355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Фролькис » Старение и увеличение продолжительности жизни » Текст книги (страница 6)
Старение и увеличение продолжительности жизни
  • Текст добавлен: 13 июня 2017, 22:30

Текст книги "Старение и увеличение продолжительности жизни"


Автор книги: Владимир Фролькис


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 15 страниц)

9. При деятельности клеток постоянно изменяется концентрация ионов натрия, калия, кальция внутри клеток. Доказано, что эти ионы оказывают влияние на считывание генетической информации, на сборку белка. Возрастные изменения концентрации ионов могут приводить к сдвигам регуляции генома.

Конкретные генорегуляторные механизмы старения неодинаковы в различных клетках. Известно, что отличие клеток друг от друга, например нервных, мышечных, железистых, и состоит в том, что у них "работают" различные гены, а одни и те же гены функционируют с неодинаковой интенсивностью. Именно это и определяет специфику их белкового состава, обмена и в конце концов функции. Последовательность работы генов связана с регуляцией генетического аппарата. До сих пор современная молекулярная биология при объяснении первичных механизмов старения исходит из принципа "один ген – один белок". Однако есть генетическая информация, недостаточно еще изученная, определяющая общее строение клетки, межклеточные взаимоотношения, количество клеток, форму органа и др. Мы полагаем, что наиболее общие механизмы старения связаны с нарушением этого уровня регуляции генетической информации. Именно этот генетический уровень определяет системность процесса старения и витаукта. Мы назвали его алгоритмическим. Алгоритм – порядок действия, предписание. Именно этим объясняется множественность нарушений при неглубоких изменениях в отдельных звеньях системы. Как известно, стареют и отдельные белковые молекулы. Они проходят как бы жизненный цикл от момента их синтеза до распада. В старости многие из молекул белков становятся менее доступными для ферментативной "атаки", что приводит к появлению более старых белков.

Старение клетки во многом связано с внутриклеточными и внеклеточными механизмами регуляции генетического аппарата. Удачный метод – реконструирование клеток, воздействие молодой цитоплазмы на старые ядра, и наоборот. Наши опыты показали, что цитоплазма клеток печени старых крыс несколько подавляет синтез РНК в ядрах молодых животных, а цитоплазма молодых животных несколько активизировала синтез в ядрах старых клеток печени. Очень интересны опыты, в которых ядра старых эпителиальных клеток хрусталика помещались в яйцеклетки лягушки того же вида. В результате возникали зародыши, из которых вырастали нормальные лягушки. Все эти опыты доказывают: во-первых, механизмы старения клеток связаны как с изменением в ядре клетки, так и в цитоплазме; во-вторых, возрастные изменения в ядре клетки не являются во всех случаях необратимыми, а в определенных ситуациях клетка как бы "омолаживается".

Как-то принято биосинтез белка называть пластическим обменом, подчеркивая его роль в воссоздании структур, блоков клетки. Нам хотелось бы подчеркнуть, что в ходе этого процесса могут синтезироваться и вещества, регулирующие внутриклеточный обмен. Иными словами, синтез белков обеспечивает не только целостность клетки, но и ее регуляцию. И если циклические нуклеотиды, ионы кальция и др. называют месенджерами, т. е. посредниками в реализации внеклеточных влияний на клетку, то регуляторные вещества, образующиеся в процессе синтеза белка, можно назвать инверторами. Они приспосабливают обмен веществ и функцию клетки к условиям реализации генетической информации, изменившегося биосинтеза белка. Примером этого может быть образование при активации биосинтеза белка фактора, гиперполяризующего клеточную мембрану. Месенджеры и инверторы определяют прямые и обратные связи в системе саморегуляции клетки. Нарушение их синтеза – важный механизм старения.

Генетический аппарат клеток находится под сложным гормональным контролем. Он настолько существен, что может изменять генорегуляторные механизмы. При старении изменяется функция желез внутренней секреции, концентрация гормонов в крови, и это приводит к сдвигам в работе генетического аппарата. Железы внутренней секреции сами по себе контролируются структурой мозга – гипоталамусом. В нашей лаборатории показано, что при раздражении гипоталамуса меняется концентрация гормонов, наступают сдвиги в синтезе белка. Благодаря гипоталамусу осуществляются многие приспособительные реакции организма, протекающие с участием белоксинтезирующей системы. Оказалось, что при старении изменяются эти регуляторные влияния, они вызывают иные, чем у взрослых животных, сдвиги. В старости ослабляется гипоталамический контроль над деятельностью генетического аппарата клеток. Это приводит к ограничению возможностей белоксинтезирующих систем в осуществлении общих приспособительных реакций организма. Возникает ситуация, когда периферия еще могла бы, однако центры уже не могут использовать эту возможность.

Наши представления о сущности регулирования генетического аппарата могут в будущем измениться. Может измениться и представление о взаимоотношениях генов-регуляторов, генов-операторов и т. д. В системе регулирования генома будут открыты новые звенья. Все это не изменит положение о принципиальной роли процессов регулирования в реализации генетической информации и принесет новые подтверждения первичности генетических изменений в генезисе старения.


Энергетические процессы

Крупнейший советский биохимик В. А. Энгельгарт писал, что жизнь – это единство трех потоков – материи, энергии и информации. Действительно, возникновение и развитие живых систем стали возможными благодаря тому, что на самых ранних этапах эволюции возникли процессы их энергообеспечения.

Уже давно старение связывают с энтропией – рассеиванием энергии, потерей структурной организации живой системы. Более того, вся жизнь рассматривается как нарастающая энтропия организма. Этим взглядам противостоит другая, более прогрессивная точка зрения. Она получила особенно яркое развитие в работах двух крупных советских физиологов Г. В. Фольборта и И. А. Аршавского. Фольборт показал, что при деятельности любой системы наряду с процессами истощения возникают и процессы восстановления. Иными словами, работа живой системы – не только трата, но и пополнение энергетических потенциалов. Аршавский доказал, что в ходе индивидуального развития наряду с энтропией возникают и негэнтропические процессы, т. е. процессы, противодействующие энтропии.

В процессе старения снижаются энергетические траты организма. Об этом свидетельствуют изменения основного обмена – количества кислорода, потребляемого организмом в состоянии покоя. На основании поглощенного кислорода можно рассчитать энергетические траты организма в калориях. Оказалось, что энергетические траты человека в возрасте 70–80 лет на 18–20 % ниже, чем в 20–30 лет.

Снижение энергетических трат организма связано с двумя причинами: 1) с уменьшением числа активных клеток, характеризующихся высоким уровнем течения энергетических процессов; 2) с изменением потребления кислорода каждой клеткой, так называемым тканевым дыханием.

Вся система энергетического обеспечения может быть условно разделена на три этапа: генерацию энергии, транспорт и использование энергии. Как было показано нами и Л. Н. Богацкой, при старении наступают изменения во всех трех звеньях. Однако существует специфика возрастных изменений энергообеспечения в клетках с разной функцией. Нельзя результаты, полученные при изучении энергетических процессов в одном типе клеток, переносить на другие.

Универсальной "упаковкой" энергетических потенциалов в клетках является молекула АТФ (аденозинтрифосфорная кислота). При отщеплении каждой ее фосфатной группы выделяется около 10 кал. Изменения в системе генерации энергии приводят к тому, что в клетках, пусть и неодинаково, снижаются количество и обновление АТФ.

Генерация энергии, синтез АТФ происходят в ходе двух процессов – окислительного фосфорилирования, локализованного в митохондриях, и гликолиза, локализованного в цитоплазме. Митохондрии – специальные органоиды клетки, ее "силовые" станции. На кристах митохондрий расположены дыхательные ферменты, осуществляющие передачу электронов с субстратов окисления на кислород. В процессе транспорта электронов и образуются богатые энергией связи.

По современным представлениям, выдвинутым лауреатом Нобелевской премии П. Митчел, большое значение в процессе образования макроэргической связи имеет разность потенциалов между мембранами митохондрий. Благодаря этому свободная энергия окисления превращается в электрическую, которая затем преобразуется в химическую энергию связей АТФ.

При старении происходит снижение количества митохондрий в клетках, появляются разрушенные митохондрии, снижается интенсивность окислительного фосфорилирования, меняется мембранный потенциал митохондрий, что приводит к снижению процессов генерации энергии. Наряду с этими сдвигами возникают и процессы витаукта, которые, однако, не могут компенсировать недостаточность энергетического обеспечения. К ним следует отнести появление гигантских митохондрий, активацию в клетках гликолиза, образование, к примеру в сердце, большего количества молекул АТФ на молекулу потребленного кислорода.

Основная структура митохондрий – белки. Белки митохондрий синтезируются на основе генетической информации, находящейся как в ядре клетки, так и в самих митохондриях. По данным А. Я. Литошенко, при старении снижается синтез белков митохондрий, и это становится важной причиной недостаточности энергетических процессов. Определенное количество молекул АТФ синтезируется и в процессе гликолиза – начальном пути окисления углеводов. Количество АТФ, синтезируемое в ходе гликолиза, во много раз меньше, чем в процессе окислительного фосфорилирования. При старении интенсивность гликолиза в одних органах растет, в других не меняется, а в третьих снижается.

Процессы транспорта энергии в клетках, к примеру в сердечной мышце, осуществляются при участии молекул креатинфосфата. Это вещество может переносить фосфатные группы из митохондрий к местам потребления энергии, где с участием креатинфосфата и специального фермента креатинфосфокиназы происходит ресинтез АТФ. Именно это звено в системе энергетического обеспечения при старении особенно уязвимо. Количество креатинфосфата в сердце старых животных падает на 40–50 %, в печени – на 20–30 %.

Использование энергии, запасенной в форме АТФ, осуществляется при помощи фермента АТФазы (аденозинтрифосфатазы), отщепляющей фосфорные группы от этой молекулы. Этот фермент расположен в разных местах клетки, там, где нужна энергия. Важный механизм витаукта – повышение или же сохранение активности ряда АТФаз. Это способствует использованию энергии в условиях недостаточного ее образования. Этому же способствует сохранение активности креатинфосфокиназы в местах ресинтеза АТФ.

Единственно возможный путь поддержания энергетического потенциала клеток, органов, организма в целом – оптимальный режим их деятельности, восстановление в ходе нагрузок. Вот почему не только высокая двигательная, но и умственная деятельность, эмоциональные нагрузки – путь, обеспечивающий необходимый уровень энергетических процессов.


Последовательность старения клеток

Галилей писал, что одна из основных задач науки – измерить то, что измеримо, сделать измеримым то, что еще не измерено. Старый и вечно новый вопрос – можно ли измерить, определить темп старения отдельных групп клеток и на основе этого дать точную оценку ведущим механизмам старения всего организма?

В оправданном стремлении к этому нельзя упускать из виду, что старение целостного организма не является суммой старения его отдельных клеток. С позиции адаптационно-регуляторной теории организм стареет как сложная биологическая система, в которой сдвиги в одной группе клеток влияют на процессы старения и витаукта в других клетках. Это особенно важно подчеркнуть в связи с тем, что сейчас популярным стало представление о лимите жизни и биологических часах в каждой отдельной клетке.

Сегодня, как и 50, и 100 лет назад, при обсуждении сущности старения не прекращаются споры вокруг двух вопросов: как влияет окружение клетки в организме на течение ее старения и старение каких клеток является первичным в старении организма?

Сходство в биологии бывает более очевидным, чем различие. Различные клетки в организме обладают, казалось бы, общей структурой: имеют мембрану, ядро, цитоплазму и т. д. Вместе с тем все эти сходные конструкции составляют удивительное отличие, неповторимость отдельных видов клеток, столь настойчиво и тщательно изучаемые специалистами. Исследуя клетку, убеждаешься в правоте Г. Гейне: подобно великому поэту, природа также обладает способностью с наименьшими средствами достигать наибольших результатов.

Итак, не существует "вообще" клетки. За общими закономерностями старения клетки, нарушения ее структуры и функции скрываются специфика, особенности течения этого процесса. Совершенно очевидно, что старение безъядерного эритроцита, активно делящейся клетки слизистой оболочки кишечника и неделящейся нервной клетки существенно отличается друг от друга.

И. И. Мечников одним из первых пытался установить закономерности возрастных изменений в различных клеточных структурах организма. Он писал: "В старческой атрофии мы всегда встречаем одну и ту же картину – атрофию благородных элементов тканей и замену их гипертрофированной соединительной тканью. В мозге нервные клетки, т. е. те, которые служат для самой высокой деятельности – умственной, чувствующей, управляющей движениями и т. д., исчезают, чтобы уступить место низшим элементам под именем нейроглии – рода соединительной ткани нервных центров. В печени соединительная ткань вытесняет печеночные клетки, выполняющие существенную роль в питании организма. Такая же ткань наводняет почки, она затягивает каналы, необходимые для избавления нас от множества растворимых веществ" (И. И. Мечников. Этюды оптимизма. М., 1907. С. 84).

Роль этих сдвигов в соотношении элементов соединительной ткани и специфических клеток постоянно подчеркивал А. А. Богомолец. Однако он по-иному оценивал их место в старении организма: "Моя точка зрения на знание активности физиологической системы соединительной ткани для долголетия прямо противоположна точке зрения Мечникова. Я считаю, что старение организма начинается именно с соединительной ткани" (А. А. Богомолец. Продление жизни // Старость. Киев, 1940. С. 5). Богомолец объединил все виды соединительной ткани в единую систему.

Большая заслуга А. А. Богомольца в том, что в соединительной ткани он видел не только опорный скелет органов и организма. Он считал, что соединительная ткань – активный участник и регулятор обмена веществ в организме. От соединительной ткани во многом зависит питание, трофика органов, переход веществ через так называемые биологические барьеры: из крови в ткань и обратно. Вот почему изменения соединительной ткани влияют на кровоснабжение органов, вызывая в них значительные сдвиги.

Работы последних лет показали еще одну важнейшую сторону ее деятельности: элементы соединительной ткани могут быть своеобразными донорами, поставщиками важных веществ для других клеток органа. Это одна из форм универсальных межклеточных взаимоотношений. Так, например, РНК и белки из соединительнотканных элементов мозга, глии могут поступать при определенных условиях в нервные клетки. Если длительно раздражать группу нервных клеток, количество некоторых веществ в них начинает падать. В восстановительный период ряд веществ может поступать из глии в истощенные нервные клетки, способствуя их восстановлению. Подобные взаимоотношения складываются и в сердечной мышце.

При старении происходит увеличение содержания соединительной ткани. В мозге уменьшается число нервных клеток и увеличивается количество глиальных соединительнотканных элементов. Определенное представление об изменении этих соотношений с возрастом можно составить, рассчитывая число нервных элементов на определенную площадь. Так, на 1 мм2 среза коры мозжечка у людей 30–40 лет приходится 825 клеток, 60 лет – в среднем 640–680, 70-100 лет – 400–500 клеток. Увеличение числа соединительнотканных волокон при старении отмечено в сердце, сосудах, скелетных мышцах, почках, поджелудочной и щитовидной железах и в других органах. Разрастание соединительной ткани, по мнению ряда исследователей, в старости столь существенно, что многие пишут о возрастном физиологическом склерозе (физиосклероз) органов.

Элементы соединительной ткани могут определять межклеточный транспорт пластических веществ, способствовать восстановлению структур клетки. Вот почему на определенных этапах процесса старения увеличение числа клеточных элементов соединительной ткани в старости может иметь и приспособительное значение, способствуя поддержанию обмена специфических клеток органа. Однако это только определенный этап. Нарушение состава соединительнотканных элементов, увеличение числа их становятся в конце концов важной причиной нарушения кровоснабжения, проницаемости, развития кислородного голодания, иммунитета, нервной деятельности.

Пожалуй, все сходятся на том, что существует связь между способностью клеток к делению и их старением. Начиная с работ Г. Майнота (1913 г.), С. И. Метальникова (1917 г.), И. И. Шмальгаузена (1926 г.), Е. Коудри (1939 г.), Ф. Верцара (1968 г.), широко распространено представление о том, что первично в организме стареют неделящиеся, дифференцированные клетки. Деление же клетки освобождает ее от многих возрастных изменений.

Е. Коудри предложил разделить все клетки на четыре группы. К первой группе относятся клетки, существование которых начинается и заканчивается митозом, т. е. активно делящиеся клетки. Это, например, клетки эпидермиса кожи, слизистых оболочек, сперматогонии. Жизнь таких клеток коротка. В них не удается уловить развития старения. Вторая группа – более специализированные клетки, в которых можно проследить ряд возрастных изменений, несмотря на их способность к делению, например клетки красной крови. Третья группа – специализированные клетки с выраженными явлениями старения. Делятся они только в особых условиях; это клетки печени, почек, щитовидной железы. Четвертая группа – высокодифференцированные клетки, не способные к делению: нервные клетки, мышечные волокна. В этих клетках развиваются очевидные признаки старения.

Широко известны опыты С. И. Метальникова, Л. Вудруффа, получивших тысячи генераций делящихся одноклеточных организмов. На основании этих опытов Вудруфф пришел к выводу: старость не является основным свойством живой материи. В этом выводе смешивается старение, смерть индивидуума и возможность бесконечного развития в природе. В случае деления одноклеточных речь идет не о потенциальном бессмертии их индивидуальности, а о потенциальной возможности беспрерывного развития видов, измененных эволюцией. Проведенные в последние десятилетия специальные исследования позволяют полагать, что от одного деления до другого одноклеточные проходят цикл индивидуального развития, существенное место в котором занимают процессы старения. Деление клетки, активируемое возрастными изменениями, есть важнейшее проявление витаукта, направленное на обновление структур и метаболических циклов клетки, на восстановление высокого уровня ее жизнедеятельности, ликвидацию предшествующих возрастных изменений. Итак, казалось бы, все ясно и просто – старение организма определяется старением неделящихся клеток. Однако в последние десятилетия произошли события, заставившие вновь вернуться к этой проблеме. Американский исследователь Л. Хейфлик усмотрел методические ошибки в опытах исследователей прошлых лет. Он показал, что делящиеся клетки (это были фибробласты легких) делятся в условиях культуры ткани примерно 50–60 раз, а затем деление прекращается. Это явление получило название "лимит Хейфлика". Безгранично делятся переродившиеся, ненормальные клетки. Клетки, взятые из старого организма, делятся меньшее число раз, чем взятые из молодого. Для ряда видов существует связь между их продолжительностью жизни и величиной "лимита Хейфлика". В клетке существует определенная "память" развития программы. Замороженная, а потом через некоторое время оттаявшая клетка произведет столько же делений, сколько бы она произвела без этой манипуляции. Следовательно, по Хейфлику, программа, ограничивающая продолжительность возможной жизни, заложена в делящейся клетке. Здесь заключены биологические часы, отсчитывающие биологическое время жизни клеток и организма.

Опыты и взгляды Хейфлика имеют много сторонников, но еще больше противников. Результаты его опытов особенно активно оспариваются группой английских ученых во главе с Л. Франксом. Они не нашли различий в продолжительности жизни культур клеток, взятых от 3-дневных и старых мышей. Перевивая клетки из организма в организм, они показали, что количество делений может быть значительно больше "лимита Хейфлика", практически не имея предела. Клетка, вырванная из организма и перенесенная на культуру ткани, обладает, по Хейфлику, ограниченной способностью к делению. Следовательно, среда организма, регуляторные связи в организме решающим образом преобразуют фундаментальные свойства клетки, и от этого влияния клетка не может уйти даже вне организма.

Результаты опытов Хейфлика на культуре клеток не воспроизводят истинных условий, существующих в организме. Кроме того, в результате уменьшения числа делений клетка на культуре тканей не погибает, а дифференцируется, становится неделящейся клеткой. На большом количестве видов не было найдено связи между числом делений и продолжительностью жизни. Наконец, многие простейшие, насекомые состоят из неделящихся клеток, и старение их никак нельзя объяснить "лимитом Хейфлика". Итак, "лимит Хейфлика" – это феномен, свойственный культуре клеток, только модель для изучения некоторых сторон старения клеток. Старение сложного организма нельзя свести к ограниченности митотического потенциала его клеток, к биологическим часам, заключенным в каждой клетке в отдельности. Показано, что при серийных пересадках новым реципиентам кожа мышей сохраняла жизнеспособность 7 лет, а клетки простаты – 6 лет. Иными словами, изменение среды обитания позволяет поддерживать жизнь тканей в течение периода более длительного, чем продолжительность жизни животных, от которых была взята ткань. Интересно, что продолжительность жизни трансплантатов молодых и старых животных в организме молодого хозяина примерно одинакова. О роли факторов среды, гуморальной регуляции свидетельствуют результаты опытов с парабиозом – сшиванием двух животных друг с другом, в результате которого у них постоянно смешивается кровь. При сшивании молодой и старой мыши многие структурные изменения в органах у молодых мышей становятся близкими к старым. Г. М. Бутенко показал, что в этих условиях у молодых животных быстрее стареет система иммунитета. Иными словами, молодое животное почти не омолаживает старое, но старое увеличивает биологический возраст молодого. Во всех этих опытах "фактор старения" передается кровью. Что это, определенное вещество или комплекс факторов, гормональных, интоксикационных и др.? Очевидно, второе. Однако все это требует дальнейших поисков и доказательств.

Что такое дифференцировка клетки? Это ее специализация. Конечный итог дифференцировки клеток – специфика их функции. Одни клетки сокращаются, другие выделяют гормоны, третьи перерабатывают информацию. Мы утверждаем, что специфика течения старения определяется функцией клетки. Особенности энергетического обмена, биосинтеза белка, изменения мембран, ядерно-цитоплазматических отношений неодинаковы в клетках с различной функцией. Более того, существуют важные отличия в старении клеток, обладающих одинаковым митотическим потенциалом.

Интересны исследования на клетках печени. Обычно они не делятся, однако в определенных условиях (при удалении части печени и последующей регенерации) печеночные клетки начинают делиться. Произведя гепатэктомию, удаление части печени, на старом животном, можно перевести клетки печени в режим деления и выяснить, наступит ли их "омоложение", не исчезнет ли "печать возраста". Оказалось, нет. Возрастные изменения в генетическом аппарате, биосинтеза белка, в системах восприятия информации сохранялись и в условиях деления. Это связано с тем, что остается главное – функциональная специфика клетки.

Возникновение каждого типа клеток – мышечных, нервных, секреторных – определяется не особенностями содержания генетической информации, а ее реализацией. В соответствии с генорегуляторной гипотезой механизмы старения связаны с изменением регулирования генома. Исходная топография регуляции генома, реализации генетической информации различна у клеток, обладающих неодинаковой функцией. Это и приводит к различиям генорегуляторных механизмов их старения. Следовательно, специфика физико-химических механизмов обеспечения функции и регуляции определяет важные особенности старения клеток. Итак, старение клеток – сплав собственных возрастных изменений и влияний средовых, регуляторных. Эти соотношения "собственного" и "общего" неодинаково представлены в различных клетках. Мы полагаем, что можно выделить три типа старения клеток: 1) клетки, которым свойственно первичное старение (нервные клетки, некоторые соединительнотканные элементы); 2) клетки, у которых старение – результат собственных возрастных изменений и влияний регуляторных, связанных с первичным старением других клеток (мышечные волокна, клетки печени, почек, желез внутренней секреции; 3) клетки, у которых в естественных условиях существование старения в основном вторично и связано с влиянием регуляторных факторов (эпителий многих органов). Кроме того, старение клеток с одинаковой функцией может происходить в неодинаковом темпе в зависимости от их отношения к той или иной функциональной системе. Так, по-разному выражено старение нейронов разных центров, клеток разных мышц, желез.


Структура клетки

Нарушения структуры и обмена в клетках при старении столь значимы, что они приводят к их гибели. Для понимания механизма старения очень важно представить размеры, последовательность и темпы гибели клеток. До сих пор не прекращаются споры о возможной роли возрастного уменьшения количества клеток в судьбе стареющего организма. По мнению одних исследователей, большинство изменений обмена и функции организма в старости определяется простым уменьшением количества клеток, падением количества активной протоплазмы; по мнению других, влияние гибели клеток на состояние организма несущественно, главную роль играет изменение обмена оставшихся клеточных элементов.

Сравнительные подсчеты свидетельствуют о неравномерном уменьшении числа клеток в разных органах. Особый интерес представляет изменение числа нервных клеток. Подсчитано, что общее число нервных элементов в мозге уменьшается на 10–20 %, а в некоторых отделах – на 30–50 %. Так, к 80 годам у людей число нервных клеток в спинномозговых ганглиях уменьшается на 30 %, число нервных волокон в ряде нервов – на 32 %. В коре головного мозга наибольшая убыль нервных клеток отмечается в верхней височной извилине, наименьшая – в постцентральной.

После 70 лет у человека потеря нейронов коры составляет 1.4 % в год. Сходные цифры убыли нервных клеток получены и при исследованиях на экспериментальных животных. У старых крыс количество нейронов коры снижается на 26.7 %, а клеток Пуркинье мозжечка – на 21.9 %. У старых мышей в коре головного мозга теряется до 32 % общего количества нейронов.

Значительное уменьшение числа клеток происходит и в других органах. У старых крыс (возраст 33 мес) 28 % мышечных волокон скелетных мышц перерождается. В сердечной мышце молодых крыс (30-дневных) мышечная масса на определенной площади сердца занимает 82.3 %, а у старых (700-дневных) – 57 %. Значительное уменьшение числа клеток при старении отмечено в надпочечниках, щитовидной и половых железах, незначительно снижается количество лейкоцитов и эритроцитов.

Число почечных нефронов у старых людей падает на 30–50 %, число легочных альвеол у старых крыс – на 40 %. Все это приводит к снижению общей клеточной массы. Клеточная масса составляет у 25-летних мужчин 47 % всей массы тела, а у 70-летних – только 36 %, т. е. снижается на 30.6 %. Тощая масса тела у женщин с 25 до 70 лет падает на 34 %.

Уменьшение числа клеток неодинаково сказывается на уровне деятельности различных органов в старости. Известно, что при обычной, ненапряженной деятельности органа часть его клеток выключается из работы. Известны "дежурные" капилляры, легочные альвеолы, нейромоторные единицы в мышцах, нефроны в почках, которые активируются только при интенсивной деятельности. В старости в связи с гибелью многих клеток резерв усиления работы органа ограничен. Более того, в результате снижения функции отдельных клеток одна и та же работа органа выполняется в различные возрастные периоды неодинаковым числом клеточных элементов. При выполнении одной и той же работы у старого человека активизировано большее количество мышечных волокон, нейромоторных единиц, чем у человека среднего возраста. Определенный уровень образования антител поддерживается в старости при участии большего количества иммунокомпетентных клеток, а у молодых животных – за счет большей активности каждой такой клетки, за счет больших возможностей биосинтеза белка в них.

В острой дискуссии о роли изменения количества клеток в механизме старения исследователи недоучитывают, что уменьшение числа клеток в разной степени влияет на деятельность разных органов. В большинстве органов (скелетные мышцы, почка, печень) деятельность всех клеток объединяется для достижения единого функционального эффекта – сокращения скелетной мышцы, мочеотделения, желчеотделения и т. д. Несколько иными являются взаимоотношения между клетками центральной нервной системы. Здесь из всей большой массы клеток отдельные группы образуют специфические нервные центры, регулируя определенную функцию. Вот почему уменьшение количества нервных клеток может существенно сказаться на деятельности того или иного нервного центра и тех тканей на периферии, которые этим центром регулируются, т. е. чем больше функциональная однородность, тем меньше отражается гибель отдельных клеток на деятельности всего органа.

Признавая значение уменьшения количества клеток в механизме ослабления приспособительных возможностей органов в старости, нельзя, однако, только этим объяснять наступающие сдвиги в их обмене и функции. Вот обычная логика подобных рассуждений: падает количество клеток – снижается потребление кислорода; уменьшается количество клеток – снижается секреторная функция желез внутренней секреции и т. д. Эти изменения происходят не только потому, что уменьшилось содержание клеток, но и потому, что существенно изменилось состояние оставшихся.


    Ваша оценка произведения:

Популярные книги за неделю