355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Португал » Беседы об АСУ » Текст книги (страница 6)
Беседы об АСУ
  • Текст добавлен: 9 октября 2016, 04:55

Текст книги "Беседы об АСУ"


Автор книги: Виктор Португал



сообщить о нарушении

Текущая страница: 6 (всего у книги 13 страниц)

А вот «сладкий» пример. Одна из кондитерских фирм производит мороженое разных сортов на одном и том же оборудовании. Неприятность заключается в том, что при переходе от производства одного сорта мороженого к другому оборудование надо очищать, промывать и готовить к изготовлению следующего сорта. Время на очистку существенно зависит от того, с какого сорта на какой переходят. Так, ванильное мороженое и ванильное с шоколадной пудрой можно выпускать друг за другом, лишь слегка изменив технологию, то есть не тратя на переналадку времени. А если вслед за шоколадным мороженым следует фруктовое, то необходима длительная очистка. Перед началом производства надо составить такой календарный план, чтобы минимизировать время на выпуск всех сортов. Где здесь города, а кто бродячий торговец? Довольно неожиданно оказывается, что если в качестве городов считать сорта мороженого, то время переналадок в часах и минутах будет не чем иным, как расстоянием между ними. Ведь расстояние можно мерить не только в километрах, но и в часах пути. И тогда «вкусная задача» обернется все той же «задачей о коммивояжере».

Если же представить себе гигантский прокатный стан, который переналаживают с одного вида проката на другой несколько суток, то и вообще станет не до шуток.

Все эти примеры позволяют сделать один важный вывод. Не всякая ситуация принятия решений настолько индивидуальна, что требует своей специфической модели. Большое количество практических случаев внутренне очень сходны, хотя внешне кажутся абсолютно непохожими друг на друга, как работа сверлильного станка и производство мороженого.

Это внутреннее сходство обнаруживается при моделировании и выражается в том, что экономико-математические модели принятия решений одинаковы. Такое их свойство позволяет управляющему персоналу концентрировать внимание не на самих ситуациях, а на их экономико-математических моделях. Особенным вниманием пользуются те из них, которые являются наиболее общими, то есть описывают много различных случаев, как, например, «задача о коммивояжере», «задача о ранце» и другие задачи с «именами».

– А ответ на второй вопрос – как разрабатываются модели?

– Ответить на него значительно труднее, так как моделирование до сих пор является искусством и для разработки моделей нет четких методов. Правда, некоторые практические правила подмечены и им рекомендуется следовать.

Существует закон: не следует разрабатывать для данной сложившейся экономической ситуации новую модель, если уже созданная достаточно хорошо ее описывает. Из этого закона следует необходимость изучения экономико-математического моделирования как одной из самых важных дисциплин во всех учебных заведениях, готовящих управленческий персонал. Ведь о созданных уже моделях надо же как-то узнавать! На них, кстати, очень удобно пояснять, как они разрабатываются.


Существует так называемая транспортная задача. По известности и распространенности она далеко превосходит даже «задачу о коммивояжере». Управленческая ситуация, в которой возникла эта задача и от которой она получила свое название, довольно обычна.

Имеется некоторый однородный груз, который хранится в нескольких пунктах – в пунктах отправления. Этот груз необходимо перевезти в ряд других пунктов – пунктов получения. Известно, какое количество груза (например, в тоннах) находится в каждом пункте отправления и сколько его необходимо каждому пункту получения. Известны расстояния от каждого пункта отправления до каждого пункта получения. Пункты отправления в дальнейшем пусть называются поставщиками, а пункты получения – потребителями.

Количество груза, находящегося в пункте отправления, обычно называют «мощностью» поставщика. Количество груза, которое необходимо потребителю, – его «спросом». Количество груза, которое перевозится от поставщика к потребителю, называется «поставкой». А полное распределение поставок – «планом поставок». В задаче требуется, естественно, определить план поставок.

Уже в предыдущих примерах показывалось, что в «транспортных задачах» всегда очень много возможных вариантов плана поставок, поэтому надо отыскать оптимальный. И тут-то, естественно, встает вопрос о критерии. Так как работа транспорта характеризуется грузооборотом, который измеряется в тонна-километрах (произведение веса перевезенного груза в тоннах на расстояние в километрах), то в качестве критерия оптимальности можно выбрать объем грузооборота, минимизация которого, очевидно, выгодна народному хозяйству. Это, кажется, достаточный аргумент, чтобы даже наиболее обостренное чувство гражданского долга не испытывало беспокойства. А откуда может появиться беспокойство, если критерий модели основан на том суждении, что он выгоден народному хозяйству?

Дело в том, что основным показателем работы транспортного предприятия является количество тонна-километров. И если работать по оптимальному плану, то при тех же грузах и расстояниях объем грузооборота окажется меньше, и тогда придется искать новых заказчиков на транспорт либо смириться с тем, что предприятие (база) окажется незагруженным и не выполнит плана. Как быть? Ясно, что гораздо спокойнее планировать по-старому: и не надо знать математики, и при тех же грузах грузооборот больше. Кажется, создалась парадоксальная ситуация: план народному хозяйству выгоден, а предприятию невыгоден! Нет, ничего парадоксального здесь нет, просто это один из примеров несогласованности критериев, к сожалению, довольно распространенный в экономике. Уже почти хрестоматийным стал пример про то, что металлургическим предприятиям план задается в тоннах литья, и поэтому всякая рационализация, направленная на снижение веса каждого изделия, «бьет» по плану предприятия и, как правило, встречается в штыки. И тем не менее план по-прежнему задается в тоннах! Понятно, по придумать другой более объективный показатель нелегко, наверняка он будет очень сложным. А утруждаться не хочется! Вот и действуют по принципу: «Лучше простая ошибка, чем сложная истина».

Будем все же следовать гражданскому долгу и ориентироваться на выгоды народного хозяйства, то есть в «транспортной задаче» минимизировать грузооборот. Модель задачи обычно строится в виде таблицы.


Табл. 8.

Пусть имеется три поставщика и три потребителя. Мощности и спросы указаны в заголовках таблицы 8. На пересечении столбцов и строк в клетках таблицы указаны расстояния между поставщиком и потребителем, например, от поставщика № 2 до потребителя № 1 – 2 километра. Суммарная мощность всех поставщиков равна 200 тоннам, и этому же числу равен суммарный спрос потребителей. Это условие естественное, но вовсе необязательное. Оно упрощает задачу, но для модели несущественно, и дальше будут рассматриваться экономические ситуации, в которых это условие не выполняется.

В чем заключается задача? Требуется составить план поставок, то есть определить, сколько груза везти от каждого поставщика каждому потребителю, чтобы весь груз поставщиков был вывезен, а все спросы потребителей были удовлетворены. Если посмотреть в таблицу, то это означает, что в каждую клетку надо записать число-поставку, причем так, чтобы сумма поставок в строке была равна мощности, а сумма поставок в столбце составляла спрос. Если теперь остановиться на мгновение и посмотреть на таблицу, то задача о перевозке груза почти пропала и осталась математическая головоломка в виде таблицы, которую надо заполнить числами так, чтобы суммы по столбцам и строкам были равны определенным величинам. Вот так осуществляется моделирование: реальные объекты и соотношения заменяются числами и зависимостями между ними.


Табл. 9.

Решать эту задачу можно разными способами. Например, в таблице 9 представлен один из возможных вариантов плана поставок. Каждая клетка таблицы разделена на две части. В верхней по-прежнему записано расстояние в километрах, а в нижнюю занесен объем поставки в тоннах. Так, поставщик № 1 везет потребителю № 1 2 тонны, поставщик № 2 везет потребителю № 3 42 тонны и т. д. Принцип составления плана поставок в таблице чисто «потолочный», единственное условие, которое контролировалось: суммы поставок в строках должны быть равны мощностям, а суммы поставок в столбцах – спросам. Объем грузооборота нетрудно подсчитать, для чего надо в каждой клетке верхнее число умножить на нижнее, а суммы сложить. Тогда грузооборот составит:

3 · 2 + 1 · 8 + 4 · 35 + 2 · 3 + 3 · 30 + 1 · 42 + 6 · 45 + 5 · 22 + 2 · 13 = 698 тонна-километров.

Однако «потолочный» принцип все же не является доминирующим при практическом составлении плана поставок. Обычно верх берет великий и универсальный здравый смысл. Составляется план в соответствии с ним (см. таблицу 10).


Табл. 10.

Самыми маленькими расстояниями в таблице являются расстояния от потребителя № 2 до поставщика № 1 и от потребителя № 3 до поставщика № 2 – 1 километр. Принимается решение везти на эти расстояния максимальное количество груза, то есть всю мощность поставщиков № 1 и № 2. Заносятся эти поставки в соответствующие клетки таблицы. Поскольку нераспределенной осталась только мощность поставщика № 3, то распределяется и она: не хватает 15 тонн потребителю № 3, недостающие 15 тонн потребителю № 2, а остальные 50 тонн поставляются потребителю № 1. В остальные клетки ничего не записывается, так как ничего не поставляется. Объем грузооборота оказался равен:

1 · 45 + 1 · 75 + 2 · 15 + 5 · 15 + 6 · 50 = 525 тонна-километрам.

Итак, здравый смысл позволил сэкономить 173 тонна-километра. Что же дальше?

Дальше здравый смысл молчит. Кажется, что лучше не придумаешь. При внимательном рассмотрении таблицы 10 вызывает, правда, некоторое беспокойство тот факт, что из-за слишком активного применения принципа «вези к ближайшему» пришлось в конце концов везти 50 тонн на максимальное расстояние – 6 километров. Поневоле вспоминается пример с цементом, когда все быстро прикрепились к ближайшим поставщикам и в результате пришлось с Сахалина груз везти в другой конец страны!

Математический анализ «транспортной задачи» позволяет создать алгоритм получения оптимального решения, который, в общем, не имеет ничего общего с правилом, диктуемым здравым смыслом. В этом случае получается решение, представленное в таблице 11.


Табл. 11.

Объем грузооборота для него 360 тонна-километров, то есть еще на 165 тонна-километров меньше. Эти 165 тонна-километров – чистый выигрыш от применения математики. Вот ответ на третий вопрос – какую конкретную пользу можно получить от применения экономико-математических методов.

Использование модели «транспортной задачи» в планировании перевозок приносит гигантский экономический эффект. В литературе приводятся такие факты. Затраты на перевозки всех грузов всевозможными видами транспорта по стране в 1968 году составили более 20 миллиардов рублей. В результате укрупнения автотранспортных предприятий расширяются массовые перевозки таких продуктов, как хлеб, молоко, кирпич, сборные железобетонные конструкции, песок и т. д. В Москве песок перевозится с десятка пристаней, а кирпич и сборный железобетон – с нескольких десятков заводов на сотни строительных площадок, хлеб с нескольких десятков заводов в тысячи магазинов. Анализ показывает, что, если при планировании перевозок пользоваться моделью «транспортной задачи», это даст возможность сэкономить до 40 процентов средств!

На этом можно было закончить рассказ о «транспортной задаче» как о примере моделирования, если бы не необходимость посмотреть, в каких еще ситуациях используется ее модель. А на этой модели, оказывается, можно решать еще несколько классов задач!

Имеются поля, на которых выращиваются сельскохозяйственные культуры. Площадь каждого поля известна, задан план съема каждой культуры.

Поскольку все поля разные, то на каждом поле можно добиться одинаковой урожайности лишь в том случае, если затрачивать разное количество труда. (Можно, конечно, принять другое, аналогичное предположение: затрачивается одинаковый труд, но при этом будет получен разный урожай – это не меняет задачи.) Требуется так распределить площади под все культуры, чтобы получить заданный по каждой культуре урожай с минимальными затратами труда. Здесь довольно прозрачно проглядывает транспортная модель, не так ли?

Каждое поле и его площадь – это поставщик и его мощность. Требуемый съем (урожай) культуры, поделенный на урожайность (объем урожая с одного гектара), дает требуемую посевную площадь под каждую культуру – спрос потребителя. Расстоянием являются затраты труда, а поставка – площадь поля, которое надо выделить под данную культуру. Теперь нетрудно составить транспортную модель в виде таблицы и, решив с ее помощью задачу, получить оптимальное распределение посевных площадей под культуры. Так, моделью сугубо сельскохозяйственной проблемы явилась «транспортная задача».

А вот ситуация, которая довольно часто складывается на промышленном предприятии. Имеется участок, на котором все рабочие умеют выполнять все работы. Несмотря на такую универсальность, у каждого рабочего все же есть свои любимые работы, на которых его производительность труда больше, и есть работы, где из-за отсутствия навыка или по другим причинам он не может показать высокую производительность труда. Пусть индивидуальная производительность труда каждого рабочего при выполнении каждой работы известна. Возникает задача: как назначить работу каждому рабочему, чтобы суммарная производительность участка была максимальной?

Кажется, что все просто: надо дать каждому рабочему «его» работу, ту, на которой его индивидуальная производительность труда максимальна. Однако убедившись, что моделью данной ситуации является «транспортная задача», это решение бракуется, поскольку оно похоже на правило «минимального расстояния», отвергнутое при решении «транспортной задачи».

Итак, предполагается, что рабочие – это поставщики; мощность каждого поставщика (рабочего) равна единице. Потребитель – работа; спрос тоже равен единице. Расстояние – это индивидуальная производительность. А вот поставка вводится искусственно: считается, что она равна единице, если рабочий на работу назначен, и нолю, если не назначен. Тогда все сходится. Поскольку каждый рабочий может выполнять лишь одну работу, значит, в каждой строке может быть лишь одна единица-поставка, остальные ноли, следовательно, сумма поставок в строке равна единице (мощность). Аналогичное рассуждение справедливо для столбца.

В таблице 12 представлен такой план распределения работ для пяти рабочих и пяти работ. Согласно этому плану рабочий № 1 выполняет четвертую работу, рабочий № 2 – пятую, № 3 – вторую, № 4 – первую, № 5 – третью. (Цифра в верхней части каждой клетки – производительность.)


Табл. 12.

Описанная производственная ситуация хорошо моделируется «транспортной задачей». Но она имеет свое «имя» и называется «задачей о назначениях». «Задача о назначениях» тоже имеет довольно широкое применение. Так, размещение заказов по однотипным предприятиям формулируется аналогично распределению работ по рабочим, только вместо «№ рабочего» в таблице надо поставить слово «№ предприятия», вместо «№ работы» – «№ заказа», а вместо производительности – «выгодность».

Можно привести пример совсем уже сложной экономической ситуации, моделью которой является все та же «транспортная задача». Это проблема развития и размещения производства. Формулируется она так.

Пусть известен спрос на некоторый вид продукции по всей территории страны. Известно, в каких пунктах есть предприятия по выпуску данной продукции и в каких могут быть построены новые. Для всех действующих предприятий известна себестоимость выпускаемой продукции. Можно определить также затраты на реконструкцию их с целью расширения производства, а также себестоимость продукции после расширения.

Для предприятий, которые могут быть заново построены, известны различные варианты их мощности, капиталовложения и себестоимость по каждому варианту строительства.

Кроме того, может быть разработана транспортная сеть, которая будет функционировать в период, для которого осуществляется планирование. Это значит, что можно рассчитать затраты на перевозку единицы груза из всех пунктов производства (включая те, которые предполагается построить) во все пункты потребления.

Требуется определить, какие предприятия должны быть расширены и до какой мощности, какие ликвидированы или переведены на выпуск другой продукции, какие вновь построены, чтобы весь спрос был удовлетворен. При этом сумма затрат на производство и транспортировку продукции должна быть минимальной.

Несмотря на обилие исходных данных, на многочисленные ограничения и оговорки, моделью данной ситуации является тоже «транспортная задача», хотя и более сложная, чем рассмотренные раньше. В ней отсутствует лишь ограничение, что сумма мощностей должна быть равна сумме спросов. Более того, поскольку в качестве поставщиков выбраны все предприятия, на которых в принципе может быть произведена данная продукция, а также действующие со всеми вариантами расширения, и те, которые могут быть построены, то их суммарная мощность окажется, конечно же, больше общего спроса. И лишь в процессе решения задачи из их числа отбираются те, у которых затраты на производство и транспортировку продукции минимальны. Кстати, одновременно с решением задачи размещения получается и оптимальный план перевозок.

Из всех рассмотренных примеров следует общий вывод: «транспортная задача» давно переросла рамки модели планирования транспортировки однородного груза, от которого она получила название. В настоящее время она представляет собой достаточно общую модель, описывающую большое количество управленческих ситуаций. Несомненным достоинством ее является изученность и простота алгоритмов решения.

И поэтому, приступая к анализу своей ситуации принятия решения, каждый экономист должен прикинуть, не укладывается ли она в рамки транспортной модели. Если да, то должен считать, что ему повезло!

– По-видимому, таких универсальных моделей должно быть не очень много?

– Да, не более двух-трех десятков.

– И все с такой широкой сферой применения?

– Вот этого о них не скажешь. Некоторые модели почти не выходят за рамки управленческих ситуаций, для которых они разработаны. А есть модели-универсалы. Несомненным «чемпионом» среди них является модель «линейного программирования».

«Линейное программирование» не имеет ничего общего с составлением программ для ЭВМ. Термин этот был предложен американским ученым Т. Купмансом и, как впоследствии выяснилось, оказался крайне неудачным в основном как раз из-за ассоциаций с программированием. Фактически же «линейное программирование» представляет собой набор методов решения экстремальных, чаще всего плановых, экономических задач. Многие ученые считают, что более удачным был бы термин «линейное планирование». А слово «линейное» здесь употреблено потому, что все зависимости, используемые при построении этих моделей, линейные, то есть на графике имеют вид прямой линии. Но об этом уже говорилось.


Чтобы от слов о «линейном программировании» перейти к нему самому, стоит рассмотреть такой пример планирования.

Пусть руководство уже упоминавшейся фирмы по выпуску мебели «Двенадцать стульев» решает проблему, какую мебель выпускать в следующем месяце. Фирма, как известно, умеет делать гарнитуры «Мадам Петухова» и «Генеральша Попова». Каждый вид продукции характеризуется, во-первых, затратами высококачественных пород древесины и импортных обивочных материалов, а во-вторых, размерами получаемой прибыли. Естественно, что ресурсы фирмы, дерево и материалы ограничены. Необходимо составить план производства, при котором прибыль была бы максимальна.

Итак, правление фирмы сидит перед таблицей, в которую сведены все данные, и думает, как лучше решить эту задачу.


Табл. 13.

Заместитель председателя правления фирмы И. Воробьянинов берет слово:

«Учитывая, что за „генеральшу“ платят больше, – говорит он, – считаю, что необходимо выпускать названный гарнитур в количестве 10 штук, а оставшиеся неиспользованными 60 кубометров древесины продать налево дружественной фирме „Милости просим“. Тем самым мы получим 5 тысяч рублей прибыли плюс…»

«Не надо, Киса, – жестом останавливает его председатель правления О. Бендер, – сегодня ночью мне пришла в голову плодотворная дебютная идея. Сейчас я вам ее изложу…»

Гроссмейстер еще не знает, что его идея уже известна под названием «линейного программирования» и что он получил очередной удар со стороны классиков. Он бодро продолжает:

«Допустим, что мы решим выпускать X гарнитуров „Мадам Петухова“ и Y гарнитуров „Генеральша Попова“. Поскольку на каждый гарнитур первого типа надо 10 кубометров древесины, а на каждый гарнитур второго типа – 5 кубометров, то всего нам понадобится 10 · X + 5 · Y.

Понятно, что это количество не должно превышать 110 кубометров. Запишем это так: 10x + 5y < 110.

Данное условие, совместно с другим естественным условием: x и у не могут быть отрицательными – на графике изображается в виде некоторой области (на приведенном справа рисунке она заштрихована). Наклонная граница представляет собой график линейной зависимости: 10x + 5y = 110. Неравенство в предыдущем выражении означает, что данному условию удовлетворяют все внутренние и граничные точки области. В этом легко убедиться. Точка с координатами x = 4, y = 8 удовлетворяет неравенству, так как 10 · 4 + 5 · 8 < 110. При подстановке координат любой внутренней или граничной точки неравенство будет справедливо.


Аналогичное соотношение можно составить по обивочным материалам: 40x + 80y < 800. Этому неравенству соответствует заштрихованная область на втором рисунке справа.


Поскольку оба неравенства должны выполняться одновременно – на каждый гарнитур необходимо и дерево, и обивочные материалы – обе области надо совместить. Это сделано на рисунке слева. Разберемся, что собой представляет область с двойной штриховкой.


Во-первых, вспомним, что каждая точка на графике – это план производства. Так, точка с координатами x = 4; y = 6 означает план, при котором будет произведено 4 гарнитура „Мадам Петухова“ и 6 гарнитуров „Генеральша Попова“.

Во-вторых, каждая точка в заштрихованной области первого рисунка – это план, который обеспечен древесиной, каждая точка в заштрихованной области второго рисунка – это план, который обеспечен обивкой. Таким образом, точки области третьего рисунка с двойной штриховкой – это планы производства, обеспеченные и древесиной и обивкой, то есть область допустимых планов. Из них необходимо выбрать оптимальный план, при котором прибыль будет максимальной. Величина прибыли выражается просто. Если выпустить x гарнитуров первого типа, получив по 400 рублей прибыли за каждый, и у гарнитуров второго типа, получив по 500 рублей прибыли за гарнитур, то всего будет получено 400x + 500у рублей прибыли.

Так вот – триумфально заключил великий комбинатор – величина прибыли достигает максимума в точке пересечения наклонных границ. На третьем рисунке она обозначена буквой О. Ее координаты легко вычислить, решив совместно уравнения этих прямых. Получим: x = 8, y = 6. Итак, оптимальный план выпуска: восемь „мадам“ и шесть „генеральш“. Прибыль составит 400 · 8 + 500 · 6 = 6200 руб. При этом мы используем и всю древесину, и все обивочные материалы. И никаких противоречий с уголовным кодексом!»

«Конгениально…» – прошептал экс-предводитель.

Выражаясь современным языком исследования операций, талантливый сын турецкого подданного для принятия решения о плане производства построил модель «линейного программирования». Неравенства, ограничивающие заштрихованные области на первых двух рисунках, называются ограничениями модели. Формула, выражающая прибыль, называется целевой функцией. А совокупность ограничений и целевой функции – это и есть модель «линейного программирования».

Задача «линейного программирования» («ЛП-задача», как говорят и пишут для сокращения) заключается в том, чтобы найти допустимый план, то есть план, удовлетворяющий ограничениям и который в то же время максимизирует значение целевой функции.

Для решения «ЛП-задачи» вовсе нет необходимости рисовать области допустимых решений и по ним искать точку оптимума. Разработанный стандартный метод, называемый симплексным алгоритмом, позволяет по записанной в специальном виде модели «линейного программирования» («ЛП-модели») отыскать оптимальное решение.

Симплексный алгоритм очень трудоемок, и решение сколь-нибудь значительных «ЛП-задач» возможно только на ЭВМ. В библиотеках стандартных программ современных вычислительных центров, как правило, есть и симплексный алгоритм. Поэтому решение управленческой задачи практически заканчивается после того, как модель построена и получена необходимая для решения информация. Дальше следует чисто техническая работа: вызов программы симплексного алгоритма и работа ее на ЭВМ.

Широкая область применения «ЛП-модели» объясняется в первую очередь вычислительными удобствами. Но главная причина их распространенности кроется в другом: в них заложено решение широко распространенной задачи планирования – задачи о балансировке ресурсов. Возникает она вот почему.

Как правило, ресурсы предприятия складываются годами, и к началу каждого планового периода предприятие уже располагает некоторым набором ресурсов, который изменить можно лишь незначительно. Если у предприятия есть 123 токарных и 87 фрезерных станков с соответствующим количеством рабочих, то резко нарушить это соотношение за год практически невозможно. В то же время предприятию может понадобиться изготавливать в этом году изделия, в которых в два раза больше токарных работ, чем фрезерных. При общем балансе это означает, что для выполнения программы необходимо 140 токарных и 70 фрезерных станков. Ясно, что если изготавливать только эти изделия, то часть фрезерных станков будет простаивать, а токарная группа будет перегружена. Поэтому производственная программа «разбавляется» другими изделиями. Вот ценность «ЛП-задачи» и заключается в том, что с ее помощью можно приготовить оптимальную «смесь» изделий, то есть такую производственную программу, когда ресурсы используются максимально.

Легко видеть, что, имея всего только два вида ресурсов, задачу решить непросто, скажем, методом подбора или каким-нибудь другим методом, основанным на здравом смысле. Лишь методы «линейного программирования» позволяют найти оптимальный набор.

К сожалению, вычислительные удобства решения «ЛП-задач» иногда не помогают, а даже вредят делу, так как часто незадачливыми экономистами делаются попытки решать этим методом задачи, явно не описывающиеся моделью «линейного программирования».

Иногда в модели наблюдаются существенные нелинейные ограничения, а нелинейные задачи решаются очень трудно даже на ЭВМ. Чтобы обойти эту трудность, допускается определенная идеализация: нелинейное ограничение заменяется на линейное. При этом получается «ЛП-задача», которая хорошо решается. Правда, иногда такое решение плохо описывает экономическую ситуацию, то есть получается решение, имеющее довольно слабое отношение к реальной действительности.

Однако если тщательно изучить экономическую ситуацию с нелинейными ограничениями, то в ней нередко можно выделить часть, в которой линейная модель может быть полезна если не для принятия решения, то для описания или исследования. Ведь не зря в других науках, особенно в физике, линейные модели почти сплошь применяются для исследования нелинейных явлений. Так что при грамотном подходе и к этой сфере задач могут быть применены модели «линейного программирования».

– Как же решаются вопросы применения линейных и нелинейных моделей в сфере, о которой мы говорим, в сфере управления экономическими системами?

– Пока недостаточно хорошо. Практически все созданные экономические модели – линейные, а модели, связанные с управлением предприятиями, с внутризаводским планированием, и подавно. Причем можно выделить две степени недостаточности.

Плохо, когда линейная модель строится вместо нелинейной потому, что экономисты не умеют решать задачи с нелинейными зависимостями. Но совсем плохо, когда применяют линейную модель потому, что считают, что все должно быть линейно; и очень потом удивляются, когда действительность не совпадает с расчетами. Так, начинающий стрелок, уверенный, что пуля должна лететь по прямой линии в центр мишени, недоумевает, что она попадает выше «яблочка», хотя он прицеливается очень тщательно. Примерно так же рядовой заводской экономист, слыхом не слышавший про нелинейные модели, во внутризаводских плановых и экономических расчетах убежденно пользуется линейными моделями, а отклонения, вызванные нелинейностями, сглаживает всевозможными коэффициентами. Если в конце месяца на самом деле оказывалось все не так, как планировалось, – не беда: чем разбираться в сути дела, проще по отчетным данным определить поправочный коэффициент и в следующем месяце поправить план на этот коэффициент. А если какая-нибудь голова в отраслевом институте еще и написала и разослала методику, в которой указано, что этот коэффициент в среднем по отрасли равен, к примеру, 1,08, то и совсем прекрасно, над его определением и думать не надо. Хорош ли этот принцип планирования?


Пусть трудовые затраты на одно изделие составляют 1000 нормо-часов. А на 10 изделий? Очевидный ответ: 10 тысяч – неправильный. Ведь при увеличении количества однотипных операций производительность труда рабочего увеличивается, снижаются расходы времени на переналадки, на исправление брака и пр. Все это тот же заводский экономист знает, знает, но считает по простой формуле. И по этой же формуле оплачивает перевыполнение нормы. А здесь, оказывается, в одну кучу сваливаются и трудовой энтузиазм, и недостатки планирования.

Но это лишь один порок линейности. Второй, худший, заключается в следующем. Пусть по итогам выполнения плана выявится, что участок вместо 10 тысяч нормо-часов за месяц выпустил продукции, на которую по нормам надо затратить 12 тысяч. Не разобравшись и не исследовав, вследствие чего это получилось: из-за плохого ли планирования, плохого нормирования или благодаря хорошей работе, – экономисты просто вычисляют коэффициент выполнения норм: 12/10 = 1,2 – и следующий план участку дают в 1,2 раза больший.

Как видно, подобное использование статистических показателей в плановых моделях фактически узаконивает недостатки планирования и нормирования. Все плановые расчеты пестрят коэффициентами ритмичности, поточности, сменности, использования рабочего времени и т. д. и т. п. И везде средние величины получены без достаточного статистического обоснования, а коэффициенты практически ничего не характеризуют в силу существенной нелинейности процессов…


    Ваша оценка произведения:

Популярные книги за неделю