355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Фролькис » Старение и увеличение продолжительности жизни » Текст книги (страница 10)
Старение и увеличение продолжительности жизни
  • Текст добавлен: 13 июня 2017, 22:30

Текст книги "Старение и увеличение продолжительности жизни"


Автор книги: Владимир Фролькис


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 10 (всего у книги 15 страниц)

Рис. 26. Изменение с возрастом у женщин концентрации гонадотропных и половых гормонов (эстрадиола и прогестерона) в крови. Обозначения те же, что на рис. 25

В механизме старения организма играют роль изменения функций щитовидной железы. Известно, что ее гормоны – тироксин и трийодтиронин – регулируют активность более ста ферментов, влияют на процессы биосинтеза белка и генерации энергии в клетке. При старении снижается активность системы тиреоидной регуляции, и это может стать одной из причин многообразных сдвигов: падения потребления кислорода, образования богатых энергией соединений, изменения в биосинтезе белка, сдвигов в течении основных процессов в центральной нервной системе, снижения сократительной функции сердца и др.

С возрастом наступают неравномерные изменения как на этапе прямой, так и обратной связи в системе тиреоидной регуляции. Наряду со старением развиваются и процессы витаукта. Они направлены на сохранение функции щитовидной железы. К ним можно отнести снижение количества связанных и увеличение свободных форм гормона, повышение чувствительности щитовидной железы к тиреоидному гормону гипофиза а тканей – к действию гормонов щитовидной железы и др. Однако, несмотря на эти проявления витаукта снижение надежности функции щитовидной железы с возрастом нарастает. В основе этого лежат нарушения обмена веществ и структуры клеток щитовидной железы.

С возрастом развивается скрытая инсулиновая недостаточность. Уровень сахара крови у здоровых старых людей существенно не изменяется, однако их толерантность, устойчивость к углеводам падает. При сахарной нагрузке у пожилых и старых людей, по сравнению с молодыми, концентрация сахара крови становится выше и медленнее возвращается к исходному уровню. Более того, инсулиновая недостаточность нарастает, чаще развивается диабет. В США заболеваемость диабетом у мужчин до 25 лет – 1.1 на 1000 человек населения, у 55-64-летних – 25.2, у 65-74-летних – 37.4.

Известен ряд гормонов, вызывающих мобилизацию углеводов из тканей и, соответственно, рост уровня сахара в крови: адреналин, глюкагон, глюкокортикоиды и др. Им всем противостоит всего один гормон – инсулин. Быть может, в этом одна из причин возможного срыва столь важного механизма. По современным представлениям, инсулин усиливает транспорт сахара, аминокислот, ионов через клеточную мембрану, стимулирует биосинтетические процессы, а также снижает катаболическое действие других гормонов (гормона роста, гормонов коры надпочечников).

Долгое время все казалось ясным и простым: при старении снижается функция поджелудочной железы, и это ведет к недостатку инсулина в крови со всеми последующими нарушениями обмена веществ в организме. Однако работы последних лет, в том числе данные, полученные в нашей лаборатории, показали, что дело обстоит значительно сложнее.

Оказалось, что у пожилых людей с пониженной толерантностью к углеводам, т. е. у людей, медленнее усваивающих этот углевод, количество инсулина в крови велико, однако он не активен. Частично это связано с тем, что при старении в крови нарастает концентрация веществ, ингибирующих, подавляющих активность свободного инсулина. Комплекс инсулина с этими веществами становится неактивным. Инактивация части свободного инсулина в старости была показана большой серией опытов. Инсулин в одном и том же количестве добавлялся к сыворотке крови молодых и старых животных. Вслед за тем сравнивалось действие этих растворов на сахар крови, образование гликогена, МП клеток, электрическую активность мозга и др. Результат был однозначен: во всех случаях минимальный эффект вызывал инсулин, находящийся в сыворотке крови старых животных. Следовательно, в крови старых животных действительно содержатся вещества, инактивирующие свободный инсулин. Их природа до конца не изучена. Судя по всему, это – белки, один из которых – синальбумин. Низкая активность инсулина может быть также связана с переходом в кровь проинсулина – предшественника активного гормона. Кроме того, напомним, что инсулин в регуляции углеводного обмена противостоит целой группе гормонов. С возрастом соотношение сдвигается в сторону этих контринсулярных факторов.

Ингибирование свободного инсулина приводит к тому, что он становится неэффективным; на этой основе может развиваться инсулиновая недостаточность. В ответ мобилизуются определенные механизмы, направленные на восстановление уровня инсулиновой активности крови. Известно, что кровь, оттекающая из поджелудочной железы, попадает в печень. В клетках печени содержится фермент инсулиназа, который расщепляет часть поступающего из поджелудочной железы инсулина. По нашим данным, в старости резко, почти вдвое, снижается активность инсулиназы: (84.7±4.8)% У молодых крыс, (48.3±8.9)% У старых. Это предупреждает от разрушения значительные количества инсулина и способствует нарастанию его содержания в крови.

Инсулин синтезируется в β-клетках поджелудочной железы. Существуют два фактора регуляции процесса синтеза и выхода инсулина из железы: глюкоза и холинергические нервные влияния. Клетки поджелудочной железы имеют специфическую систему, рецепторы, чувствительные к глюкозе. Раздражение рецепторов глюкозой передается на внутреннюю поверхность мембраны, и здесь активируется фермент аденилатциклаза, катализирующий образование из АТФ своеобразного внутриклеточного медиатора – циклического 3,5-АМФ. Это соединение уже внутри клетки активизирует специфические процессы синтеза гормона.

В старости снижены потенциальные возможности β-клеток поджелудочной железы. Кроме того, при старении ослабевает нервная регуляция поджелудочной железы, снижается активность ферментов, участвующих в медиаторной передаче.

При старении возникает сложная и опасная ситуация. Она создает скрытую инсулиновую недостаточность организма. Благодаря этому ограничиваются мобилизационные способности организма и легче, чаще возникает диабет. В старости в клетках поджелудочной железы наступают деструктивные изменения, часть их гибнет. Снижение активности инсулина в крови, подстегивая поджелудочную железу, способствует истощению и без того измененных β-клеток.

Итак, в старости создается комплекс внепанкреатических и панкреатических предпосылок развития инсулиновой недостаточности, способствующей возникновению диабета.

Представленный подход важен еще потому, что он открывает новые возможности в терапии диабета. Если в старости содержание инсулина в крови растет и в то же время он ингибирован, инактивирован, то можно восстановить уровень инсулиновой обеспеченности организма, разрывая связь между ингибитором и гормоном.

Описанная ситуация усугубляется еще и тем, что при старении снижается реактивность тканей к действию гормона. Это связано с тем, что с возрастом падает число рецепторов клеток, реагирующих на действие инсулина. Снижение инсулиновой активности приводит к последовательному нарушению многих видов обмена. Инсулин воздействует на ключевой фермент химических превращений глюкозы – гексокиназу. Снижение активности свободного инсулина в старости ведет к тому, что затрудняется переход глюкозы в клетку, ее усвоение, ослабевает синтез гликогена. Именно в связи с этим при различных нагрузках более длительно поддерживается высокий уровень сахара в крови, гипергликемия, и это в какой-то мере способствует переходу его в клетки. В связи со сдвигами в углеводном обмене снижается синтез основного источника энергии в клетке – АТФ. Возрастные сдвиги в инсулиновой обеспеченности объясняют многие нарушения жирового обмена.

Повышение содержания связанной формы инсулина приводит к усилению синтеза жира из углеводов в жировой ткани. Быть может, этим объясняется ожирение, тучность многих пожилых людей. Вместе с тем в печени, в мышечной ткани, из-за снижения активности свободного инсулина процессы обмена жира ослабевают, страдает окисление жиров, накапливаются продукты промежуточного обмена. Нарушение окисления углеводов способствует образованию и накоплению холестерина. Сдвиги в жировом обмене в разных тканях существенно влияют на энергетику клетки; ей становится труднее использовать в качестве субстрата жирные кислоты.

И, наконец, нарастающая при старении инсулиновая недостаточность способствует сокращению потенциальных возможностей системы биосинтеза белка. Известно, что инсулин повышает проницаемость клеточной мембраны к аминокислотам, активирует сборку белка в рибосомах.

В механизме осуществления приспособительных реакций организма велика роль коры надпочечников. В ней вырабатываются минералкортикоиды (альдостерон), гормон, регулирующий обмен ионов, и глюкокортикоиды (кортизол и др.), обладающие очень широким спектром действия.

На рис. 27 приведены данные Л. В. Магдич, свидетельствующие о том, что в системе регуляции альдостерона как на этапе прямой, так и обратной связи возникают явления старения и витаукта. Как видно, секреция альдостерона у старых животных снижается. Однако концентрация его в крови остается на прежнем уровне, так как ослабевает распад гормона. Наряду с этим растет чувствительность механизмов секреции гормона к стимулам, идущим от нервной системы (АКТГ, вазопрессин), и, что очень важно, к повышению концентрации ионов калия в крови – физиологического стимулятора синтеза альдостерона. Важное значение имеет и повышение чувствительности тканей к гормону. Можно полагать, что сдвиги в альдостероновой регуляции вносят существенный вклад в развивающиеся при старении нарушения ионного гомеостаза, который в свою очередь влияет на все стороны деятельности клеток.


Рис. 27. Схема изменения альдостероновой регуляции в старости

Концентрация другого гормона коры надпочечников – кортизола – с возрастом практически не изменяется. Однако за этой неизменностью скрываются сдвиги во всех звеньях системы его регуляции – рост количества АКТГ, стимулирующего синтез гормона, повышение чувствительности железы к ряду регуляторных воздействий.

В клетках существует специальный механизм, позволяющий реагировать на действие гормонов. Это клеточные рецепторы – своеобразные высокочувствительные антенны. Реакция клетки не просто следует за количеством действующего гормона, а во многом зависит от числа и свойств этих рецепторов. Одни из них расположены на клеточной мембране, другие – внутри клетки. Как уже указывалось, влияние многих гормонов на клеточные рецепторы осуществляется через специальную систему – аденилатциклаза – циклические нуклеотиды. В изменении реактивности клетки решающее значение имеют сдвиги в состоянии ее рецепции. Накопилось немало данных об уменьшении числа рецепторов к различным гормонам в старости. Однако все оказалось значительно сложнее. Обычно оценивается число рецепторов, т. е. пусковых точек действия в клетке, и их сродство – способность рецептора реагировать с гормоном. В сердце число рецепторов к адреналину падает, а сродство повышается. В результате чувствительность сердца к адреналину и норадреналину растет, а реакционная способность, возможная амплитуда реакции падает, так как снижается число адренорецепторов. Не все рецепторы к гормонам изменяются именно таким образом. Так, число рецепторов к альдостерону в почках растет, а их сродство к гормону падает. Если снижается реактивность клеток к гормону, то это не всегда означает, что уменьшилось число рецепторов. С. А. Танин показал, что рецепторы могут быть, но они как бы "молчат", становятся неактивными. Так, у старых животных отсутствует реакция нервных клеток спинного мозга на половые гормоны. Если животному предварительно ввести антиоксидант дибунол, то реакция восстанавливается. Важно, что, влияя на синтез рецепторов, на их сродство к гормонам, можно управлять реактивностью клетки в старости. Есть вещества, конкурирующие с гормонами за рецептор. К ним относятся так называемые адреноблокаторы. Молекулы их "садятся" на рецептор и предупреждают действие адреналина и норадреналина. Когда нужно ослабить симпатические нервные влияния, действие катехоламинов (а это необходимо с лечебной целью при артериальной гипертонии, инфаркте миокарда, аритмиях), используют эти вещества. Концентрация в крови вазопрессина – гормона гипофиза – увеличивается с возрастом, и это способствует развитию артериальной гипертонии, коронарной недостаточности. Вазопрессин действует через специфические рецепторы в клетке. Удалось создать вещества, конкурирующие за рецепторы вазопрессина, и они оказались эффективными при лечении экспериментальной коронарной недостаточности, артериальной гипертонии.

Число рецепторов в клетке – величина не постоянная. При изменении концентрации гормона в крови может активироваться или подавляться их синтез. Одна из причин "косности" реакций клеток в старости – снижение способности регулировать число рецепторов.


Местные механизмы регуляции

Соподчинение, иерархия характеризуют связь уровней саморегуляции. Действительно, каждый орган, каждая клетка находятся под нервным и гормональным контролем. Кроме того, есть еще один – местный контур их регуляции. Благодаря соподчинению достигаются оптимальные соотношения в участии отдельных органов в общих приспособительных реакциях организма, достигается «разумное» соотношение центра и периферии, общего и частного. Некоторые органы включаются в деятельность сигналами, идущими от центров, – скелетные мышцы, слюнные железы, многие железы внутренней секреции. Однако есть органы, импульс деятельности которых расположен в них самих, – сердце, многие сосуды, мочеточник, кишечник. Центральные влияния только регулируют это состояние– В этих органах расположены водители ритма – источники автоматической деятельности, которая присуща и ряду образований мозга.

Важный механизм старения – снижение активности водителей ритма. Наиболее яркий пример – сердце. Частота сокращений сердца у молодого человека 70–80 в 1 мин, а у старых – 58–65. Замедление ритма сердечных сокращений во многом связано с ослаблением учащающих симпатических нервных влияний на сердце. Поэтому по ритму деятельности сердца в организме нельзя еще судить о возрастных изменениях сердечного автоматизма. Водитель ритма сердца – так называемый синусный узел. На изолированном сердце удается ввести микроэлектрод в клетки синусного узла. И в этом случае частота генерируемых сигналов в сердце, взятом от старой крысы, меньше, чем в сердце взрослой: (133±6) и (167±8) имп./мин. Иными словами, в старости снижается активность водителя ритма, активность важного местного механизма регуляции. Подобная закономерность была установлена и на других биологических объектах. Так, воротная вена, обладающая спонтанной активностью, у старых крыс сокращается в 2–3 раза реже, чем у взрослых; спонтанно активные нейроны у взрослых (54.7±5.9), у старых (28.7±2.6) имп./мин. Напомним: и в электрической активности отдельных структур мозга в старости начинают преобладать более медленные ритмы возбуждений. Сейчас часто пишут о биологических часах. Каждая живая система отсчитывает свой ритм при старении. Этот ритм замедляется, переводя многие процессы организма на более низкий уровень деятельности, который соответствует сниженной интенсивности обменных процессов.

В процессе старения ослабевает центральный нервный контроль за деятельностью органов. Однако существуют и местные рефлексы, местные механизмы нервной регуляции. Они осуществляются через нервные ганглии – группы нервных клеток, расположенных в самом органе. Например, внутрисердечные рефлексы способствуют сохранению определенного уровня деятельности сердца. Они выявляются при растяжении стенок предсердий, при ограничении кровоснабжения сердца. В старости же внутрисердечные рефлексы ослабевают. Эти сдвиги связаны с тем, что в нервных клетках, расположенных в сердце, наступают серьезные нарушения – изменяются их размеры, количество и толщина отростков, появляются дегенерировавшие нейроны. В результате снижается пропускная способность и лабильность нервных ганглиев, они настраиваются на более низкие ритмы передачи информации. Большую роль в этих сдвигах играют изменения химических механизмов передачи информации. В ганглиях она осуществляется при участии медиатора ацетилхолина. В старости его синтез в ганглиях сердца падает. Существует большая группа физиологически активных веществ, которая синтезируется в органах, клетках и регулирует их деятельность. Среди них аденозин, простагландины, кинины, серотонин и др. Физиологическая активность их так высока, что современная медицина начала использовать эти вещества для лечения ряда заболеваний. Нередко для достижения лечебного эффекта приходится подавлять их синтез. При старении изменяются синтез и распад этих веществ, чувствительность к ним клеток, чем и объясняются многие изменения деятельности органов.

В регуляции кровообращения, сократительной функции сердца и его кровоснабжения большое значение придается аденозину. Он образуется из молекулы АТФ через ряд промежуточных этапов. Чем напряженнее деятельность органа, тем больше энергетические траты, тем больше распадается АТФ и тем больше образуется аденозина. Ферменты, участвующие в синтезе аденозина, находятся на клеточной мембране, и потому синтезированное вещество легко попадает в межклеточную щель. В старости система синтеза аденозина активирована. Это важное проявление витаукта, так как аденозин улучшает кровоток в капиллярах, кислородное обеспечение тканей, проницаемость барьера между кровью и тканями. Аденозиновый механизм имеет большое приспособительное значение при кислородном голодании сердца. При коронарной недостаточности активация этого механизма у взрослых животных более выражена, чем у старых. Иными словами, в старости уже в исходном состоянии как бы отмобилизованы возможности системы обмена аденозина.

Существует многокомпонентная калликреин-кининовая система. Основным действующим началом этой системы являются брадикинины, калликреины – ферменты, ведущие к образованию кининов. Однако физиологически активны и другие звенья этой системы. Калликреин-кининовая система крови – одна из важнейших систем регуляции гомеостаза организма. В очень малых концентрациях кинины влияют на тонус гладкой мускулатуры, снижают артериальное давление, увеличивают кровоснабжение сердца, увеличивают минутный объем и др. Кининовая система принимает активное участие в регуляции свертывания крови.

Работами нашего коллектива было показано, что при старении наступает определенная активация калликреин-кининовой системы – увеличивается содержание предшественника кининов и значительно падает активность фермента, расщепляющего кинины, – кининазы. Этот сдвиг в системе имеет адаптивное значение, способствуя сохранению гомеостазиса организма. В ситуациях, требующих активации калликреин-кининовой системы (кислородное голодание, стимуляция гипоталамуса и др.), способность ее к дальнейшей активации в старости снижается.

Таким образом, при старении, в условиях ослабления нервного контроля, активируется ряд местных систем гуморальной регуляции. Этот сдвиг имеет приспособительное значение, так как он направлен на сохранение функции органа. Однако возможности местных систем регуляции уже использованы в обычных условиях, и при напряженной деятельности в старости может возникать их недостаточность.


Реакции объектов регуляции

Декарт писал: «Определите значение слов и вы освободите человечество от половины забот». Действительно, в науке нередко одно и то же явление определяется различными терминами и, наоборот, разные явления – одним и тем же термином. Это рождает мнимые противоречия, зачастую необоснованные споры.

Реактивность – понятие, которое часто используют патологи, медики и, к сожалению, редко биологи. К сожалению, ибо по сути дела представление о реактивности – способности организма в целом и его отдельных структур отвечать реакцией на стимулы – дает общую характеристику изменения состояния живой системы, позволяет понять взаимопереходы от нормального к патологическому и наоборот. Ведь в конечном итоге способность реагировать, отвечать приспособительной реакцией на действие факторов внешней среды – одно из основных отличий живого от неживого. Объяснить изменения реактивности при старении означало бы понять важнейшие механизмы старения.

В естественных условиях существования на организм, на клетку действуют раздражители разной силы – от пороговых (порог – минимальная сила раздражения, вызывающая ответную реакцию) до максимальных. Вот почему для характеристики изменений реактивности при старении необходимо исходить из "закона силовых отношений", оценивать реакцию в зависимости от силы раздражения. Очень часто противоположные выводы о сдвигах реактивности в старости и были сделаны потому, что разные исследователи, используя раздражения неодинаковой силы, некорректно сопоставляют их результаты.

Все органы и клетки "разговаривают" друг с другом химическим языком. Еще в 1960 г. мы пришли к выводу, что важная закономерность старения – изменение реактивности клеток, тканей, органов вообще и в особенности к гуморальным факторам. Гуморальные факторы – физиологически активные вещества: гормоны, медиаторы, лекарственные препараты, током крови доставляемые к клеткам. Чувствительность ко многим из них (она определяется минимальной – пороговой – концентрацией вещества, вызывающей эффект) в старости растет, а реакционная способность (возможная амплитуда сдвига) падает. Причем снижение реакционной способности клеток и органов – более общая закономерность, чем рост чувствительности.

Рост чувствительности и снижение реакционной способности показаны не только на примере деятельности клетки, но и тканей, систем организма как в эксперименте на животных, так и в исследованиях на человеке. Д. Ф. Чеботарев, О. В. Коркушко показали, что у старых людей меньшие, чем у молодых, дозы различных веществ – адреналина, ацетилхолина, атропина, бензогексония – вызывают изменения деятельности сердечно-сосудистой системы.

Рост чувствительности к ряду физиологически активных веществ может иметь приспособительное значение. Ведь содержание многих гормонов, нейромедиаторов в старости падает, и в этих условиях повышение чувствительности к ним сохраняет оптимум реакции. Например, на фоне снижения концентрации в крови гормонов щитовидной, половых желез чувствительность к ним может расти. В нервных окончаниях выделяется меньшее количество ацетилхолина, зато чувствительность иннервируемой клетки к этому нейромедиатору повышается. Однако при старении нет единого универсального изменения реактивности клеток и тканей. Неодинаково может изменяться чувствительность разных тканей к одному и тому же веществу и одной и той же ткани к разным веществам.

Дальнейшие наши работы показали, что возникающие в процессе старения изменения реактивности сложнее и характеризуются фазовыми изменениями. Эти фазы изменения реактивности были установлены при изучении реакций всего организма в целом, его отдельных систем и клеток.

Раньше других возникает так называемая "уравнительная" фаза. Она характеризуется тем, что при действии раздражителей разной силы их эффекты выравниваются, т. е. уравнивается величина реакции на слабое и сильное раздражение. При трех типах физической нагрузки, названных нами слабой, средней и сильной, у пожилых людей различия в реакциях меньше, чем у молодых, – эффекты как бы выравниваются (рис. 28). Другой пример. Инсулин вызывает падение уровня сахара крови. Различия в изменении уровня сахара крови при различных дозах гормона у старых кроликов менее выражены, чем у взрослых.


Рис. 28. Влияние дозированной физической нагрузки (работа на кистевом эргографе 4.12 и 24 кгм) у людей в возрасте 60–69 лет (1) и 20–29 лет (2).

А – частота сердечных сокращений; Б – легочная вентиляция; В – потребление кислорода

Уравнительная фаза характеризуется не только изменением величины реакции, но и изменением порога реакции, т. е. чувствительностью. Так, меньшие дозы тироксина, адреналина, вазопрессина вызывают у старых животных изменения обмена и функции сердца; снижается также максимальная величина ответа, нивелируются различия в реакциях на различные дозы этих веществ. Парадоксальная фаза характеризуется нарушением силовых отношений – слабые раздражители вызывают более выраженную реакцию, чем сильные. К примеру, у больного пожилого человека различные сердечные препараты могут вызвать в малых и средних дозах более значительную реакцию, чем при введении больших доз. В печени старых животных малые дозы гормона гидрокортизона вызывают более выраженный синтез фермента, чем большие дозы (рис. 11).

При ультрапарадоксальной фазе сильный раздражитель может вызывать не только слабую, но и противоположную по характеру реакцию.

Ультрапарадоксальная фаза часто встречается в пожилом и старческом возрасте. В старости половые гормоны могут не активировать, а подавлять синтез белка; серотонин не усиливает, а ослабляет работу сердца; адреналин не расширяет, а суживает сосуды сердца, и др. Известно, что гормоны гипофиза стимулируют деятельность желез внутренней секреции. В старости, на определенном этапе ее развития, тройные гормоны будут не активировать, а подавлять деятельность желез. Знание всего этого важно для практической деятельности врача, которого при лечении пожилых людей поджидают необычные, неадекватные реакции.

И, наконец, некротическая фаза. Существует возрастной период, когда раздражители, вызывающие еще оптимальную реакцию у взрослых животных, у старых приводят к повреждению клеток и органов, к образованию некрозов. Адреналин, вазопрессин в дозах, оптимальных для молодых животных, могут у старых приводить к повреждениям сердца, инфаркту миокарда.

Итак, регуляторный сдвиг, имеющий приспособительное значение в молодом возрасте, например рост концентрации вазопрессина, адреналина, кортикостерона (все это возникает при стрессе), в старости в условиях изменения реактивности клеток и тканей может стать причиной нарушений, повреждений, некроза, гибели. Следовательно, любой сигнал на этапе прямой и обратной связи должен оцениваться не сам по себе, а по отношению к реактивности воспринимающих клеток. Сложность состоит в том, что отдельные органы, отдельные клетки одного и того же органа стареют не в одинаковом темпе и потому могут находиться в различных фазовых состояниях. Все это и создает значительную пестроту ответных реакций при старении.

Знание фазовых изменений реактивности важно для медицинской практики. Они убеждают в необходимости пересмотра дозировок лекарственных веществ в пожилом и старческом возрасте. В зависимости от фазы реактивности препарат может вызвать больший или меньший, а порой и парадоксальный эффект.

Фазовые изменения реактивности уже давно известны в физиологии. Решающий вклад в учение о реактивности внес выдающийся физиолог Н. Е. Введенский. Он повреждал нерв различными способами и показал, что возникают фазовые изменения возбудимости. Он назвал это состояние парабиозом – состояние между жизнью и смертью. Вслед за этим И. П. Павлов, изучая бесконечно более сложные реакции (условные рефлексы у собак), установил, что при определенных условиях (переход от состояния бодрствования ко сну, при патологии мозга) могут возникать фазовые явления. Он назвал эти фазы уравнительной, парадоксальной, ультрапарадоксальной, тормозной. И, наконец, важное значение для понимания развития фазовых явлений имеет учение советских ученых Д. Н. Насонова и В. Я. Александрова о паранекрозе – совокупности изменений в живой системе, возникающих при действии повреждающих факторов. Описанные феномены, фазные сдвиги реактивности, – результат меняющегося состояния клетки, органа, организма.

В медицине, как в геологии, чтобы найти полезные для человека ископаемые, необходимо достичь больших глубин. Все эти, казалось бы, отвлеченные, чисто теоретические работы имеют большое прикладное значение. Влияние лекарственных препаратов на человека зависит от их распада в организме, от реактивности органов и тканей. Все это меняется при старении и делает необходимым принципиальный пересмотр дозировок, да и самих препаратов, применяющихся при болезнях пожилых и старых людей. А. Эйнштейн писал, что нет ничего практичнее хорошей теории.


Обратные связи

Кибернетика открыла единые принципы работы систем в природе, жизни, обществе. Для того чтобы управлять, надо знать. Вот почему неотъемлемым звеном любой системы являются обратные связи, информирующие центр о состоянии объекта регуляции. Без этого невозможно достижение полезного приспособительного эффекта.

Важнейшие механизмы старения и витаукта связаны со сдвигами на этапе обратной связи, которые возникают на разных уровнях биологической организации. С молекулы ДНК считывается генетическая информация, необходимая для синтеза белков. Адекватное потребностям клетки усиление синтеза белка осуществляется благодаря обратной информации с цитоплазмы (где синтезируется белок) на ядро клетки (где расположен генетический аппарат). При старении характер этих связей изменяется. Добавление цитоплазмы, взятой из клеток печени старых животных, подавляло синтез РНК в ядрах, взятых у молодых.

Энергетический потенциал клеток поддерживается за счет двух механизмов: процесса окислительного фосфорилирования (в митохондриях) и гликолиза (в цитоплазме). При недостаточном образовании энергии в митохондриях из них в цитоплазму поступает специальный фактор, активирующий гликолиз. Мы добавляли "старые" митохондрии к "молодой" цитоплазме, и наоборот. "Старые" митохондрии активируют в "молодой" цитоплазме гликолиз. Это усиление обратной информации имеет важное приспособительное значение.

Биосинтез белка и генерация энергии в клетке – две подсистемы, включенные в единую систему саморегуляции. Действительно, с одной стороны, для того чтобы происходили процессы генерации энергии в клетке, необходим синтез соответствующих белков (ферменты, переносчики и др.). С другой – для того чтобы происходил биосинтез белка, необходимы затраты энергии. При старении эта структурно-энергетическая система страдает, наступают ее изменения на этапе прямой и обратной связи. Основные энергетические потенциалы клетки образуются в митохондриях при участии дыхательных ферментов. Л. Я. Литошенко прямо показал, что снижается синтез митохондриальных белков. Одни из этих белков кодируются в ядерном геноме, другие – в ДНК, расположенной в самих митохондриях. Оказалось, что в сердце нарушается синтез обеих групп белков, в печени – синтезируемых на митохондриальном геноме. Как бы то ни было, все это ведет к снижению процессов энергообразования в клетке, к снижению количества и обновления АТФ. Этот сдвиг в свою очередь усугубляет события и сказывается на синтезе белков митохондрий.


    Ваша оценка произведения:

Популярные книги за неделю