355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Юрий Шахбазян » Амбарцумян » Текст книги (страница 17)
Амбарцумян
  • Текст добавлен: 15 октября 2016, 06:07

Текст книги "Амбарцумян"


Автор книги: Юрий Шахбазян



сообщить о нарушении

Текущая страница: 17 (всего у книги 22 страниц)

Глава четырнадцатая ВНЕГАЛАКТИЧЕСКАЯ АСТРОНОМИЯ И АКТИВНЫЕ ЯДРА ГАЛАКТИК

Краткие сведения о Метагалактике

Внегалактическая астрономия – это наука о тех объектах, которые находятся вне нашей Галактики. Представления о размерах окружающего нас мира на протяжении многих веков развития астрономии претерпели радикальные изменения. Ещё пятьсот лет назад, во времена Коперника размеры Вселенной сводились к размерам Солнечной системы, и первый, кто осознал огромность расстояний до самых близких звёзд по сравнению с размерами Солнечной системы, был Ньютон. Однако истинным пионером в звёздной астрономии справедливо считают Гершеля, который был одним из первых, кто в деталях определил распределение звёзд во Вселенной. Уже в XVIII веке разные мыслители высказывали идеи об «островной Вселенной», то есть о Вселенной, состоящей из бесконечного количества гигантских звёздных ансамблей – «островов». Любопытно, что в это время некоторые астрономы пытались доказать, что и Крабовидная туманность состоит из звёзд. Первоначально астрономы обнаружили звёзды в некоторых туманностях, не зная расстояний до них. Среди звёзд, наблюдавшихся, например, в туманности Андромеды, встречалось много «старых знакомых» – цефеид, новых звёзд и др. Впоследствии знание некоторых особенностей этих звёзд сделало возможным определить расстояния до них и до галактик, содержащих такие звёзды. Одновременно вырисовывались контуры такого острова Вселенной, как наша Галактика.

Между тем исследование туманностей интенсивно продолжалось. Определённую роль в обнаружении внегалактических объектов сыграл французский астроном Шарль Мессье (1730–1817). С 1771 по 1784 год он опубликовал каталог ярких туманностей с замыслом, чтобы они более не принимались за новые кометы, в исследовании которых он являлся лидирующим астрономом. Интересна история его становления как астронома. Он получил только начальное образование и работал в Париже чертёжником и переплётчиком у знаменитого французского астронома и картографа Жозефа Никола Делиля (1688–1768). Делиль в 1726 году был приглашён в Россию в качестве первого академика астрономии в основанной незадолго до этого Петербургской академии наук, членом которой он состоял до 1747 года. Это Делиль оснастил Кунсткамеру астрономическими инструментами, создал и возглавил Географический департамент России, разработал метод определения орбит комет и многое, многое другое. Притягательность работы и доброе отношение к Шарлю его учителя дали свои плоды. Путём только самообразования он приобрёл математические и астрономические знания, освоил астрономические инструменты, стал опытным наблюдателем. Систематически вёл поиски новых комет. Всего Мессье пронаблюдал 41 комету. Для успешного поиска комет составил первый в истории астрономии каталог туманностей и звёздных скоплений. Его каталог в 1781 году содержал 103 объекта, из которых 60 были открыты самим Мессье. Конечно, в каталог Мессье попали галактические туманности и разные звёздные скопления, но среди них оказались и очень интересные внегалактические объекты, обратившие на себя внимание астрономов. В 1764 году Мессье становится членом Лондонского королевского общества и Берлинской академии наук, с 1776 года – почётным членом Петербургской академии наук.

Следующий качественный скачок во внегалактических исследованиях принадлежит английскому астроному и оптику Уильяму Гершелю. Он собственноручно изготовил сотню зеркал, построил уникальный для того времени рефлектор с диаметром главного зеркала 122 сантиметра, открыл планету Уран. Однако главным направлением его исследований была звёздная астрономия, основоположником которой он по праву считается. Величайшей заслугой Гершеля является составление (вместе с сестрой Каролиной) каталога свыше 2500 туманностей. Успешно продолжил дело отца сын Уильяма – Джон Гершель[173]173
  Джон Фредерик Уильям Гершель (1792–1871) – английский астроном и физик, сын Уильяма Гершеля, неоднократный президент Лондонского королевского астрономического общества. Открыл большое число двойных звёзд, звёздных скоплений, туманностей, изучал их распределение по небесной сфере, составил каталог, один из основоположников астрофотометрии.


[Закрыть]
, который в 1864 году опубликовал Общий каталог туманностей (General catalogue of nebulae), содержащий уже 5079 объектов, из которых 449 были открыты Гершелями.

В 1888 году Джон Дрейер[174]174
  Джон Людвиг Эмиль Дрейер (1852–1926) – ирландский астроном датского происхождения. Главным трудом обычно считается Новый общий каталог туманностей и скоплений звёзд, которые он каталогизировал по номерам в 1888 году.


[Закрыть]
дополнил каталог новыми туманностями и опубликовал значительно более обширный список 7840 туманных объектов, названный им Новым общим каталогом туманностей и скоплений звёзд (New general catalogue, NGC). В 1894 и 1908 годах Дрейер издал дополнения к своему каталогу, так называемые Индекс-каталоги (Index catalogue, IC), насчитывающие 15 тысяч туманных объектов. Однако и природа объектов, имеющих спиральную или эллиптическую форму, долгое время оставалась неясной. Не было ясно – это галактические или внегалактические объекты. Почти в это же время были открыты переменные пульсирующие звёзды, яркость которых регулярно менялась с определённой амплитудой. Они были названы цефеидами по названию звезды δ Цефея. Класс этих пульсирующих звёзд, цефеид, обладает важным свойством: чем больше период пульсации звезды, тем больше её светимость. Астроном из Гарварда мисс Генриетта Ливитт[175]175
  Генриетта Суон Ливитт (1868–1921) – американский астроном, известная трудами по изучению переменных звёзд.


[Закрыть]
, изучая переменные звёзды в Малом Магеллановом облаке (1912), обнаружила более тридцати цефеид и открыла их вышеотмеченное свойство. Чёткая зависимость периода пульсации цефеид от светимости позволила с высокой точностью определить расстояние до них по периоду пульсаций. Таким образом, если цефеида наблюдалась в какой-либо галактике или звёздном скоплении, то, измерив период её пульсации, можно определить её абсолютную звёздную величину и, следовательно, расстояние до неё.

Этим методом можно определить расстояния примерно до 3 мегапарсек. Такое ограничение обусловлено сравнительно небольшой яркостью цефеид (до абсолютной звёздной величины М порядка 6). И так как большинство галактик находятся значительно дальше, то для определения расстояния до них использовались данные о более ярких астрономических объектах, как, например, ярчайшие звёзды с абсолютной звёздной величиной М порядка -8, звёздные ассоциации – с М около -12, сверхассоциации – с М порядка -14 и т. д. Так было до тех пор, пока не был открыт закон Хаббла.

Выдающаяся роль в открытии и исследовании Метагалактики принадлежит замечательному американскому астроному Эдвину Хабблу, доказавшему в конце 1920-х годов расширение Метагалактики и установившему закон пропорциональности красного смещения спектральных линий расстоянию до далёких галактик, навсегда связанный с его именем (закон Хаббла).

Одной из первых задач, вставших перед Хабблом, когда он начал систематическое изучение галактик, была задача их классификации. Хаббл избрал самый простой метод классификации по внешнему виду, которым пользуются и до сих пор. Он предложил разбить все галактики на три основных вида:

1) эллиптические, обозначаемые È;

2) спиральные, обозначаемые S;

3) неправильные (иррегулярные), обозначаемые I или Irr.

Следует заметить, что хаббловская классификация не претендует на охват характера происхождения галактик и их эволюции.

Эллиптические галактики имеют вид гладких эллипсов или кругов с постепенным уменьшением яркости от центра к периферии. Внешне никакого дополнительного рисунка у них нет. Но если постараться получить «недодержанные» снимки эллиптических галактик, то обнаружится интересная внутренняя структура галактики. В особенности интересна морфология у М87: виден отчётливый ультрафиолетовый выброс (джет) из ядра этой гигантской галактики.

С этого и началась новая эпоха в астрономии. В десятки тысяч раз увеличился радиус исследуемого человеком мира, а объём исследуемого мира возрос, следовательно, в тысячи миллиардов раз. История науки показывает, что расширение области исследования никогда не ограничивается простым количественным увеличением материала исследования, оно приводит к открытию новых качеств, новых неизвестных до сих пор объектов. Конечно, решающим шагом в исследовании галактик явилось появление крупных инструментов – телескопов и сверхчувствительных приёмников излучения в широком диапазоне электромагнитных длин волн.

Мир галактик чрезвычайно разнообразен, и некоторые из них очень живописны. Для каждой галактики, как бы ни был сложен её внешний рисунок, можно разыскать другую галактику, очень на неё похожую, на первый взгляд – двойника. Однако более внимательное рассмотрение всегда обнаружит заметные различия в любой паре галактик, а большинство галактик очень сильно отличается друг от друга своим внешним видом.

В шестидесятых годах прошлого века Анри Вокулёр[176]176
  Жерар Анри де Вокулёр (1918–1995) – американский астроном французского происхождения. Труды по звёздной фотометрии, физике планет и внегалактической астрономии.


[Закрыть]
разработал классификацию типов галактик, по их изображению отличающуюся от других классификаций (в частности, от классификации Хаббла) большей детальностью. По этой системе классификации он составил три обширных каталога галактик, последний из которых включает 4364 объекта.

Невооружённым глазом можно наблюдать только три галактики – Большое Магелланово облако, Малое Магелланово облако и туманность Андромеды. Но наблюдаемая современными методами внегалактическая область Вселенной, которую астрономы называют Метагалактикой, простирается до двадцати миллиардов световых лет и содержит десятки миллиардов галактик, каждая из которых состоит в среднем из ста миллиардов звёзд.

Классической и хорошо изученной галактикой является спиральная галактика в созвездии Андромеды. Она расположена на нашем северном небе, и каждый вводимый в строй большой телескоп направляется на эту галактику, чтобы получить новые данные. По размерам и по светимости она превосходит нашу Галактику. В 1917 году Дж. Ричи[177]177
  Джордж Уиллис Ричи (1864–1945) – американский астроном и конструктор телескопов.


[Закрыть]
и Г. Кертис[178]178
  Гебер Дуст Кертис (1872–1942) – американский астроном. Труды по физике звёзд и туманностей.


[Закрыть]
обнаружили в спиральном объекте NGC 224 (туманность Андромеды) появляющиеся и через несколько дней исчезающие яркие точки. Они правильно предположили, что это новые звёзды, наблюдаемые в момент максимума блеска. Вспышки новых в нашей Галактике бывают гораздо ярче. И если предположить, что в NGC 224 новые звёзды такой же светимости, как и галактические в момент их вспышки, то нетрудно найти расстояние до NGC 224. Оно оказалось равным 460 килопарсек, то есть в 15 раз больше диаметра нашей Галактики. Значит, NGC 224 – внегалактический объект и имеет светимость, эквивалентную восьми миллиардам Солнц. И нетрудно установить, что NGC 224 содержит около трёхсот миллиардов звёзд. Она повёрнута к нам так, что её главная плоскость составляет с лучом зрения угол в 15 градусов. Угловые размеры туманности Андромеды, измеренные Хабблом по фотографии, составили 160 на 40 секунд, что при расстоянии 460 килопарсек даёт линейные размеры 20 на 5 килопарсек. Но нужно сказать, что размеры галактики не являются вполне определёнными, поскольку у галактик нет резких границ. Например, американские астрономы Стеббинс и Уитфорд, применив фотоэлектрический метод, нашли, что границы туманности Андромеды простираются гораздо дальше, чем это следует из фотографий, и оценили её угловые размеры 450 на 110 секунд, что соответствует линейным размерам 60 на 15 килопарсек. Если согласиться с тем, что диаметр туманности Андромеды равен 60 килопарсек, то окажется, что по размерам она вдвое превосходит нашу Галактику. Но нужно иметь в виду, что возможность прослеживать материю до границ нашей Галактики ещё более трудная задача, чем в других галактиках. Ведь мы находимся внутри Галактики и не можем наблюдать её со стороны.

Туманность Андромеды имеет большое яркое ядро, из которого выходят две спиральные ветви. Сильный наклон галактики к лучу зрения несколько скрадывает рисунок ветвей, но всё-таки они ясно различимы. На фотографиях видно, что, выходя со спиральной ветвью из ядра и направляясь по ней к её концу, нужно совершать поворот по часовой стрелке. Спиральные ветви развиты умеренно, тесно прилегают к ядру, медленно отходят от него. Как и наша Галактика, туманность Андромеды имеет весьма разнообразный звёздный состав. В её спиральных ветвях сконцентрированы голубые звёзды – гиганты и сверхгиганты. Там же собрано большое число переменных звёзд различных типов. В 1938 году X. У. Бэбкок, исследуя вращение галактики Андромеды, обнаружил замечательное явление – отставание скорости вращения спиральных рукавов галактики от скорости вращения его ядра. Это свидетельствует о том, что причиной вращения является ядро, а не галактика.

Американский астроном X. К. Арп[179]179
  Хэлтон Кристиан Арп (род. 1927) – американский астроном, получивший известность благодаря созданному им Атласу пекулярных галактик. Работал совместно с Бербиджами. Приверженец концепции Амбарцумяна об активности ядер галактик.


[Закрыть]
, тесно сотрудничавший с Амбарцумяном, в течение 290 ночей за полтора года получил около тысячи фотографий туманности Андромеды. Исследование снимков позволило ему обнаружить 30 вспышек новых звёзд. Этот результат позволил сделать вывод, что за год в туманности Андромеды вспыхивает в среднем 26 новых звёзд. Это очень важно, и Амбарцумян высоко оценил эту работу. В нашей Галактике должно за год вспыхивать примерно столько же новых звёзд, но большую часть из них наблюдать не удаётся, так как вспышки происходят близ главной плоскости Галактики, и далёкие новые звёзды не поддаются наблюдению из-за сильного поглощения света. Наблюдение рассеянных звёздных скоплений в туманности Андромеды затруднительно, но шаровые скопления, как более яркие объекты, наблюдаются уверенно. Здесь их обнаружено около 140. Важно, что в шаровых скоплениях должны, по-видимому, находиться короткопериодические цефеиды. Межзвёздный водород в туманности Андромеды сконцентрирован около главной плоскости и составляет около двух процентов массы всей звёздной системы.

Основными галактиками, представлявшими интерес для Амбарцумяна, были галактики с активными ядрами, в которых проявлялись бурные и взрывоподобные явления. Их мы рассмотрим позже.

Скопления галактик

В пятидесятых годах прошлого столетия Виктор Амазаспович перешёл от исследования нестационарных явлений в мире звёзд нашей Галактики к изучению нестационарных явлений во внегалактических объектах.

Все разработанные им теоретические методы, используемые для обнаружения нестабильности кратных звёзд и звёздных скоплений, оказались применимы и к скоплениям галактик.

Оказалось, что положение дел в мире галактик в этом смысле является ещё более благоприятным. Кратные галактики и группы галактик дают интересный материал для суждения о групповом возникновении галактик. Более того, тенденция к группированию в мире галактик настолько сильна, что изучение галактик поневоле связывается с вопросом о природе той или иной группы. Если одна галактика уподобляется острову во Вселенной, то скопление галактик естественно уподобить архипелагу. И как все острова архипелага в нашем, земном океане образовались одновременно и по общей причине, так и скопление галактик, вероятнее всего, имеет общий генезис.

Начиная с 1955 года Амбарцумян под особым углом зрения анализировал накопленный наблюдательный материал о кратных галактиках.

Используя понятие систем типа «трапеции» и пользуясь каталогом Холмберга, Амбарцумян установил, что среди 132 кратных галактик 87 имеют такие конфигурации, которые должны быть отнесены к типу «трапеции». Следовательно, они нестабильны.

Был установлен также следующий важный факт: процент нестационарных кратных галактик в Метагалактике больше, чем процент нестационарных кратных звёзд в Галактике.

Многочисленные исследования астрономов дают веские основания считать, что большинство галактик входит в скопления галактик, и что процент одиночных галактик, составляющих общее метагалактическое поле, сравнительно мал. Очевидно, что этот факт имеет глубокое космогоническое значение и позволит получить ценные сведения, касающиеся происхождения и развития галактик. Хотя в настоящее время трудно оценить процент всех галактик, входящих в состав скоплений, однако, как уже упоминалось, новые данные говорят в пользу того, что большинство галактик, по крайней мере, имеющих большую абсолютную яркость, входит в состав скоплений. В этом случае можно повторить вывод, который был сделан в отношении звёзд: компоненты, входящие в состав данной двойной или кратной галактики или же в состав данного скопления галактик, образовались совместно. Это утверждение не является следствием какой-нибудь гипотезы о механизме возникновения галактик или групп галактик. Оно непосредственно следует из наблюдаемой сильной тенденции к скученности. Подтверждается также, что среди них процент систем галактик типа «трапеции» значительно превосходит процент систем галактик обыкновенного типа. Насколько распространены кратные системы типа «трапеции», видно из того, что ближайшая система – туманность Андромеды с ближайшими двумя спутниками – является системой типа «трапеции».

Ранее Амбарцумяном было показано, что количество двойных звёзд, кратных систем и открытых скоплений в нашей Галактике во много раз превышает ту численность этих групп, какая могла бы быть при диссоциативном равновесии. Ему удалось показать, что и в Метагалактике наблюдается отклонение от диссоциативного равновесия в ту же сторону. Он прежде всего заметил, что процент кратных галактик среди всех галактик, составляющих данное скопление, во много раз превосходит тот процент, который должен быть при термодинамическом равновесии. Этот факт без всяких дополнительных предположений приводит к выводу, что в каждой кратной галактике её составляющие имеют совместное происхождение. В этом отношении кратные галактики весьма похожи на кратные звёзды, наблюдаемые нами в нашей звёздной системе. Например, важным свидетельством в пользу нестационарности скопления галактик в Деве является наличие в нём цепочки ярких галактик, включая эллиптические галактики М84 и М86. Удивительным образом мы встречаем здесь аналогию между скоплениями галактик и ассоциациями, где наблюдаются цепочки горячих сверхгигантов (например, пояс Ориона). По-видимому, сверхтесными галактиками являются радиогалактики (например, Дева А).

Основным выводом из сказанного является то, что возникновение кратных галактик в Метагалактике происходит и в нашу эпоху.

Более того, из статистических соображений Амбарцумяном был сделан вывод: составляющие любой кратной галактики возникли совместно.

Но поскольку многие кратные галактики распадаются на независимые отдельные галактики, то сделанное утверждение относится и к одиночным галактикам.

Теперь установлено, что в современных условиях Метагалактики скопления и группы галактик могут либо сохраняться, либо распадаться. Но они не могут обогащаться за счёт галактик, которые возникли независимо от них.

Компактные группы компактных галактик

В 1970-х годах Виктор Амазаспович и Цвикки обратили особое внимание на существование среди кратных галактик систем компактных групп компактных галактик, то есть галактик с высокой поверхностной яркостью. Эти сравнительно молодые системы обладают необычной физической природой и тем самым занимают особое место в физике и эволюции галактик. Эти системы указывают на необычную природу этих объектов. Цвикки был первым, кто их систематически изучил и выявил следующие закономерности:

1) среди компактных галактик встречаются и синие, и довольно красные объекты;

2) компактные галактики часто входят в состав пар, триплетов и т. д.;

3) существуют скопления компактных галактик;

4) размеры скоплений компактных галактик сравнимы с размерами обычных скоплений галактик.

Ранее в Бюракане под руководством Амбарцумяна проводились поиски групп компактных галактик. Ещё в 1957 году в Бюракане Ромелия Шахбазян обнаружила компактные скопления галактик, обладающие довольно необычными свойствами. В особенности это касалось объекта Шахбазян 1[180]180
  Группа Шахбазян 1, содержащая по меньшей мере 20 галактик, является сравнительно богатой группой компактных галактик. Её линейный диаметр – порядка 200 килопарсек.


[Закрыть]
.
Фактически Паломарский атлас не содержит другой группы компактных галактик, равной или превосходящей группу Шахбазян 1 одновременно по числу членов и по компактности членов групп. В 1973 году Робинсон и Бамплер показали, что скопление Шахбазян 1 является далёким скоплением компактных галактик, обладающим довольно необычными свойствами. Это побудило X. Арпа, Дж. Бербиджа и Джонсона рассматривать его как уникальное по своим характеристическим свойствам скопление галактик.

И вскоре был сделан вывод, что компактность – основная характеристика галактик – членов компактных групп обзора.

Интересным было обнаружение сейфертовской галактики первого типа Sy 1 в группе компактных галактик Шахбазян 355.

В дальнейшем в Бюракане были зарегистрированы 500 групп компактных галактик, а всего их количество оценивается в одну тысячу. Существуют и скопления групп компактных галактик.

Компактность, как уже говорилось, важная характеристика галактик – членов компактных групп компактных галактик. Но для чётких исследований нужно иметь определённые критерии компактности. Цвикки был совершенно прав, когда предлагал рассматривать высокую поверхностную яркость как критерий компактности галактик. Компактные галактики в компактных группах по форме в большей части эллиптические или сферические. Кроме того, среди них встречаются спиральные галактики, число которых значительно меньше. Однако яркие иррегулярные галактики, по-видимому, в компактных группах отсутствуют. Интересно, что лишь меньше десяти процентов всех известных групп показывают признаки концентрации галактик в центральных областях. Более того, наблюдается низкая плотность галактик в центральных областях некоторых групп. Значительная часть компактных групп аномальна по форме. Среди компактных групп компактных галактик часто встречаются цепочки и системы цепочек. Особенно интересны группы, которые имеют формы незамкнутых кривых (с пустотой посередине). Это так называемые группы периферийной структуры. Кроме того, можно сделать важный вывод – что, по крайней мере, в некоторых случаях компактные группы компактных галактик являются достаточно плотными ядрами более широких и протяженных скоплений. Этот вопрос заслуживает серьезного внимания.

Сейчас на самом крупном (2,6-метровом) бюраканском телескопе эти работы успешно продолжаются. Однако наблюдения компактных групп компактных галактик ведутся не столь интенсивно, как они того заслуживают.

Активные ядра галактик

До 1940-х годов астрономы относились к галактикам как к относительно спокойным объектам. Считалось, что за исключением взрывов сверхновых в них не происходит никаких активных процессов.

К идее о фундаментальной роли ядер галактик в их эволюции В. А. Амбарцумян пришёл не сразу. Этому предшествовали некоторые важнейшие открытия, полученные известными астрономами-наблюдателями. Важную роль в обосновании концепции активных ядер галактик сыграла работа американского астронома Карла Сейферта[181]181
  Карл Кинан Сейферт (1911–1960) – американский астроном. Труды по изучению галактик и звёзд.


[Закрыть]
. В середине 1940-х годов он опубликовал замечательное исследование, выполненное в 1940–1942 годах в обсерватории Маунт-Вильсон. Он был учеником Харлоу Шепли[182]182
  Харлоу Шепли (1885–1972) – американский астроном. Труды по исследованиям переменных звёзд в нашей и других галактиках, а также строению нашей Галактики.


[Закрыть]
, открытия которого коренным образом изменили наши представления о Галактике и о месте в ней Солнечной системы. Прекрасны научно-популярные книги «Галактики» и «Звёзды и люди», написанные Шепли.

Сейферт работал в обсерваториях Гарварда, Макдональда и Маунт-Вильсон. Ему удалось обнаружить и исследовать серию из десяти спиральных галактик, в которых происходят мощные процессы выделения энергии. Эти галактики внешне не отличались от обычных спиральных галактик. Галактики Сейферта обладают яркими компактными ядрами, в спектрах которых имеются широкие эмиссионные линии. Эти линии свидетельствуют о мощных турбулентных движениях газа в центральной части галактик со скоростями, достигающими нескольких тысяч километров в секунду. Была установлена молодость сейфертовских галактик. Однако на исследования Сейферта астрономы практически не обратили внимания.

Начиная с середины прошлого века внегалактические исследования сильно расширились благодаря вторжению в практику астрономических наблюдений всеволновых технических средств. Радиоастрономические и внеатмосферные наблюдения обнаружили новые потоки радиоизлучения ошеломляющей мощности. Однако оставалась большая проблема – отождествить поток наблюдаемого радиоизлучения с его источником.

В 1951 году известные американские астрофизики В. Бааде и Р. Минковский[183]183
  Рудольф Лео Минковский (1895–1976) – американский астрофизик. Труды по изучению газовых туманностей, новых и сверхновых звёзд, а также пекулярных внегалактических объектов.


[Закрыть]
отождествили мощный радиоисточник в созвездии Лебедь с далёкой галактикой. Вскоре были отождествлены и другие радиоисточники, и началось всестороннее исследование галактик.

Были обнаружены такие сверхмощные радиогалактики, что ни одна теоретическая концепция не могла и близко подойти к объяснению столь гигантских энергий излучения. Все астрофизики по мере своих возможностей начали изобретать различные механизмы образования сверхмощного излучения, не поддающегося объяснению. Началось своеобразное соревнование – кто может предложить, пусть даже умозрительную, концепцию высвобождения таких неправдоподобно сильных излучений.

Так, Бааде и Минковским была предложена гипотеза столкновения галактик.

Для разгадки этих уникальных явлений Амбарцумян начал с досконального изучения публикаций мирового наблюдательного материала, целенаправленного поиска активных галактик в Паломарском атласе и проведения дополнительных наблюдений с помощью своих учеников и коллег.

Гипотеза Бааде и Минковского была вскоре опровергнута Виктором Амазасповичем. Он рассчитал, что вероятность столкновения галактик во Вселенной меньше чем 10-11. Это означало, что среди ста миллиардов галактик могут столкнуться только две: событие настолько маловероятное, что теория столкновений галактик была отвергнута[184]184
  Амбарцумян В. А. Изв. АН Арм. ССР, сер. физ. – матем., естеств. и техн. наук. 1956. № 9, 23.


[Закрыть]
. До этого против гипотезы столкновения выступили Шкловский и Миллс. Более того, позднее Дж. Бербидж рассчитал, что энергия, выделяемая при столкновении двух галактик, на несколько порядков меньше, чем действительное излучение радиогалактик. Полезно провести аналогию между столкновением галактик, в которых звёзды расположены далеко друг от друга, и столкновением двух роёв пчел низкой плотности. Станет ясным, что столкновения фактически не произойдет, разве что столкнутся несколько звёзд (пчел).

Все накопившиеся у Амбарцумяна общие представления об эволюции галактик и многочисленные наблюдения свидетельствовали о бурных процессах, происходящих в ядрах галактик. А ведь всего 50 лет назад о галактиках было представление как о давно сформировавшихся и застывших звёздных системах. Астрономы, беря в основу медленную эволюцию галактик, создавали морфологические классификации, не замечая бурных динамических активных процессов, в особенности в центральных околоядерных областях. И не случайно, что Амбарцумян первый обратил серьёзное внимание на исследования Сейферта и высоко оценил обнаруженные им активные ядра.

К этому времени относится опубликованный Амбарцумяном анализ многих интересных галактик, который послужил в дальнейшем основой для разработки фундаментальной концепции активности ядер галактик. Выдвинутая Амбарцумяном концепция главенствующей роли ядра в жизни галактики гласила:

«Галактики образуются в результате выбросов вещества из их ядер, представляющих собой новый вид „активной материи“ не звёздного типа. Галактики, спиральные рукава, газопылевые туманности, звёздное население и др. образуются из активного ядра галактики».

Бюраканские астрономы хорошо помнят, когда ранней весной 1957 года Амбарцумян впервые рассказал о явлении активности ядер галактик. На учёном совете, почему-то на бумаге, а не на доске, как обычно, он долго рисовал карандашом что-то очень похожее на недоэкспонированную галактику М87 (NGC 4486) и со словами, что таких галактик с мощными выбросами из ядра можно обнаружить очень много, пустил рисунок по рукам.

Эту галактику Амбарцумян давно заметил. Отчётливый, гигантский выброс из ядра огромной галактики в своё время произвёл на Амбарцумяна неизгладимое впечатление масштабностью процесса. Эта гигантская радиогалактика имеет в оптических лучах особенность, которая её выделяет среди других эллиптических галактик: из неё исходит голубая струя со сгущениями, которые испускают поляризованное излучение. Тот факт, что струя исходит из центра, не оставляет сомнения в том, что здесь имеет место выброс из ядра галактики. С другой стороны, наличие поляризации излучения сгущений, измеренной Бааде, указывает на то, что механизм свечения если не полностью, то частично аналогичен механизму свечения Крабовидной туманности. Это означает, что излучение выброса имеет нетепловое происхождение, а спектр сгущений является непрерывным. Отсюда следует, что в сгущениях струи источником излучения являются не только звёзды, но и диффузное вещество, находящееся в том же состоянии, что и вещество Крабовидной туманности. Иными словами, в этих сгущениях можно предполагать значительное количество электронов высокой энергии. Вскоре стало понятно, что источники радиоизлучения расположены по всему объему самой галактики. Возможны два предположения:

1) релятивистские электроны были непосредственно выброшены из ядра галактики;

2) из ядра выброшены объекты, которые являются источниками релятивистских электронов столь высокой энергии, что их синхротронное излучение сосредоточено в оптической области.

Ограничиться первой гипотезой невозможно, поскольку в этом случае нельзя будет понять сосредоточение оптического излучения в малом объёме сгущений. Поэтому надо думать, что источники, испускающие электроны высокой энергии, сосредоточены в самих этих сгущениях. Таким образом, Амбарцумян ещё в 1950-х годах приходит к пониманию природы рассматриваемых сгущений на джете. Они являются конгломератами облаков релятивистских электронов, газовых облаков и нестационарных звёзд. Причём нужно заметить, что выброшенная из ядра материя в короткий срок превращалась в подобные конгломераты. Эмиссионная линия λ=3727, наблюдаемая в области ядра М87, даёт, по-видимому, представление о скорости выбросов из ядра. Амбарцумян оценивает порядок сроков, в течение которых могут происходить подобные превращения. Они оказываются порядка 3·106 лет. Отсюда Амбарцумян делает важный вывод: наряду с делением ядер галактик в природе могут происходить процессы выбросов из ядер галактик относительно небольших масс. Эти выброшенные массы могут в короткие сроки превращаться в конгломераты, состоящие из молодых нестационарных звёзд, межзвёздного газа и облаков частиц высокой энергии.

Галактика М87 с отчётливым выбросом из ядра, и особенно со сгущениями на джете, представляла блестящую демонстрацию нестабильности и активности её ядра. Возможность выброса масс из ядер, предсказанная Амбарцумяном, удивительным образом подтвердилась спустя 50 лет: на космическом телескопе «Хаббл» в 2002–2006 годах был зарегистрирован колоссальный взрыв сгущения, ближайшего к ядру галактики М87. За шесть лет светимость на этом сгущении возросла в 90 раз! К сожалению, Амбарцумяна уже не было в живых, и он не смог обрадоваться воплощению своего предвидения.

Особое место в исследованиях Амбарцумяна занимали голубые выбросы из ядер эллиптических галактик. Рассмотренная нами галактика М87 не является единственной галактикой, в которой мы наблюдаем выброс вещества из ядра.


    Ваша оценка произведения:

Популярные книги за неделю