Текст книги "Путешествие по Карликании и Аль-Джебре"
Автор книги: Владимир Левшин
Соавторы: Эмилия Александрова
сообщить о нарушении
Текущая страница: 2 (всего у книги 16 страниц)
Это было огромное поле, сплошь заполненное жителями Арабеллы. И, так же как и на проспекте Действующих Знаков, здесь царил совершеннейший порядок.
У входа на площадь возвышалось какое-то удивительное сооружение. Мои ребята с восторгом осматривали его, поднимались на ступеньки, заглядывали внутрь через круглые разноцветные окошечки.
– Это ракетная установка?
– Нет, это космический корабль!
– А по-моему, атомная станция!
Я молчал: пусть разбираются сами.
Неожиданно в разговор вмешалась толстая Восьмёрка, которая вела за руку маленького Нулика.
– Здравствуйте! – обратилась она к нам.
– Здравствуйте! – повторил за ней Нулик и вкусно зевнул.
Восьмёрка покачала головой:
– Ну что с ним делать? Заснул только под утро, а теперь зевает. Как я отпущу его в такое серьёзное путешествие?
– Не вы ему пели: «Спи, мой Нулик, спи, сынок»? – спросила Таня.
– Кто же, кроме меня, может петь песенку, которую я сама сочинила? А не вы ли гуляли ночью под моими окнами? – в свою очередь поинтересовалась Восьмёрка.
– Да, да, это они гуляли! – обрадовался Нулик. – Вот эта девочка, – он показал на Таню, – спросила, как почтальоны доставляют нам письма, если все дома под одним номером.
– Не всё ли равно, кто получит письмо, – возразила Восьмёрка.
Письма, адресованные кому-нибудь из нас, одинаково касаются всех.
– И меня, и меня касаются! – закричал Нулик.
– Какой умный ребёнок! – умилилась Восьмёрка.
– Раз уж вы так любезны, – обратился к ней Сева, – не скажете ли, уважаемая Восьмёрка, откуда у вас сын Нулик? Я думал, ваши дети тоже Восьмёрки.
– Конечно, у меня, как и у всех других мам-восьмёрок, дети тоже восьмёрки. А у пятёрок – пятёрки, у двоек – двойки, и так далее. А вот нулики имеются у всех. Нулики – это наши приёмные дети. Но мы их любим, как своих родных, даже, пожалуй, больше. Ведь они такие маленькие, такие беззащитные. Они без нас совсем ничего не значат.
– Откуда же они у вас появились? – спросил удивлённо Сева.
– О, это очень длинная история! Вы, наверное, знаете, что на нашей родине, в Индии, было только девять цифр. Эти девять старейших и образовали Арифметическое государство. Теперь они заседают в Совете Старейших и управляют нами. Вскоре люди решили, что очень неудобно обходиться без нулей. Ну подумайте сами: вам нужно записать число 205, а у вас только девять цифр, нуля нет. Что вы будете делать? На месте сотен поставите двойку, на месте единиц – пятёрку. А что вы поставите на месте десятков? Ведь десятков в этом числе нет! Нельзя же писать число 205 так: 2НЕТ5! Это было бы ужасно!
И люди решили вместо слова «нет» ставить нуль. Так появились в нашем государстве эти милые, прелестные крошки, которых мы с радостью усыновили. Вот откуда у меня такой круглый сынок… Ну, иди, иди, мой маленький, а то мы опоздаем на ракету. Скажи всем «до свидания».
– До свида-а-а-ния! – пропел Нулик и покатился следом за своей солидной мамашей.
В это время мы услышали знакомый голос:
– Вот они! А я уже думала, что никогда вас не найду. – Перед нами стояла Четвёрка с бантиком. – Извините меня, пожалуйста, я должна была посадить моих малышей в скоростной самолёт. Ведь они сегодня в первый раз улетают.
Странно, – сказал Сева. – куда это у вас все летят? Как – куда? – удивилась Четвёрка. – Да к вам, к людям. На фабрики, на заводы, в колхозы. К рабочим, счетоводам, учёным. И к школьникам, разумеется. Нас ждут всюду: в аулах, на полярных станциях, на кораблях дальнего плавания, в космических ракетах. С каждым годом мы нужны всё больше и больше. Нас разрывают на части. Вернее, на все пять частей света: приглашают в Азию, в Африку…
Четвёрка не успела докончить, потому что в это время заговорили десятки мощных репродукторов:
«Внимание! Карликане! Через минуту вы отправитесь в далёкое путешествие к людям. Слушайте доброе напутствие Совета Старейших. У микрофона Карликан Первый.
– Дорогие друзья, храбрые путешественники, неутомимые труженики! Совет Старейших желает вам доброго пути и благополучного возвращения. Мы уверены, что вы не посрамите нашего славного государства и будете честно трудиться на благо человечества. В руках добрых людей вы принесёте пользу, в руках злых можете принести разрушение. Служите добрым людям, остерегайтесь злых. Счастливого вам пути!»
Заиграла музыка, и в воздух одна за другой стали подниматься огромные сверкающие машины. Их было много, и каждая отвозила миллионы карликан. Восхитительное зрелище!
Мы долго не могли опомниться и всё глядели в небо, где давно уже ничего не было, кроме лёгких белых облаков.
– Странно, – заговорил наконец Сева, – улетело столько, что не, сосчитать, а толпа на площади не убывает. Может быть, это мне только кажется?
– О, напротив, вы очень наблюдательны! – заметила Четвёрка. – Толпа в самом деле не убывает.
– Как же так? – недоумевал Сева. – Если даже из огромной коробки всё время брать по конфете, то конфеты когда-нибудь кончатся.
– Конфеты, конечно, кончатся, – улыбнулась Четвёрка, – а карликане – никогда.
– Чепуха! – отрезал Сева.
– Довольно слабое доказательство, – сухо заметила Четвёрка. – Я в таких случаях прекращаю спор. Но на этот раз сделаю исключение. Мне вас жаль, потому что вы не знаете, что такое бесконечность.
– Почему это я не знаю? – обиделся Сева. – Бесконечность – это когда чего-нибудь очень много. Ужасно много!
– Нет, нет, нет! – возразила Четвёрка. – Это совершенно неверно. У нас так не рассуждают даже нулики. Бесконечность – это то, у чего нет конца. Совсем нет конца.
– Ну где-нибудь конец всё-таки есть? – не сдавался Сева.
– В том-то и дело, что нигде! Вот вам кажется, что вы уже дошли до самого конца, заглянули дальше, а там… А там снова бесконечность. И так бесконечно. Вы её догоняете, а она убегает всё дальше. Идёшь сквозь огромную толпу карликан, идёшь-идёшь, уже и ноги не держат, а впереди всё столько же народу, сколько было раньше. И сколько бы вы ни шли, вы всегда находитесь в самой середине толпы. Идите хоть сто, хоть тысячу, хоть миллион лет! Вот что такое бесконечность!.. И не возражайте, пожалуйста! – строго остановила она Севу, уже открывшего было рот. – Если вам непонятно, то к этому вопросу я ещё вернусь, потому что о бесконечности можно говорить бесконечно.
– Скажите, что это за махина такая? – спросил Олег, чтобы загладить Севину бестактность. Он указал на странное сооружение, которое ещё вначале привлекло наше внимание.
– Не махина, а машина, – поправила Четвёрка, – электронно-счётная машина. Это наш большой друг. В Карликании таких машин много, и каждая занята своим делом.
– А чем занята эта? – спросил Сева. Он удивительно быстро оправился от смущения.
– Эта машина производит самые точные вычисления. Она может сосчитать, сколько карликан отправилось в путешествие, с какой скоростью им надо лететь, чтобы прибыть вовремя. Машина сама выберет кратчайший маршрут; она управляет полётом и помогает обойти все препятствия, которые встречаются на пути ракеты. Это очень умная машина!
– Должно быть, её обслуживают много карликан.
– Всего только две цифры, две самые маленькие цифры: нулик и единичка. Но они прекрасно справляются со своей работой. Представьте себе, у них превосходная память. Стоит только им узнать что-нибудь, и можете быть уверены: они этого никогда не забудут.
– Счастливые! – вздохнул Сева.
– А почему в этой машине работают только нулик и единичка? – спросила Таня.
– А больше никто и не нужен. Вы ведь знаете, что нуль – это ничто. Вот он и обозначает слово «нет», тогда как единицей обозначается слово «да». Оказывается, этих двух слов совершенно достаточно, чтобы решить любую задачу.
– Как это так? – недоверчиво спросил Сева.
– Давайте сыграем в такую игру, – предложила Четвёрка. – Угадайте, что у меня в кармане? Задавайте мне какие хотите вопросы, но так, чтобы я должна была отвечать только «да» или «нет». Начали?
Ребята не заставили себя упрашивать. Вопросы посыпались один за другим:
– У вас в кармане что-нибудь съедобное?
– Нет.
– Школьный предмет?
– Да.
– Жидкий?
– Нет.
– Твёрдый?
– Нет.
– Мягкий?
– Да.
– Длинный?
– Нет.
– Круглый?
– Нет.
– Прямоугольный?
– Да.
– На нём пишут?
– Нет.
– Им промокают?
– Нет.
– Им стирают?
– Да.
– Резинка! – сказал Олег.
– Правильно! – ответила Четвёрка. – Видите, вы решили задачу только по моим ответам, с помощью всего двух слов: «да», «нет». Так и машина работает. Только работает она очень-очень быстро. Её так и называют – быстродействующая. У нас имеется прекрасный дворец, где быстродействуют эти умные машины. Это Дворец Кибернетики. Обязательно побывайте там. А теперь я приглашаю вас на стадион – повеселиться. Там скоро начнётся представление – балет на льду. Маленькие карликане на коньках! Советую посмотреть.
Надо ли говорить, с какой радостью мы отправились на стадион!
Балет на льдуЭто был школьный утренник, очень похожий на те, к которым мы привыкли у себя дома. Добрую половину зрителей составляли взволнованные мамы, тёти и бабушки маленьких артистов. Они оживлённо переговаривались и с нетерпением поглядывали на большое ледяное поле, где только что установили декорации, изображающие дремучий лес.
Режиссёр – тоненькая, гибкая Семёрка – грациозно пересекла ледяную сцену и подкатила к нам, приветливо улыбаясь.
– Спасибо, что пришли. Это ведь я просила моего друга Четвёрку привести вас сюда.
Нас усадили в первом ряду, как почётных гостей.
И сразу над ледяным полем вспыхнул ослепительно яркий свет.
Дирижёр взмахнул палочкой, и под звуки весёлой музыки на сцену выбежали два малыша. Они развернули длинное полотнище, и все прочитали название балета:
ВОЛШЕБНЫЕ ПРЕВРАЩЕНИЯ И ВЕСЁЛЫЕ ПЕРЕСТАНОВКИ!
Малыши убежали, а вместо них появились другие, в разноцветных хитончиках, во главе с добрым Вычислителем-Строителем.
Он красноречиво (хотя и без слов) рассказал, какие великие дела предстоит им совершить на благо людей. Цифры не менее красноречиво (тоже без слов) выразили полную готовность следовать За добрым Вычислителем-Строителем.
Вдруг в оркестре загремели барабаны, и на сцене появился злой Вычислитель-Разрушитель.
Завидев его, цифры бросились кто куда. Они боялись, что он возьмёт их в плен и заставит работать на себя. А этот злодей занимался очень плохими делами. Он ненавидел людей и хотел их уничтожить.
Добрый Вычислитель-Строитель стал на защиту испуганных малышей.
Тогда Вычислитель-Разрушитель, увидев, что одному ему не справиться, кликнул на помощь своё войско. И вот появились воины в белых мундирах с чёрными крестами на груди. Они схватили доброго Вычислителя-Строителя, крепко-накрепко связали и стали с силой вклиниваться между насмерть перепуганными цифрами, а те всё время увёртывались от них. Так продолжалось довольно долго.
По правде говоря, мои ребята ничего не понимали.
– Скажите, пожалуйста, – шёпотом обратился Сева к Четвёрке, – почему эти цифры так боятся воинов с плюсами на груди?
– Да потому, что сейчас они ещё свободные цифры. А когда плюсы начнут их складывать, они превратятся в числа. И тогда уж волей-неволей им придётся работать на злого Вычислителя-Разрушителя.
– А я думал, – возразил Сева, – что цифры и числа – это одно и то же!
– О нет! Разница между цифрами и числами такая же, как между буквами и словами. Слова составляются из букв, а числа – из цифр. Цифр и букв немного, а слов и чисел множество. С числами можно производить различные действия, а с цифрами нельзя. Когда цифра становится числом, этому числу можно дать любое наименование. Числа можно назвать птицами, книгами, яблоками, а можно – ружьями и пушками. Этого и добивается злой Вычислитель-Разрушитель. Вот почему цифры так его боятся.
Между тем с помощью своих воинов, Плюсов, и их командира Знака Равенства злой Вычислитель-Разрушитель заставил наконец цифры расположиться следующим образом:
1+3+4+2=10.
Бедные цифры, превратившись в числа, сразу замерли. Они были очень грустные. В зале плакали. А Вычислитель-Разрушитель торжествовал. Он хорошо знал, что числа никогда не посмеют нарушить равенство, не посмеют убежать от него. Ведь десять всегда должно быть равно десяти!
Теперь числа в его власти!
И вдруг (какая же сказка без волшебного «вдруг»!)… вдруг маленький Нулик из числа 10, точная копия нашего знакомого, быстро встал по другую сторону Единицы. И вместо десятки получилось какое-то ни то ни сё – 01!
В зале ахнули. Это было неслыханное геройство. Знак Равенства тут же упал в обморок – он не вынес подобного нарушения. А Вычислитель-Разрушитель так перепугался, что побежал звонить в пожарную команду, потому что пожарных в Карликании тоже вызывают по телефону 01. Совсем как у нас.
Зрители громко зааплодировали, а цифры быстро развязали своего доброго предводителя и на радостях затеяли весёлую игру, в которой приняли участие недавние их враги – Плюсы и Знак Равенства. Им тоже надоело служить злому волшебнику. С этих пор они будут делать только добро.
Сначала под звуки плавного вальса числа образовали знакомую уже нам группу:
1+3+4+2=10.
Потом началось феерическое зрелище. Освещённые то жёлтыми, то красными, то синими прожекторами, юные фигуристы стали меняться местами, образуя всё новые и новые группы:
3+1+2+4=10 2+3+4+1=10
4+1+3+2=10
1+4+2+3=10
и так далее.
И только десятка, стоявшая после Знака Равенства, всё время оставалась на месте. А числа в танце низко кланялись Нулику, и он стоял довольный, но скромный, как и подобает герою.
Так продолжалось до тех пор, пока конькобежцы не вернулись к исходному положению.
– Сколько же раз они менялись местами? – спросил Сева. – Я считал и запутался.
– Ровно двадцать четыре раза, – ответила Четвёрка.
– Неужели так много?
– Если вы сомневаетесь, проверьте сами, – усмехнулась она.
Тут первое отделение подошло к концу. Артисты выстроились полукругом и, взявшись за руки, запели:
Первое знакомство
Всё хорошо, что хорошо кончается!
Но в пьесе вывод полагается:
От перемены мест слагаемых
Сумма не ме-ня-е-тся!
В антракте мы пошли за кулисы, чтобы поблагодарить Семёрку и всех артистов за интересный спектакль.
Это оказалось труднее, чем мы думали. За кулисами была ужасная толчея, такая же, как у нас после концерта школьной самодеятельности. Маленьких артистов душили в объятиях счастливые родственники и восторженно пророчили им великое будущее. Родственники всегда немного преувеличивают!
Нам всё-таки удалось добраться до Семёрки. Мы выразили ей свой восторг. Она была счастлива и попросила нас обязательно посмотреть второе отделение.
– Мы покажем вам воздушное умножение. Это самый лучший номер нашей программы!
– А Нулик тоже в нём участвует? – спросила Таня, которой очень понравилась игра маленького артиста.
– Да, конечно. Но в этот раз он играет вспомогательную роль.
– Почему? – огорчилась Таня.
– Нельзя же всегда играть главные, – ответила Семёрка. – Наши артисты должны исполнять всякие роли. Скажу по секрету. Нулик очень на нас за это обиделся. Мама внушила ему, что он талант.
В это время раздался громкий визг. Дверь костюмерной распахнулась. Кто-то вихрем промчался мимо нас и исчез в толпе.
Начался страшный переполох. Цифры бросились врассыпную. Совсем как в балете при появлении злого Вычислителя-Разрушителя.
Все беспорядочно кричали:
– Спасите! Отнимите у него! Он нас уничтожит!..
– Так я и знала! Противный мальчишка! Он стащил знак умножения. – И Семёрка храбро бросилась в самую гущу толпы.
– Кто стащил знак умножения? – спросили мы у Четвёрки.
– Как – кто? Нулик! – пискнула она, робко прячась за наши спины. – Тот самый, которого вы так расхваливали.
– А зачем ему знак умножения?
– Он мстит за то, что ему не дали главной роли.
– Подумаешь, страшная месть, – рассмеялся Сева, – стащил знак умножения.
– Не говорите так! – с ужасом воскликнула Четвёрка. – Разве вы не знаете, какую беду может натворить Нулик со знаком умножение Стоит ему встать рядом с любым числом – и оно немедленно обращается в ничто. Какой-нибудь час – и все жители Арабеллы обратятся в нуль. Представляете себе государство, состоящее из одних нулей?!
Мимо нас пробежал отряд пожарников. (Как известно, пожарник есть в каждом театре.) У них были очки с сильными увеличительным стёклами (для поисков самых маленьких чисел). В руках они держали длинные, тонкие прутья. Как выяснилось, специально для ловли нулей.
Тем временем Нулик выскочил на ледяное поле. Тогда пожарники и кучка отчаянных смельчаков во главе с нашей славной Семёркой окружили поле плотным кольцом и стали осторожно приближаться к виновнику переполоха.
На Нулика нацелился лес длинных палок.
Но он как ни в чём не бывало выделывал ногами вензеля и показы вал преследователям язык.
Казалось, ещё минута – и его схватят. Но не тут-то было!
Озорник ловко подпрыгнул и вскарабкался на самую макушку декоративного дерева.
– Сейчас же бросай знак умножения! – потребовала Семёрка.
– А вот и не брошу! – захихикал Нулик, весело болтая ножками.
– Тогда будешь сидеть здесь до скончания века!
– А я возьму и перепрыгну через ваши головы. Прямо в публику! – И Нулик сделал вид, что собирается выполнить угрозу.
В толпе началась настоящая паника. Зрители в ужасе побежали к выходам. В дверях образовались пробки.
И тогда Семёрка бросилась к телефону.
– Скорую арифметическую помощь!.. – закричала она в трубку. – Это Скорая?.. Ужасное несчастье!.. Да, да, опять Нулик! Пришлите немедленно великанов!
– Что за великаны такие? – спросил Сева у Четвёрки.
– Это жители Бесконечности – бесконечно большие числа! – ответила она.
– А им не страшен Нулик со знаком умножения?
– Конечно, нет! Ведь им сделали противонуликовую прививку! Поэтому при умножении на нуль они сами в нуль не превращаются. Разве только иногда. Для разнообразия. Когда самим захочется. И тогда они превращаются в любое число по своему выбору.
Скорая помощь не заставила себя ждать. Не прошло и минуты, как над ледяным полем поднялся сильный ветер и откуда-то сверху долетело:
– Привет из Бесконечности!
К Нулику протянулась гигантская ладонь, и тот покорно положил на неё похищенный знак умножения. Он знал, что с Великаном шутки плохи.
Два огромных пальца приподняли Нулика и осторожно поставили на лёд.
– Ура Великану!.. – закричали все. – Да здравствуют добрые великаны!..
Великан приветливо помахал рукой и исчез так же внезапно, как появился.
Нулик сидел на льду и жалобно всхлипывал.
Чудесные признакиМы с трудом уговорили Четвёрку с бантиком пойти домой. Ей надо было отдохнуть после стольких волнений. Назначив нам час и место встречи, она убежала, а мы отправились бродить по городу.
Вскоре мы вышли на широкую, светлую улицу, где стояли красивые дома из пластиката, стекла и алюминия. Разноцветные световые рекламы делали их особенно нарядными.
Улица называлась «Автоматическая». Мы подошли к большому зданию.
– «Выдача и приём призраков от трёх до четырёх часов», – прочитал Сева.
– Ну как ты читаешь?! – возмутилась Таня. – Не призраков, а признаков!
– Слава богу! А я уж испугался, – обрадовался Сева. – Признаки – это совсем другое дело.
– Ах, другое? – не унималась Таня. – Не объяснишь ли ты, что это за «другое»?
– Пожалуйста, – небрежно ответил Сева. – Вот, например, ехидство – признак дурного характера!
– А болтливость – признак глупости! – не осталась в долгу Таня.
– Чем попусту пререкаться, лучше зайдём и узнаем, о каких признаках речь, – сказал Олег.
Возразить против этого было нечего: он, как всегда, оказался прав.
Мы очутились в светлом зале. Сначала нам показалось, что там никого нет. Вдруг Сева дёрнул Таню за руку и указал глазами на маленькую Пятёрку, стоявшую у стены.
Тихим, неуверенным голоском Пятёрка что-то говорила. Но кому? Ведь рядом совершенно никого не было!
И вдруг раздался голос невидимого собеседника. Это было как гром с ясного неба. Мы невольно посмотрели на стеклянный потолок.
Голос на миг умолк и сейчас же загремел снова, очевидно обращаясь к нам:
– Здравствуйте, люди! Мы вам рады! Меня зовут Автомат. Я обучаю эту достойную карликаншу делению целых чисел. Она собирается стать учительницей.
И тут мы увидели, что Пятёрка стоит у огромной машины, занимающей целую стену. Посредине светился серебристый экран, окружённый разноцветными лампочками, которые то вспыхивали, то гасли. Внутри что-то постукивало, потрескивало. Иногда раздавался тоненький мелодичный звонок.
– Вы разрешите мне продолжить занятия? – любезно осведомился Автомат.
– Пожалуйста, – ответил Сева. – Мы тоже с удовольствием поучимся делению.
– Как, вы ещё не умеете делить? Хр-пр-тр! Извините, это моя самая маленькая шестерёнка повернулась не в ту сторону. Вы её расстроили.
– Нет, вы меня не поняли, вообще-то мы делить умеем.
– Ах, умеете? Ну, тогда совсем другое дело. Не хотите ли решить примерчик? Я как раз собирался предложить его моей юной ученице.
На экране засветились числа:
135 227:9=?
– Позвольте мне, – сказала Пятёрка. – Начнём по правилам: сначала делим тринадцать на девять…
– Хр-пр-тр! Чтобы ответить на мой вопрос, вовсе не нужно делить. Я собирался вас спросить: делится ли это число на девять? Да или нет?
– Как, вы хотите, чтобы мы сказали это сразу, не разделив числа? – изумился Сева.
– Вот именно!
– Но это совершенно невозможно! – воскликнула Таня.
– Отчего же? – с достоинством ответил Автомат. – Для этого стоит только взглянуть, какая лампочка загорелась над экраном. Посмотрите-ка.
– Красная! – крикнула Пятёрка.
– Ну вот, всё ясно. Раз загорелась красная, значит, это число на девять не делится. А теперь взгляните ещё раз на экран.
Там уже стояло совсем другое число:
264 852:9=?
– А теперь зажглась зелёная лампочка, – сообщила Пятёрка.
– Так и должно быть, потому что это число делится на девять.
– Это же очень просто, – сказала Пятёрка, – красная лампочка – число не делится на девять, зелёная – делится на девять.
– Ха-ха-ха! – засмеялся Автомат. – Это просто потому, что лампочки зажигаю я. А попробуйте-ка зажечь сами нужную лампочку. Ха-ха-ха!
Маленькая Пятёрка покраснела до ушей.
– Ну, не огорчайтесь, я пошутил, – утешил её Автомат. – Дело в том, что у чисел есть признаки, по которым можно с первого взгляда определить, желают ли они делиться на некоторые числа или не желают. К сожалению, я располагаю очень небольшим набором таких признаков. Поэтому, если кто-нибудь из вас найдёт новый, неизвестный нам признак делимости, немедленно сообщите мне. Это будет замечательно! Вы даже не можете себе представить, какую большую пользу принесёте людям. Мне известны признаки делимости чисел на 2, на 3, на 4, на 5, на 6… Даже на 10 и на 11. Ещё несколько признаков – и это всё!
– Расскажите о каком-нибудь признаке, – попросила Пятёрка. – Это очень интересно.
– В таком случае вернёмся к тем двум числам, которые я только что показывал на экране. Напомню их.
На экране появились числа: 135 227 и 264 852.
– Как видите, каждое число состоит из шести цифр. Будем эти цифры принимать за числа. И поставим между ними знаки плюс.
На экране под первым числом появилась сумма:
1+3+5+2+2+7=20.
– А теперь скажите: делится ли число двадцать на девять? Нёт, не делится. Значит, и всё число тоже не делится на девять. Попробуем проделать то же со вторым числом.
На экране снова засветилась сумма:
2+6+4+8+5+2=27.
– Видите, получилось двадцать семь. А это число как раз делится на девять. Значит, и всё число тоже делится на девять. Вот каков признак делимости на девять. Его очень легко изложить так: число делится на девять, если сумма его цифр делится на девять.
– В таком случае, – сказал Олег, – я знаю и признак делимости на три. Ведь девять – это трижды три! Значит, если сумма цифр числа делится на три, то и само число тоже делится на три.
– Совершенно верно! Вы будете великим математиком! – торжественно изрек Автомат.
– Я тоже знаю один признак: если сумма цифр числа делится на пять, то и число делится на пять, – сказал Сева. Ему тоже хотелось стать великим математиком.
– Ни в коем случае, ни в коем случае! – воскликнул Автомат, возмущённо замигав всеми своими лампочками. – Тр-пр-хр! Разве можно мерить всех одной меркой? Ведь число двадцать три не делится на пять, хотя сумма его цифр равна пяти. Признак делимости на пять очень прост: на пять делятся только те числа, которые оканчиваются пятёркой или нулём. Например, 75, 210, 625, 4 168 596 895 и так далее.
– Как просто! – засмеялась Таня.
– Есть признаки и посложнее. Например, признак делимости на одиннадцать.
– Ах, пожалуйста, расскажите об этом признаке! – попросила Пятёрка.
– Хорошо. Слушайте меня внимательно. Возьмём число
175 362 121 693.
– У-у-у! – протянули ребята. – Это число и прочитать трудно.
– Хр-пр-тр! Сто семьдесят пять миллиардов триста шестьдесят два миллиона сто двадцать одна тысяча шестьсот девяносто три! – единым духом выпалил Автомат. – Ничего особенного. Посмотрим, делится ли оно на одиннадцать. Расположим цифры этого числа таким образом:
– Видите, я каждую вторую цифру опустил чуть пониже. А теперь поставим в каждом ряду между цифрами знаки плюс. Получаем:
1+5+6+1+1+9=23
7+3+2+2+6+3=23
В обоих рядах сумма цифр одинакова. А это и значит, что число непременно разделится на одиннадцать.
– Неужели? – усомнился Сева.
– Проверьте, – предложил Автомат.
– Это было бы слишком долго, – ответил Сева.
Тогда Олег показал нам страничку из блокнота, на которой он уже произвёл деление.
– Совершенно правильно! – сказал Автомат. – Вы действительно будете хорошим математиком.
А на экране вспыхнули числа:
175 362 121 693: 11= 15 942 011 063.
– Вот вам и ответ: пятнадцать миллиардов девятьсот сорок два миллиона одиннадцать тысяч шестьдесят три.
– Значит, на одиннадцать делятся только такие числа, у которых сумма цифр, стоящих на нечётных местах, равна сумме цифр, стоящих на чётных? – спросил Олег.
– Нет, не только эти числа делятся на одиннадцать. Есть более общий признак делимости. Вот, например…
В это время раздался продолжительный звонок, возвестивший конец рабочего дня. Автомат едва успел с нами попрощаться, как все его лампочки погасли. Жаль!
Мы вышли на улицу. Теперь надо было поспеть на площадь Радостей и Огорчений, где нам назначила свидание Четвёрка с бантиком.
На этой площади ежедневно приземлялись воздушные корабли, возвращающиеся от людей в Карликанию.