Текст книги "Путешествие по Карликании и Аль-Джебре"
Автор книги: Владимир Левшин
Соавторы: Эмилия Александрова
сообщить о нарушении
Текущая страница: 9 (всего у книги 16 страниц)
(Сева – Нулику)
Здорово, Профессор! Ты, наверное, уже привык, что о Чёрной Маске ни слуху ни духу. Зато других новостей сколько угодно.
До сих пор не могу понять, что за государство такое – Аль-Джебра! Уж очень оно разнообразное. То попадаешь в большой современный город, то в какой-то древний восточный городишко с узкими улочками, где не то что два троллейбуса – два осла не разойдутся! И называется этот городишко Хива.
Когда-то он был здесь столицей, потому что больше тысячи лет назад в нем жил основатель Аль-Джебры Мухаммед ибн Муса аль-Хорезми. Не пугайся: имя хоть и длинное, но разобраться можно. Ибн Муса значит сын Мусы, по-нашему – отчество. Аль-Хорезми – читай из Хорезма. Хорезм – древнее государство, где находилась эта самая Хива. А в общем – Мухаммед Мусович Хорезмиец.
Ну, с Мухаммедом мы всё выяснили. А вот что такое Аль-Джебра? Нам сказали, что это слово арабское и в переводе на русский язык означает «восстановление». Пусть так, но что здесь восстанавливают? На этот вопрос мама-Двойка ответила своей любимой поговоркой: «Всякому овощу своё время». И пояснила, что из слова «Аль-Джебра» вышло название той самой науки, которую проходят у нас в каждой школе: алгебра. Вот те на! Отдохнули! Нигде от науки спасения нет. Даже парк, куда привела нас мама-Двойка, называется Центральным Парком Науки и Отдыха. Я сразу скис. Но оказалось, что не так уж он плох, этот парк. Здесь столько аттракционов, что со всеми за один раз не познакомишься.
В парке полно народу. Кроме карликан, там разгуливают и буквы.
Что-то часто они стали нам встречаться. Некоторых мы уже видели, но попадаются и совсем неизвестные. Мама-Двойка со многими здоровалась и называла по имени: «Здравствуйте, дорогой Пи! Как вы себя чувствуете, уважаемая Омега? Давно я тебя не видела, крошка Эпсилон!»
Мы хотели разузнать об этих буквах получше, но мама-Двойка, как на грех, разговорилась с какой-то толстушкой Сигмой. Тут мы увидели павильон с вывеской «Автоматическая справочная». Вот где нам ответят на все вопросы!
Поднялись по широким ступенькам и очутились в большом светлом помещении. Там всюду стоят пластикатные щиты. На каждом щите микрофон и динамик. Подходишь к микрофону, задаёшь вопрос и тут же получаешь ответ. В Аль-Джебре, как и у вас в Карликании, секретов нет. Каждый может слышать, что автомат отвечает соседу.
Рядом с нами стояла какая-то непонятная буковка с маленьким красным зонтиком: i. Мы слышали, как она грустно спросила:
– Скажите пожалуйста, найду ли я место в жизни?
Автомат призадумался, а потом ответил:
– И Мнимая Единица на что-нибудь да годится!
Мнимая Единица облегчённо вздохнула и выпорхнула из павильона. Ты что-нибудь понимаешь, Профессор? Мало нам отрицательных единиц, так тут ещё появились мнимые!
Мы решили больше ничего не слушать и приступили к делу. Олег подошёл к микрофону и спросил:
– Скажите, пожалуйста, как нам разгадать тайну Чёрной Маски?
– Нет ничего проще! – ответил автомат. – Для этого нужно решить одно уравнение.
– Какое?
– То, которое вы сами составите.
– Но как это сделать?
– Прочтите записку, которая была в зелёном стручке.
– А как её расшифровать?
– Закусите в кафе «Абракадабра».
– Как туда попасть?
– Для этого надо познакомиться с обычаями нашей страны.
– Мы уже познакомились, – не выдержал я.
– Молодой человек, – вспылил автомат, – вы даже не успели до конца разобраться в правилах движения на монорельсовой дороге!
– Как это – не успели? – обиделся я. – Мы уже знаем сложение и вычитание положительных и отрицательных чисел.
– А умножение? А деление? А дробные числа? А мнимые? А…
И тут он пошёл говорить такие слова, каких я и не слыхивал. Мы стали переспрашивать. Тогда автомат ещё пуще раскипятился:
– Вот видите! Вы не понимаете самых обыкновенных вещей. Нет, нам положительно не о чем разговаривать!
И замолчал. Напрасно мы задавали ему всякие вопросы, он и ухом не повёл. Но Таня всё-таки его разжалобила – девчонки это умеют.
– Милый автомат, – сказала она, – не сердитесь, пожалуйста! Мы ведь ещё такие неопытные. Лучше помогите нам!
Автомат нерешительно хмыкнул.
– Так и быть, – проворчал он. – Возьмите с подноса жетон и опустите в щель под динамиком.
Наконец-то! Сейчас мы узнаем тайну зелёного стручка!
Я так разволновался, что никак не мог опустить жетон. И всё зря. Из широкого отверстия в щите выпали две картонки. На них были фотографии тех самых букв, которые мы видели в парке. На каждой фотографии по две буквы. Одна большая, другая маленькая. А внизу – имя. Ну прямо как на ежегодном снимке учеников нашего класса.
Я чуть не заплакал с досады. Но автомат (и как он только всё замечает?) заворчал, что на первый раз хватит и этого и что, пока мы не будем знать каждую букву в лицо и по имени, лучше нам к нему не обращаться.
– Почтенный автомат, – сказал Олег, – мы готовы выучить всё, что угодно, но объясните, пожалуйста, что это за буквы?
– Так бы и спрашивали, – подобрел тот, – от этого я никогда не отказываюсь. На первой картонке вы видите основных жителей Аль-Джебры – двадцать шесть букв латинского алфавита. Этот алфавит употребляется во многих странах. Ведь он был принят ещё в Древнем Риме, и многие народы пользуются им до наших дней. Поэтому тем из вас, кто изучает какой-нибудь иностранный язык – английский, немецкий, французский, – эти буквы уже знакомы. Зато вряд ли вы знаете буквы, изображённые на другой картонке. Это двадцать четыре представителя греческого алфавита. В Аль-Джебре они встречаются не так уж часто, но знакомство с ними вам ещё пригодится.
Ну, мы рассмотрели и те и эти фотографии. Латинские буквы ничего себе, а греческие мне не особенно понравились. По-моему, они ужасные кривляки. Взять хотя бы Кси: прямо змея!
А потом за нами пришла мама-Двойка. Мы простились с автоматом и вернулись на монорельсовую, дорогу, чтобы раз и навсегда разделаться с этими трудными правилами воздушного движения.
Напоследок я успел опустить в щель ещё один жетон и снова получил две картонки с фотографиями. Посылаю их тебе: пригодятся для следующих уроков.
А пока – кси-пси! Привет.
Сева.
Нулики подрались(Нулик – отряду РВТ)
Здравствуйте, ребята! Не знаю, может, вы и правы, что отрицательных пирожных не бывает, зато отрицательные Нулики встречаются. Сегодня утром один такой отрицательный Нулик напал на другого, который до сих пор считался очень положительным. Ну и драка была! Ещё немного – и они бы взаимоуничтожились. Я уж думал, не рассадить ли их по разным загонам – ну, как эти самые… абсолютные значения. Но тут их растащили другие Нулики. Из этого я сделал вывод, что положительный Нулик только прикидывался положительным. На деле он самый что ни на есть отрицательный! И я им обоим поставил по поведению жирный минус.
В нашей школе занятия продолжаются. Греческие буквы трудные. Мы их пока отложили. Зато латинский алфавит всем понравился. Только как туда попали русские буквы? И почему некоторые из них называются по-другому: P – Пэ, B – Бэ? А вот «О» молодчина! И там и тут пишется одинаково. Это потому, что оно похоже на меня.
Если снова побываете у автомата, непременно спросите: куда ведёт воздушная монорельсовая дорога? Не к тем ли Великанам, которых вызывают, когда мы безобразничаем? И где эти Великаны живут? Справа или слева от Нулевой станции?
Нулик-Профессор
В тесноте, да не в обиде(Таня – Нулику)
Бедный, бедный Нулик! Ну и каша у тебя в голове! Сначала изобрёл какие-то отрицательные пирожные; потом – положительных и отрицательных Нуликов!
Запомни раз и навсегда: нуль – единственное число, которое не бывает ни положительным, ни отрицательным. Это что-то вроде пограничника, который стоит на рубеже между положительными и отрицательными числами.
Конечно, в твоей школе тоже есть положительные и отрицательные Нулики. Но это ведь совсем другое дело. Просто одни из них хорошие, а другие – плохие.
Второй твой вопрос – о Великанах – очень интересный. Но ответил на него не автомат, а мама-Двойка. Она говорит, что ты любознательный ребёнок.
Оба конца монорельсовой дороги и вправду ведут в Бесконечность. А в Бесконечности, понятно, живут числа – Великаны. Бесконечность тоже бывает положительная и отрицательная. Только там свои, особые законы. Положительные и отрицательные Великаны прекрасно уживаются. Но как это им удаётся, мы не узнали. Это как раз один из тех вопросов, на которые мама-Двойка отвечает: «Всякому овощу своё время».
А теперь танцуй! Мы научились умножать и делить отрицательные числа.
Ты ведь знаешь, что умножение можно рассматривать как сложение.
Умножить два на три – всё равно что сложить три двойки:
То же самое происходит, когда отрицательное число умножают на положительное. Разве умножить минус два на плюс три – это не то же самое, что сложить три отрицательные двойки? А так как при сложении отрицательных чисел вагончики двигаются влево от Нулевой станции, то и произведение будет отрицательное – минус шесть:
– Ну, а если умножить минус три на плюс два? – спросил Сева. – Тогда что? – Какая же разница? – сказала мама-Двойка. – Как было минус шесть, так и останется минус шесть. Вот смотрите:
– Ясно! – кивнул Сева. – Пусть себе множители меняются знаками сколько хотят, произведение всё равно остаётся то же. Оно всегда будет отрицательным, если мы перемножаем два числа с разными знаками. – Сева важно посмотрел на всех. Он был страшно собой доволен. – Все поняли? Тогда поехали дальше. Выясним теперь, что получится, если оба множителя отрицательные?
– Ну что ж, выясняйте, – сказала мама-Двойка, – мы с удовольствием вас послушаем.
– Вы меня не поняли, – смутился Сева. – Это я вас собирался послушать.
– Ах вот оно что! Тогда другое дело.
Всем нам стало неловко за Севу. Мы подумали, что мама-Двойка обиделась, но она посмотрела на нас смеющимися глазами и продолжала:
– Вы хотели знать, что происходит при перемножении двух отрицательных чисел? Нетрудно догадаться. Чтобы умножить любое число на положительное, надо отложить его на монорельсе в ту же сторону от Нулевой станции, с какой оно находится. Это мы только что видели.
Когда же мы умножаем любое число на отрицательное, всё происходит наоборот. Вы ведь знаете, какие упрямцы эти отрицательные числа! Поэтому умножаемое откладывается не с той стороны, где оно находится, а по другую сторону от нуля:
Теперь нетрудно понять, что получится при умножении отрицательного числа на отрицательное; в этом случае умножаемое надо откладывать вправо от нуля:
– Вот те раз! – Брови у Севы стали прямо как два вопросительных знака. – Отрицательное число, умноженное на отрицательное, становится положительным?! Чудеса!
– Такие чудеса случаются у нас в Аль-Джебре на каждом шагу, – ответила мама-Двойка.
– Ну, если так, расскажите нам поскорее про деление. Там, наверное, будут какие-нибудь новые чудеса?
– Ничуть не бывало. Деление – действие, обратное умножению. Стало быть, и правила знаков не меняются:
Мы почувствовали себя ужасно образованными. А пуще всех – Сева.
– Теперь нам всё нипочём! – заявил он. – Мы знаем эту дорогу как свои пять пальцев!
– Ошибаетесь, – сказала мама-Двойка, – вы познакомились только с целыми числами.
– А разве здесь есть и другие?
– А как же!
– Вы, наверное, подразумеваете дробные числа, – предположил Олег.
– Не только. Дробные числа – это те, что расположены между целыми числами. – Мама-Двойка указала на палочки ограды, которые мы недавно пересчитывали. – Здесь расстояние между двумя целыми числами разделено на десять равных частей. Каждая из них составляет одну десятую единицы. Но ведь этих делений может быть и гораздо больше. Мысленно мы можем разделить это расстояние на любое число частей.
– Значит, вагончик может останавливаться не только у целого числа, но и у любой дроби, то есть между станциями?
– Ну конечно! В любом месте, по первому требованию!
Мы тут же вызвали вагончик и заставили его остановиться сперва против числа 2,5 а потом против 3,44… Этого нам показалось мало. Мы назвали число минус пять и четыре миллионных: −5,000 004, и красный вагончик, миновав Нулевую станцию, превратился в синий и остановился на волосок дальше станции минус 5.
– Выходит, – неуверенно сказал Сева, – вся эта бесконечная дорога сплошь заполнена числами?
– Именно сплошь! – ответила мама-Двойка. – Можно сказать, непрерывно. У нас очень большая плотность населения. На всём пути не сыскать ни одной точечки, не заселённой каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.
– Что ж это за число, которое нельзя вычислить?
– Ну хотя бы корень квадратный из двух:
Попробуйте найти число, которое при возведении в квадрат давало бы два.
Сева наморщил лоб, подумал немного, потом махнул рукой и засмеялся:
– И много таких чисел?
– Бесконечное множество. Их называют иррациональными в отличие от рациональных. Латинское слово «рацио» значит «разум». Следовательно, рациональные числа – это разумные числа, то есть числа, постижимые разумом.
Сева прямо задохнулся от смеха:
– Ой, умираю! Рациональные – значит разумные. А иррациональные – безумные, что ли?
– Ну зачем же так! – обиделась мама-Двойка. – Просто они не поддаются точному вычислению. Поэтому их долгое время не признавали числами. Но с тех пор как у нас появилась воздушная монорельсовая дорога (или числовая прямая – так её называют по-другому), иррациональные числа после долгих скитаний получили, наконец, точный адрес. Вычислить их по-прежнему можно только приближённо. Зато легко указать место на монорельсовой дороге, где они живут. Вместе с числами рациональными они образуют дружную семью действительных чисел, – закончила мама-Двойка и снова заставила нас удивиться.
– А разве бывают и недействительные?
– Конечно. Есть числа мнимые, есть комплексные.
Сева не дал ей договорить.
– Вспомнил! – заорал он. – И Мнимая Единица на что-нибудь да годится!
– Да, да, – подтвердила я, – так ответил автомат маленькой буковке с зонтиком: i.
– Оно и понятно, – сказала мама-Двойка, – латинской буквой i (по-русски – И) в Аль-Джебре обозначается Мнимая Единица.
– Но почему мнимая? Она что, воображаемая?
– Настолько воображаемая, что ей, как и другим мнимым числам, не нашлось местечка на всей бесконечной монорельсовой дороге.
– Так вот почему она была такая грустная! – смекнул Сева.
– А где же тогда живут мнимые числа? – спросил Олег.
– Всякому овощу своё время.
Пришлось спрятать любопытство в карман. Мы распрощались с мамой-Двойкой и пошли… Куда бы ты думал? Конечно, в Парк Науки и Отдыха.
Как мы там отдыхали, узнаешь из следующего письма.
Таня.
Молотобойцы(Сева – Нулику)
Здравствуй, старик! Не удивляйся, что вместо Олега пишу тебе я. Мне так захотелось самому рассказать, как я здорово отличился, что он уступил мне свою очередь.
Говорят, великие люди занимались физическим трудом и спортом. Лев Толстой косил траву, шил сапоги. Учёный Павлов играл в городки. А я решил стать молотобойцем.
Здесь, в парке, есть занятный аттракцион – силомер. Такие встречаются и у нас, но этот устроен немного по-другому.
У нас ударяешь молотом по наковальне, и гирька подскакивает верх. Чем сильнее ударишь, тем выше она поднимется. На таком силомере меряются силами. На здешнем – знаниями.
Рейка, вдоль которой движется гиря, очень похожа на монорельсовую дорогу. Только числовая прямая здесь расположена по-другому: не длину, а в вышину. И числа на ней, начиная с нуля, только положительные. На этом силомере возводят числа в степень.
Задумываешь число, возводишь в уме в какую-нибудь степень, а потом, чтобы проверить себя, бьёшь молотком по наковальне. Гирька долетает до вычисленной степени. Если ты возвёл правильно, у этого числа зажигается зелёный огонёк, ошибся – красный.
Первый удар предоставили Тане. Ничего не поделаешь: девочка! Она возвела два в третью степень. У неё получилось восемь. Таня стукнула молотком, гирька взлетела к восьмёрке, и зажглась зелёная лампочка.
Потом стукнул Олег. Он возвёл два в десятую степень. Получилось 1024. И когда гирька долетела до этого числа, снова зажглась зелёная лампочка. Всё это показалось мне очень уж обыкновенным. Захотелось отмочить что-нибудь такое, чтобы все ахнули. Я объявил, что сделаю удар в честь моего друга Нулика-Профессора.
Возвёл двойку в нулевую степень. У меня получился нуль.
Я изо всей силы трахнул молотком по наковальне, и – ха-ха! – гирька осталась на нуле. Этого-то я и хотел! Но как же я удивился, когда вместо зелёного огонька зажёгся красный! Может быть, я так сильно ударил, что силометр испортился? Но почему же тогда все кругом засмеялись?
Я не знаю, что и подумать, но тут какая-то латинская буковка – не то Эн, не то Эм – сказала, что таких ошибок у них даже дети не делают и что любое число, возведённое в нулевую степень, всегда равно не нулю, а единице. Я несколько раз проверил это на силомере – правильно! И пять, и сто, и двести – все они в нулевой степени равны единице.
Тогда я решил возвести в нулевую степень нуль. Я рассуждал так: коли нуль – это число, а все числа в нулевой степени равны единице, то и нуль в нулевой степени тоже равен единице.
Ударил по наковальне и…
Лучше бы я этого никогда не делал!
Гирька словно взбесилась: сперва взвилась под облака, потом ушла куда-то под землю, потом опять взмыла вверх.
И так она металась туда-сюда, пока кто-то не догадался выключить силомер.
Тут уж никто не смеялся. У всех были испуганные лица – почти как на том представлении, где твой тёзка, Нулик, стащил знак умножения.
Я и сам-то перепугался до смерти.
Страшнее всего было то, что гиря всё время куда-то проваливалась. Оказалось, числовая прямая уходит другим концом в бездонный колодец, где помещаются отрицательные числа.
Наверное, у меня был очень несчастный вид, потому что та же буква – не то Эм, не то Эн – подошла ко мне и стала утешать.
– Успокойтесь, – сказала она, – так может быть со всяким, кто впервые в Аль-Джебре. Нуль и в самом деле число, но совсем особенное. Вы ведь помните, что оно не бывает ни положительным, ни отрицательным. Поэтому обращаться с ним надо осторожно. А когда возводишь нуль, да ещё в нулевую степень, нужно быть осторожным вдвойне. Потому что при этом получается неопределённое число. Оно может быть и пятёркой, и миллионом, и бесконечностью, и положительным, и отрицательным, и даже нулём! Поэтому гирька до того растерялась и разнервничалась, что силомер испортился.
Славная буковка!
Мне захотелось сказать ей что-нибудь приятное. Вообще-то у меня это плохо получается. Но я вовремя вспомнил, как моя тётя Нина разговаривает с гостями.
– Ах, ах, это в высшей степени интересно! – сказал я самым что ни на есть разлюбезным голосом.
– Благодарю вас, – засмеялась буковка. – Но не советую употреблять выражение «в высшей степени» в Аль-Джебре. Как бы ни была высока степень, всегда найдётся ещё более высокая. Ведь числа бесконечны.
Эх, подвела меня тётя!
Тут силомер снова наладили, и Тане вздумалось возвести число не целую степень, а в дробную.
– Если возвести четыре в половинную степень, по-моему, получится два, – сказала она.
– С чего это ты взяла? – спросил я.
– А вот с чего: четыре в нулевой степени равно единице. Четыре в первой степени – четырём. Значит, четыре в половинной степени равно половине от четырёх, то есть двум.
Таня стукнула молотком. Гирька остановилась у числа два, и вспыхнула зелёная лампочка. Тогда и мне захотелось попробовать.
– Возвожу девять в половинную степень, – объявил я. – Рассуждаю так: девять в нулевой степени это единица. Девять в первой степени – девять. Значит, девять в половинной степени равно четырём с половиной.
Я торжественно стукнул молотком, гирька остановилась на четырёх с половиной, и… вспыхнула красная лампочка. Я прямо обалдел. Несчастный я человек! Ну почему, почему, мне так не везёт? Ведь я рассуждал точь-в-точь как Таня!
И снова на помощь мне пришла та же буковка (а я так и не запомнил – Эм она или Эн!).
– Дело в том, – сказала она, – что эта девочка допустила ошибку, а вы её повторили. Девять в половинной степени и вправду находится между единицей и девяткой. Но оно вовсе не равно половине от девяти. Для того чтобы возвести число в половинную степень, надо не делить его на два, а извлечь из него корень второй степени. А корень второй степени из девяти равен трём, а не четырём с половиной.
– Так почему же у Тани получилось правильно?
– Да потому, что корень второй степени из четырёх равен двум, а два и есть как раз половина от четырёх. И это – простое совпадение.
Таня, конечно, покраснела, а Олег (он всегда её выручает), чтобы отвлечь от неё внимание, сделал вывод:
– Значит, возвести число в степень, равную одной пятой, – это всё равно что извлечь из этого числа корень пятой степени. Например:
– Ваша правда, – подтвердила буковка.
– Тогда, наверное, и обратно, – продолжал Олег. – Возвести число в пятую степень – это всё равно что извлечь из него корень степени одна пятая:
Что ты скажешь! Он и на этот раз попал в самую точку!
Тут мне пришло в голову, что если можно возводить числа в положительные степени, то почему бы не попробовать в отрицательные? Буковка посмотрела на меня пристально:
– Уж очень вы торопитесь! Аль-Джебра – государство большое. Для того чтобы с ним как следует познакомиться, нужны не дни, не недели, а годы…
Ещё чего! А как же Чёрная Маска? Так и останется без лица?
Посовещались немного и решили, что довольно ходить вокруг да около. Пора приниматься за дело. Но прежде неплохо бы закусить! То-то мне стали вспоминаться гостеприимные обжоры…
Буковка словно угадала мои мысли:
– Может быть, вы проголодались? Тогда советую зайти в кафе «Абракадабра».
А нам только того и надо!
Хочешь знать, что дальше? Потерпи немножко. Всякому овощу…
Сева.