциации в Персее, где на участке около сорока квадратных градусов не обнаруживается заметных туманностей, хотя здесь сконцентрировано свыше ста (!) горячих звёзд высокой светимости. По этому поводу Шайн говорит: «Если даже представить, что образование туманности связано с какой-то особой фазой в развитии звёзд, то невероятно, что эта фаза имеет место сразу для сотен белых сверхгигантов».

В. Г. Горбацкий[171]171
  Виталий Герасимович Горбацкий (1920–2005) – советский и российский астроном. Труды по физике звёзд и изучению межзвёздной среды.


[Закрыть]
считал установленным, что из звёзд класса Be происходит выбрасывание вещества, приводящее к образованию вокруг них оболочек, которые в свою очередь излучают непрерывный спектр. Он обращал внимание на нерегулярность выбрасывания вещества. Временами даже выброс прекращается. Отсюда делается вывод, что выброс не есть следствие лишь быстрого вращения звезды, так как скорость вращения не может существенно изменяться за короткое время. Что же происходит со звездой типа Be? Для обнаружения переменности излучения звезды В. Г. Горбацкий предложил метод, основанный на особенностях спектра поглощения ионизованной оболочки. Такой метод даёт возможность описать дальнейшую судьбу оболочки. После того как процесс ионизации оболочки заканчивается, она подвергается давлению излучения La (лаймановской серии), причём давление на внешние слои оболочки гораздо меньше, чем на внутренние. Это приводит к увеличению линейной толщины оболочки, её расширению и, естественно, к её постепенному рассеянию.

В. А. Крат привёл доказательства того, что двойные звёзды в тесной паре должны образовываться одновременно, так как при последовательном их возникновении из диффузного вещества второй компонент, ещё не успевший превратиться в звезду, будет разорван приливными силами главной звезды и будет диссипировать под действием её излучения. Он показал, что жизнь нестационарных звёзд примерно в тысячу раз короче жизни обычной устойчивой звезды, и что стационарные двойные тесные пары – большая редкость. Кроме того, как правило, в нестационарной паре оказывается лишь одна нестационарная звезда, вторая звезда не обнаруживает никаких признаков нестационарности. Подробно рассматривалась корпускулярная неустойчивость равновесия вблизи поверхности звезды. Неожиданный резюмирующий вывод Крата, что явление нестационарности может возникать на различных стадиях развития звезды, должного объяснения тогда не нашёл.

В. А. Амбарцумян в своём докладе чрезвычайно подробно остановился на непредсказуемом поведении звёзд типа Т Тельца. В предыдущих главах об этом уже много говорилось.

И. С. Шкловский высоко оценил исследование Амбарцумяна, новизну и оригинальность его концепции. Новые данные о звёздном составе звёздных ассоциаций привёл на совещании Ю. Н. Ефремов из ГАИШа. Совещание успешно завершилось.

Нескончаемыми были последующие Бюраканские совещания, в основном международного характера, посвящённые дальнейшим исследованиям нестационарных звёзд и галактик. В Бюракан приезжали Харо (Мексика), Хербиг, Бааде, Бербиджи[172]172
  Джефри Бербидж (1925–2010) и Элинор Маргерит Бербидж (род. 1919) – американские астрофизики. Основные труды супругов Бербиджей относятся к ядерной астрофизике, теории внутреннего строения и эволюции звёзд, физике галактик и квазаров.


[Закрыть]
, Цвикки, Терзян (США), Оорт (Голландия), Северный, Горбацкий, Мустель, Кукаркин, Соболев, Иванов, Крат, Шкловский, Домбровский, Мельников.

Многие бюраканцы включились в этот процесс обнаружения и исследования новых сверхмощных взрывных процессов во Вселенной. Например, Л. В. Мирзояном и его сотрудниками отдела физики звёзд и туманностей БАО было обнаружено и исследовано более 2900 звёздных вспышек у более чем 1300 вспыхивающих звёзд. Во всех Т-ассоциациях были открыты вспыхивающие звёзды. Э. С. Парсамян, Г. А. Погосян и Р. Ш. Нацвлишвили показали, что есть внешнее подобие между «медленными» вспышками и фуорообразными изменениями блеска некоторых орионовых переменных. Амбарцумян высоко оценил эту работу заметив, что фуорообразные изменения блеска в столь резкой форме не наблюдаются в Плеядах, и обратил внимание на возможность появления таких явлений в T-ассоциациях. Амбарцумян получил, как уже говорилось, свою знаменитую формулу статистической оценки полного числа и нижнего предела числа неизвестных в системе вспыхивающих звёзд. Она лежит сейчас в основе практически всех статистических исследований вспыхивающих звёзд в скоплениях. Позже Р. М. Мурадян обобщил формулу Амбарцумяна на случай распределения Планка.

Г. Н. Сулаквидзе привёл интересные данные о том, что в 85 процентах случаев в Т-ассоциациях имеются конфигурации звёзд типа «трапеций» (от трёх– до шестикратных). Вспомним, как их не собирались замечать Воронцов-Вельяминов и другие, отрицая существование звёздных конфигураций типа «трапеций» и даже звёздных ассоциаций.


    Ваша оценка произведения:

Популярные книги за неделю