Текст книги "Старение и увеличение продолжительности жизни"
Автор книги: Владимир Фролькис
сообщить о нарушении
Текущая страница: 9 (всего у книги 15 страниц)
В большом цикле работ нашей лаборатории были проанализированы как общие изменения вегетативных реакций, так и сдвиги в отдельных звеньях вегетативной нервной системы: в высших вегетативных центрах, вегетативных ганглиях, симпатических и парасимпатических влияниях на ткани, в обратной информации. Проведенные работы позволяют утверждать, что первичные изменения в нервных клетках, в различных структурах центральной нервной системы ведут к важным вторичным нарушениям в тканях и клетках организма.
Важнейший механизм старения – ослабление нервного контроля над деятельностью внутренних органов. Как видно на рис. 22, взятом из работы В. Г. Шевчука, для того, чтобы вызвать изменения деятельности сердца у старых животных, приходится раздражать симпатические и парасимпатические (блуждающий) нервы током большей силы. Этот эффект ослабления нервного контроля при старении – общебиологическая закономерность, так как он обнаружен нами у разных видов животных – крыс, кроликов, кошек, собак, а также у человека. Механизм ослабления нервного контроля связан в этих случаях с тем, что при старении снижается синтез медиаторов, гибнет часть нервных окончаний. Это ослабление нервного контроля не только изменяет реакции внутренних органов, но и вызывает нарушение в них обменных процессов. Путь от центров к периферии обязательно прерывается в вегетативных ганглиях – симпатических и парасимпатических. Вегетативные ганглии – не просто передаточное звено, здесь может перерабатываться поступающая информация. При старении наступают структурные нарушения в клетках вегетативных ганглиев, уменьшается их возможность пропускать информацию, растет чувствительность к ряду физиологически активных веществ. Все это способствует возрастному изменению регуляторных влияний вегетативной нервной системы на органы и ткани.
Рис. 22. Изменения минутного объема крови при раздражении симпатического (а) и блуждающего нервов (б).
1 – взрослые животные; 2 – старые
Особое значение в регуляции внутренней среды организма придается сейчас так называемому висцеральному мозгу, лимбической системе и важнейшему отделу мозга – гипоталамусу, который объединяет нервную и гормональную регуляцию внутренней среды организма.
К лимбической системе относят многие структуры мозга – некоторые области коры головного мозга, гиппокамп, миндалевидный комплекс, перегородку и др. Одни исследователи включают гипоталамус в лимбическую систему; другие полагают, что это отдельная структура. Как бы то ни было через гипоталамус осуществляются многие влияния на внутреннюю среду организма, эмоции, поведение, идущие с лимбической системы. При старении наступают существенные молекулярные, структурные, функциональные сдвиги в отдельных структурах лимбической системы. Показано, что неравномерно изменяется их возбудимость, чувствительность к гормонам и медиаторам, количество клеток, обмен в них белка и др. Это все приводит к разрегулированию функции лимбической системы, к изменению оборонительных, ориентировочных, половых реакций, к изменению поведения, эмоций, памяти, надежности, регенерации внутренней среды. Очень важно, что в процессе старения изменяются влияния со структур лимбической системы на ядра гипоталамуса. Это нарушает интегративную деятельность мозга, регуляцию гомеостазиса. К сожалению, возрастные изменения лимбической системы еще недостаточно изучены.
Старение лимбической системы, гипоталамуса – пусковой механизм многих возрастных сдвигов в организме. Некоторые исследователи помещают биологические часы, считывающие ритм и ход возрастных изменений целостного организма, в гипоталамус.
Структура гипоталамуса сложна и неоднородна. Он представляет собой скопление 32 пар ядер, которые можно разделить на три группы: передние, средние и задние. Ядра гипоталамуса множественными путями связаны с другими отделами центральной нервной системы. Обширные нервные и сосудистые связи существуют между гипоталамусом и гипофизом. Через гормоны гипофиза гипоталамус регулирует функции желез внутренней секреции. Связь эта настолько существенна, что часто выделяется единая гипоталамо-гипофизарная система.
Много сведений о роли гипоталамуса в регуляции внутренней среды организма получено В. В. Безруковым в опытах с раздражением и разрушением его отдельных структур. При раздражении передних ядер гипоталамуса происходят изменения в деятельности сердечно-сосудистой и дыхательной систем, увеличение секреции желудочных желез, усиление моторной деятельности желудочно-кишечного тракта, сдвиги в выделении гормонов поджелудочной, щитовидной, половых желез, коры надпочечников и др.; при раздражении группы задних ядер – учащение ритма сердечных сокращений, сужение сосудов, торможение моторики кишечника, увеличение содержания катехоламинов в крови, сахара в крови и др. При разрушении гипоталамуса или его отделов отмечены нарушения основных видов обмена веществ, теплорегуляции, репродуктивной функции, многих поведенческих реакций и др. Гипоталамус через гормональные и нервные механизмы может оказывать влияние на генетический аппарат, биосинтез белка в клетках. При старении этот важный механизм ослабляется, что существенно влияет на состояние обмена веществ в клетках.
Со временем стали накапливаться данные о том, что нарушение функции гипоталамуса играет большую роль в механизме развития вегетативных неврозов, артериальной гипертонии, атеросклероза. В. М. Дильманом было много сделано для доказательства того, что гипоталамус включает нейрогормональные сдвиги в организме, ведущие к развитию климакса, старения. От состояния гипоталамуса будет зависеть характер развития климактерического периода, его плавное, нормальное, физиологическое течение или же патологическое, сопровождающееся существенными сдвигами во всей системе нейрогормональных влияний, развитием патологии.
Исключительная роль гипоталамуса в регуляции вегетативных функций организма, сходство ряда проявлений нарушения деятельности гипоталамуса и старения, его роль в возникновении климакса привели исследователей к представлениям о гипоталамическом механизме старения. Однако по сей день высказываются прямо противоположные представления о характере возрастных изменений в гипоталамусе. Так, Н. Б. Маньковский, А. Я. Минц, И. Н. Борисов и др. утверждают, что при старении функция гипоталамуса ослабевает. По мнению В. М. Дильмана, при старении развивается рост активности гипоталамуса.
Гипоталамус – чрезвычайно сложная структура мозга, и на современном этапе знаний следует стремиться связать те или иные сдвиги с отдельными ядрами гипоталамуса. Кроме того, нельзя забывать и о возможной роли в возникновении многих клинических нарушений, "числящихся" за гипоталамусом, других структур лимбической системы. Отсюда вывод: необходимо прямое экспериментальное изучение возрастных изменений структур гипоталамуса.
С этой целью в работах нашего коллектива были использованы методы стимуляции отделов гипоталамуса, введения в них физиологически активных веществ, регистрации электрической активности структур гипоталамуса, определения в нем ряда обменных процессов и др. Все это позволило выявить особенности старения гипоталамуса. Оказалось, что возбудимость различных отделов гипоталамуса с возрастом изменяется неодинаково. Возбудимость заднего и переднего гипоталамуса растет, среднего падает. При этом как бы выравнивается возбудимость различных ядер. О неравномерных изменениях свидетельствуют различия в структуре отдельных ядер гипоталамуса при старении. В одних ядрах количество нервных клеток к старости существенно падает, в других не изменяется. Чрезвычайно важно, что любая системная реакция осуществляется обычно при участии не одного ядра гипоталамуса, а как минимум нескольких. Отсюда первый вывод: из-за разнонаправленных изменений функции отдельных ядер гипоталамуса наступает его разрегулирование и в результате этого нарушение приспособительных реакций организма.
Важную информацию можно получить при подробном анализе возрастных особенностей сдвигов, вызываемых при стимуляции гипоталамуса. Так, известно, что раздражение разных структур гипоталамуса ведет к изменению артериального давления. Оказалось, что одна и та же реакция – рост артериального давления – может возникать у животных разного возраста за счет неодинакового соотношения работы сердца и тонуса сосудов. У старых животных стимуляция гипоталамуса чаще ведет к росту сердечного выброса, чем у взрослых. Отсюда второй вывод: при старении качественно изменяются реакции, вызываемые гипоталамусом. Эти качественные особенности гипоталамической регуляции определяют важные механизмы старения организма.
Ядра гипоталамуса высокочувствительны к ряду физиологически активных веществ – к гормонам, медиаторам. Благодаря этому достигается обратная связь (отрицательная или положительная) в системе нейрогормональной регуляции – сдвиги концентрации гормона в крови активируют или подавляют активность соответствующих гипоталамических ядер. В результате этого адаптивно изменяются влияния гипоталамуса на состояние эндокринных желез. В. В. Безруков и Р. П. Белоног показали, что у старых кроликов и людей меньшие количества гормонов (адреналина, инсулина, половых гормонов) вызывают изменения электрической активности. По данным В. М. Дильмана, в процессе старения снижается чувствительность гипоталамуса к ряду гормонов. Специальный анализ показал, что чувствительность одного и того же ядра гипоталамуса к разным гормонам и разных ядер к одному гормону может изменяться неодинаково. Более того, в старости извращается реакция гипоталамуса на гормональные воздействия. В. Н. Никитин показал, что гормон коры надпочечников – кортикостерон – в старости может не угнетать выделение адренокортикотропного гормона (АКТГ), стимулирующего эту железу, а усиливать его образование. Отсюда третий вывод: при старении развивается гипоталамическая дезинформация. Из-за изменения чувствительности гипоталамус получает неверную информацию о состоянии внутренней среды организма, что ведет к нарушению гипоталамической регуляции.
Часто возникают ситуации, требующие напряженной деятельности гипоталамуса. Это возникает при повторных стрессах, эмоциональных перенапряжениях и др. В опытах напряженную деятельность гипоталамуса можно вызвать длительным раздражением его структур электрическим током. У старых животных при этом возникают более грубые нарушения. В деятельности сердечно-сосудистой системы развивается артериальная гипертония, возникают инфаркты миокарда (рис. 23). Отсюда четвертый вывод: при старении снижается надежность гипоталамической регуляции.
Рис. 23. Влияние повторного раздражения гипоталамуса на уровень артериального давления у взрослых (1) и старых (2) кроликов
Гипоталамус множеством нервных путей связан с другими отделами мозга. Это как бы выходные ворота для поступления регуляторных влияний с мозга на эндокринную систему и вегетативную нервную систему. В нашем коллективе показано, что при старении изменяются влияния с коры головного мозга, с ряда образований лимбической системы на гипоталамус. Отсюда пятый вывод: возрастные изменения гипоталамической регуляции в ряде ситуаций могут быть связаны не с изменением в самом гипоталамусе, а в других структурах мозга, реализующих свое влияние через гипоталамус.
Итак, возникающие с возрастом адаптационно-регуляторные сдвиги, способствующие сохранению гомеостазиса, процессы витаукта связаны с возрастной динамикой лимбической системы гипоталамуса. Однако, когда в гипоталамусе нарастают возрастные сдвиги, это становится важным механизмом старения всего организма.
Нейронный транспорт веществ
Бернард Шоу писал: «Если в поисках истины исследователь будет все более и более дробить изучаемое явление, то он рискует узнать все… ни о чем» (Поли. собр. соч. М, 1980. Т. 6. С. 117). Это предупреждение важно и для современного биолога; каким бы он ни был – «молекулярным» или «клеточным» – он все равно должен оставаться биологом, т. е. представлять себе общий биологический смысл изучаемого явления, не терять из виду соотношение частного и общего. Вот почему наряду с изучением глубинных механизмов старения так необходима общая характеристика его течения. Для такого подхода важно представление о трофике, о ее нервной регуляции – учении, выдвинутом и разработанном классиками отечественной физиологии И. П. Павловым, Л. А. Орбели, Г. В. Фольбортом, А. Д. Сперанским.
И. П. Павлов подчеркивал, что каждый орган находится под тройным контролем: функциональных нервов, вызывающих или прекращающих деятельность органа; сосудистых нервов, регулирующих тонус сосудов; трофических нервов, оказывающих влияние на обменные процессы в тканях. Трофические процессы – это весь комплекс явлений в тканях, определяющий ее структуру и функцию, это прежде всего пластическое обеспечение функции.
Существуют две группы фактов, сопоставление которых должно было бы привести к закономерному выводу: в механизме старения клеток и тканей важное значение имеют возрастные изменения регуляции их трофики. С одной стороны, имеются клинические наблюдения о множественных, легко заметных трофических нарушениях при старении (выпадение волос, зубов, сухость кожи, трофические язвы и др.). С другой стороны, экспериментальные факты, свидетельствующие о том, что при нарушении трофической иннервации возникают изменения, во многом напоминающие сдвиги при старении организма.
Большим комплексом работ нашего коллектива было доказано, что важнейшим механизмом старения является ослабление нервного контроля над деятельностью тканей. Есть два типа нервных влияний – срочных, осуществляемых в доли секунды, и медленных, осуществляемых благодаря так называемому аксонному транспорту веществ. Оба типа изменяются при старении, и ряд нарушений в органах – последствие изменения нервно-трофического контроля.
Аксон – отросток нервной клетки. По нему движутся вещества от тела нервной клетки к нервным окончаниям, и наоборот – от нервных окончаний к телу нервной клетки. Это и есть аксонный транспорт веществ. Скорость движения различных веществ неодинакова – от 4 до 500 мм/сут. С аксонным транспортом движутся молекулы РНК, белка, отдельные органоиды клетки, везикулы, заполненные медиатором и др.
При старении (рис. 24) существенно замедляется скорость аксонного транспорта белков. В опытах на крысах через тончайшую микропипетку в моторные нейроны спинного мозга взрослых и старых крыс вводилась меченная по углероду аминокислота лейцин. В теле нервной клетки она включалась в белки и затем скорость их движения определялась в аксоне. Снижение скорости аксонного транспорта в старости связано с возрастными изменениями энергетики, нервной клетки, с транспортом ионов через клеточную мембрану.
Рис. 24. Влияние различных факторов на скорость транспорта веществ в аксонах мотонейронов спинного мозга у взрослых (А) и старых (Б) крыс.
1 – эстрадиолдипропионат; 2 – тестостеронпропионат; 3 – гипоксия ('высота' 6000 м, Р – 340 мм рт. ст.); 4 – 2,4-динитрофенол (6 мг/кг); 5 – кастрация; 6 – гидрокортизон; 7 – стимуляция вентромедиального ядра гипоталамуса. Исходная скорость аксонного транспорта веществ у взрослых – 408.0±10.9, у старых – 217.0 ±11-3 мм/сут
Аксонный транспорт, как и любое движение, требует затрат энергии – АТФ; для него необходимы ферменты, расщепляющие АТФ, сократительные белки, ионы кальция. Как видно на рис. 23, в условиях кислородного голодания (подъем животных на высоту 6000 м) скорость аксонного транспорта снижается только у старых животных. Синтез АТФ происходит в ходе окислительных процессов в митохондриях. С возрастом во многих нервных клетках падает число митохондрий, снижается количество АТФ. Есть вещества, специфически влияющие на митохондрии, обесценивающие энергетическую «стоимость» окислительных процессов, препятствующие синтезу АТФ. К ним относится 2,4-динитрофенол, разобщающий процессы окисления и фосфорилирования. У старых животных меньшие дозы этого вещества замедляют скорость аксотока.
В регуляции аксонного транспорта большое значение имеет важнейший внутриклеточный посредник – циклический 3′-, 5′-АМФ (цАМФ). Образовавшись в клетке при участии фермента аденилатциклазы, цАМФ активирует протеинкиназу, а та в свою очередь фосфорилирует белки, в частности белки кальциевых каналов мембраны. Это приводит к усилению кальциевого тока в клетку, к активации механизмов аксонного транспорта. Действительно, нам удалось показать, что усиление синтеза цАМФ в нейронах старых животных ускоряет аксонный транспорт, блокада кальциевых каналов замедляет его.
Возрастные изменения аксонного транспорта – важный механизм сдвигов нервной регуляции. Во-первых, с аксонным транспортом движутся вещества, необходимые для построения самой нервной клетки. Сдвиги в аксонном транспорте могут стать одной из причин нарушения нервной клетки. Во-вторых, с аксонным транспортом текут вещества и везикулы, необходимые для осуществления передачи информации через синапс. Сдвиги в аксонном транспорте могут стать одной из причин нарушения передачи информации с одной клетки на другую, нарушения синаптического проведения. В-третьих, с аксонным транспортом движутся вещества (многие называют их трофогенами), которые передаются из нейрона в иннервируемую клетку (мышечную, секреторную и др.). Они регулируют обмен веществ, трофику иннервируемых органов. Сдвиги в аксонном транспорте могут отразиться на доставке трофогенов и быть одной из ведущих причин нарушения трофической регуляции в старости. В-четвертых, для того чтобы клетка жила долго, она должна обновляться. Такое обновление происходит у делящихся клеток. Аксонный транспорт веществ в определенной мере способствует обновлению нервной клетки, и его нарушение может стать одной из причин ее старения.
Аксонный транспорт может изменяться не только количественно, но и качественно: может изменяться соотношение движущихся белков; появляются белки, ранее не синтезируемые в нервной клетке. Этот сдвиг результат изменения регулирования генома в нейроне. Возникнув, он влияет на динамику старения нервных клеток и иннервируемых тканей.
Можно полагать, что поиск веществ, лекарственных препаратов, регулирующих аксонный транспорт, будет оказывать оптимизирующее влияние на обмен веществ и функцию мозга, на старение организма.
Аксонный транспорт – один из примеров транспортных систем, существующих в любой клетке. Для многих типов клеток показано существование системы микроканальцев, обеспечивающих транспорт определенных веществ в определенном направлении. Благодаря этой транспортной системе достигается высокая экономичность, совершенная организация процессов в клетке; осуществляются связи между органоидами, которые по "клеточным расстояниям" могут находиться далеко друг от друга. При старении часть микроканальцев исчезает, другие фрагментируются и т. п. – наступает разобщение событий, происходящих в различных местах клетки. В результате нарушений транспортных связей клетка начинает терять целостность своей функции, перестает существовать как единая саморегулирующаяся система, гибнет. Отсутствие необходимой связи, передачи информации с одного блока на другой, последовательной передачи изготовляемого продукта неизбежно нарушит работу любого конвейера на любом, пусть самом современном производстве. Совершенство в саморегулирующейся системе – живой или неживой – это надежность передачи, хранения, переработки информации.
Нами совместно с С. А. Таниным и В. И. Марцинко удалось показать, что аксонный транспорт веществ регулируется гормонами, и при старении это регуляторное влияние изменяется (рис. 24). Так, введение половых гормонов – тестотеронпропионата, эстрадиолдипропионата – ускоряет аксонный транспорт, а гидрокортизона – подавляет. Это влияние гормонов может быть связано как с их действием на энергетические процессы в нервных клетках, так и с контролем за образованием транспортируемых веществ. В старости гормональный контроль над транспортными механизмами изменяется (рис. 24). Интересно, что кастрация – удаление половых желез – значительно замедляет ток веществ у взрослых самцов и мало влияет у старых. Это связано с тем, что в старости снижена активность половых желез, и их удаление не приводит к столь выраженным сдвигам. Можно полагать, что одна из причин ослабления аксонного транспорта в старости – изменение гормонального контроля.
Нам кажется, что этими работами обосновывается новый механизм нейрогормональных влияний. При активации гипоталамуса усиливается синтез тройных гормонов гипофиза. Они усиливают секрецию гормонов других желез – половых, надпочечников, щитовидной. В свою очередь гормоны этих желез действуют на нервные клетки, изменяя аксонный транспорт. Действительно, как видно на рис. 24, раздражение гипоталамуса изменяет скорость аксонного транспорта. Причем в старости степень этого контроля ослабевает. Так возникает единство нервного и гормонального.
Л. А. Орбели существенное значение в нервной регуляции трофики придавал симпатической нервной системе. В классическую физиологию вошел так называемый феномен Орбели – Гинецинского – увеличение амплитуды (силы) сокращения утомленной скелетной мышцы при раздражении симпатического нерва. Свое влияние симпатический нерв оказывает через норадреналин, выделяющийся в его окончаниях и с кровью попадающий к мышечным волокнам. В. П. Замостьян показал, что при старении ослабевает трофическое влияние симпатического нерва на скелетные мышцы. Для того чтобы вызвать феномен Орбели – Гинецинского у старых животных, приходится раздражать симпатический нерв током большей силы. Ослабление симпатических трофических влияний на ткани в старости существенно изменяет их энергетический и пластический обмен.
Итак, ослабление нервной регуляции – трофической, пусковой – становится важным механизмом старения. Это приводит к изменению реакций органов и тканей, к нарушениям обмена и функции клеток. В старости нарастает "автономность" клеток и тканей порой в ущерб целостному организму, возникает противоречие между потребностью организма и возможностью его отдельных органов.
Нейронный транспорт – только один из примеров целенаправленного транспорта веществ в любой клетке. За видимой, казалось бы, беспорядочностью расположения и движения органоидов внутри клетки скрывается упорядоченная система микротубул, обеспечивающая транспортные связи между отдельными клеточными блоками. Ее нарушение неизбежно скажется на обмене веществ в клетке, ибо в само понятие "обмен" включается и транспорт веществ. Эта внутриклеточная система является прообразом сердечно-сосудистой системы, обеспечивающей транспорт веществ, регуляторов в организме. Мы уже привыкли анализировать изменения клетки во времени, но еще мало используем характеристику ее сдвигов в пространстве. Есть основания утверждать, что нарушение транспортных систем, пространственно-транспортные сдвиги – важный механизм старения не только нейронов, но и других клеток.
Нейрогормональный контроль
Современная наука пытается выяснить физиологические механизмы поведения, эмоций, инстинктов, памяти. Однако она еще далека от того, чтобы понять, почему один человек гениален, а другой примитивен; почему один страстен, а другой холоден. В поиске этих механизмов, так же как и в анализе приспособительных возможностей организма, большое внимание уделяется гормонам.
Гормоны – физиологически высокоактивные вещества. Они синтезируются в железах внутренней секреции, оказывают также регуляторное влияние на все важнейшие стороны метаболизма клеток, включая и генетический аппарат, биосинтез белка. Роль гормонов в регуляции деятельности организма так велика, что недостаток или избыток ничтожного их количества может стать причиной грубых нарушений в организме, болезней, резких изменений психики, поведения, эмоций, ослабления работоспособности.
Пожалуй, ни в одной другой области геронтологии исследователи не были так категоричны, как при изучении роли желез внутренней секреции в механизме старения. Подкупало внешнее сходство явлений: удаление ряда желез вызывает сдвиги в организме, напоминающие признаки старения, а введение гормонов, экстрактов желез, их подсадка во многом восстанавливают уровень деятельности организма. Это привело к тому, что в последние годы пристальное внимание исследователей привлекают возрастные изменения гормональной регуляции, используются новые методические возможности, накапливается большой фактический материал. Представление о снижении концентрации всех гормонов в крови оказалось неверным. Концентрация половых гормонов, гормонов щитовидной железы, некоторых гормонов гипофиза к старости падает; содержание гормонов коры надпочечников – альдостерона, кортизола – не изменяется, а концентрация многих гормонов гипофиза – аденокортикотропного гормона (АКТГ), фолликулостимулирующего (ФСГ), лютеинизирующего (ЛГ) – в старости растет. Каждая клетка находится одновременно под контролем многих гормонов, и характер этого влияния сложно изменяется (рис. 25).
Рис. 25. Изменение концентрации различных гормонов в крови (сдвиг по отношению к молодому возрасту).
ФСГ – фолликулостимулирующий гормон гипофиза; ЛГ – лютеинизирующий гормон гипофиза; СТГ – соматотропный гормон гипофиза; АКТГ – адренокортикотропный гормон гипофиза; ТТГ – тиреотропный гормон гипофиза; Т3 и Т4 – гормоны щитовидной железы
Принципиально важен системный подход, анализ гормональных механизмов с позиций саморегуляции. В подавляющем большинстве случаев, анализируя возрастные изменения, исследователи ограничивались характеристикой деятельности железы, секреции того или иного гормона. Вместе с тем, чтобы объяснить возрастные изменения гормональной регуляции, необходимо для каждого из ее типов проследить сдвиги в разных звеньях цепи нейрогормональной саморегуляции: гипоталамо-гипофизарный контроль железы (образование и выделение гормонов) – транспортные формы гормона в крови – обмен гормона в ткани – реакция тканей на действие гормона (прямая связь) – влияние гормонов на центры (обратная связь) и др.
Сложнейшие взаимоотношения между нервной и эндокринной системами определяются, как мы уже указывали, функцией гипоталамуса, его нейросекреторной деятельностью. В составе нейросекрета много посредников, активизирующих или угнетающих гормонообразование в гипофизе. Эти гипоталамические медиаторы (посредники) называются рилизинг-факторами (от англ. "releasing" – освобождающий). Кроме рилизинг-факторов, в гипоталамусе образуются вещества – химические предшественники некоторых гормонов гипофиза.
Клетки, образующие нейросекрет, в свою очередь находятся под влиянием выделяющихся в окончаниях нейронов медиаторов – норадреналина, серотонина, ацетилхолина, γ-аминомасляной кислоты и др. Одни из этих медиаторов в большей мере активируют, другие подавляют синтез рилизинг-факторов. Более того, возбуждающие и тормозные влияния могут осуществляться одним и тем же медиатором за счет соединения с различными рецепторами клетки. При старении неодинаково в разных ядрах гипоталамуса изменяется синтез медиаторов, что изменяет запуск всей нейрогормональной цепи. В ряде ядер существенно падает обмен этих веществ. При старении ослабляется синтез ряда рилизинг-факторов. Вместе с тем секреция многих гипофизарных гормонов растет. Это происходит в результате роста чувствительности секреторных клеток гипофиза к рилизинг-факторам.
Многие гормоны находятся в крови как в свободном, так и в связанном состоянии. Оказалось, что при старении снижается доля связанного гормона (щитовидной железы, коры надпочечников), и за счет этого поддерживается достаточный уровень физиологически активной свободной формы. При старении изменяется реакция клеток на действие ряда гормонов.
Важно и то, что возрастные изменения реакции тканей не укладываются в количественные категории "больше – меньше". Часто возникают качественные различия в реакциях. К примеру, половые гормоны, активизируя у молодых и взрослых животных синтез белка, у старых могут стимулировать распад. Адреналин вызывает у старых животных не рост, а падение тонуса сосудов и т. д. Тироксин может у старых животных стимулировать синтез белка, а у молодых – распад. Чрезвычайно важно, что дозы гормона, стимулирующие у молодых животных ту или иную функцию, у старых могут ее подавлять. Иными словами, один из механизмов старения может состоять в активном подавлении гормоном функции той или иной железы, ткани-мишени.
Большую роль в механизме старения играет угасание функции половых желез. Оно приводит к ослаблению половой активности, потере репродуктивной способности, к большому комплексу возрастных изменений, происходящих во время климактерического периода. Неверно связывать, как это делают многие, начало старения с развитием климакса. Ведь климактерический период – следствие предшествующего старения. Климакс, потеря репродуктивной способности ограждают будущие поколения от передачи нарушенной генетической информации, накапливающейся в половых клетках с возрастом. В этой сопряженности генетической и гормональной перестройки – важный адаптивный механизм сохранения полноценности вида. Угасание функции половых желез благодаря множеству связей перестраивает весь контур нейрогуморальной регуляции в стареющем организме. Эти сдвиги нередко становятся возрастной предпосылкой развития атеросклероза, артериальной гипертонии, ишемической болезни сердца, опухолей. Кроме того, половые гормоны обладают анаболическим действием, активируют биосинтез белка, и изменение их концентрации в крови существенно влияет на старение организма.
Система саморегуляции половых желез может быть представлена так: гипофизарные гонадотропные гормоны (ФСГ и ЛГ) активируют синтез половых гормонов (прямая связь), а половые гормоны действуют на ткани и по принципу обратной связи влияют на синтез гонадотропных гормонов. В старости у мужчин существенно снижается секреция мужского полового гормона – тестостерона (рис. 26). Концентрация женского полового гормона (эстрадиола), количество которого у мужчин невелико, в старости даже нарастает. У женщин падает содержание в крови эстрадиола и прогестерона. Наряду с этим растет концентрация гонадотропных гормонов гипофиза (ФСГ и ЛГ). Можно полагать, что события развиваются следующим образом: сначала ослабевает секреция половых желез, а затем по принципу обратной связи активируется синтез гонадотропных гормонов. О правоте этого предположения свидетельствуют данные Н. С. Верхратского и Е. В. Мороз. Они показали, что снижение концентрации половых гормонов в крови наступает у мужчин и женщин раньше, чем рост ФСГ и ЛГ (рис. 26).