355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Шон Кэрролл » Приспособиться и выжить! » Текст книги (страница 11)
Приспособиться и выжить!
  • Текст добавлен: 19 марта 2017, 10:00

Текст книги "Приспособиться и выжить!"


Автор книги: Шон Кэрролл


Жанры:

   

Биология

,

сообщить о нарушении

Текущая страница: 11 (всего у книги 21 страниц)

Одним путем к одной цели

Задолго до появления у обезьяны колобуса особой пищеварительной системы и способности переваривать листья это же свойство развилось у предка таких обычных жвачных животных, как коровы, овцы и козы. Есть ли какое-то сходство в эволюции пищеварения у обезьян и у коров? Безусловно, есть.

Вспомним, что одним из механизмов адаптации к новому способу питания у колобуса было появление специализированной панкреатической рибонуклеазы, расщепляющей питательные вещества в смеси листьев и бактерий. Этот фермент возник в результате удвоения и тонкой настройки гена, кодирующего обычную рибонуклеазу. У коровы этот ген также удвоился и подвергся тонкой настройке в соответствии с условиями в пищеварительной системе этого животного. Мы знаем, что эти события у обезьян и коров произошли независимо, поскольку удвоение гена рибонуклеазы произошло у всех жвачных, но у ближайших родственников жвачных, таких как гиппопотамы и дельфины, а также у ближайших родственников колобуса ген рибонуклеазы только один. Таким образом, эти группы жвачных животных не могли унаследовать удвоенные гены от общего предшественника.

Кроме того, африканские колобусы – не единственные жвачные обезьяны. В Азии существует еще одна группа жвачных обезьян. Эффектный немейский тонкотел (рис. L цветной вкладки) – находящийся под угрозой вымирания вид обезьян, распространенный во Вьетнаме, Лаосе, Камбодже и Китае, – также имеет удвоенный ген рибонуклеазы.

Жианши Цанг из Университета Мичигана обнаружил, что удвоение гена рибонуклеазы у обезьян происходило в разное время и приводило к образованию разного количества генов (трех у африканских видов, двух у азиатских). Однако впоследствии в ферментах произошло несколько совершенно идентичных изменений. Вероятность случайного совпадения изменений у двух групп обезьян чрезвычайно низка. Гораздо более вероятно, что параллельные изменения в структуре ферментов у обеих групп обезьян являются результатом естественного отбора, настраивавшего ферменты на работу в более кислой среде передней кишки.

Возникновение ископаемых генов и полное исчезновение генов тоже повторяются. В предыдущей главе я рассказывал об избирательной потере функций семи генов метаболизма галактозы у дрожжей S. kudriavzevii. Но существуют еще три вида дрожжей, принадлежащие к разным родам и разделенные миллионами лет эволюции, которые также потеряли все или почти все гены, связанные с метаболизмом галактозы, и больше не могут расщеплять этот сахар. На основании эволюционного родства между дрожжами можно с уверенностью утверждать, что в ходе эволюции эта группа генов независимым образом была потеряна как минимум три раза, а может быть, и больше. Скорее всего, в каждом случае ослабевало влияние естественного отбора, что и приводило к разрушению и исчезновению генов.

Ослабление влияния естественного отбора также объясняет повторяющуюся эволюцию признаков у животных, обитающих в пещерах. Например, известно множество видов пещерных рыб, которые лишились глаз и окраски. Поскольку эти рыбы относятся к разным семействам, куда также входят рыбы, живущие в поверхностных водах и обладающие зрением, становится ясно, что потеря зрения и пигментации происходила в истории многократно. Пещерные рыбы позволяют выяснить, имеют ли эти внешние признаки какие-то более глубокие общие основания.

Не так давно Мередит Протас и Клифф Табин с медицинского факультета Гарвардского университета, Билл Джеффри из Университета Мэриленда и их сотрудники изучили эволюцию альбинизма у слепых рыб, обитающих в поземных водоемах в мексиканских пещерах (рис. 6.3).

Рис. 6.3. Эволюция альбинизма у слепых пещерных рыб. В то время как живущие в поверхностных водах представители вида Astyanax mexicanus выглядят как обычные рыбы, многие их пещерные родственники, например обитатели пещер Молино и Пачон, в ходе эволюции не раз теряли зрение и окраску в результате мутации в одном и том же гене. Фотография любезно предоставлена Мередит Протас и Клиффом Табином из Гарвардского университета.

Эти рыбы (Astyanax mexicanus) принадлежат к тому же отряду, что и пираньи и ярко окрашенный неон-тетра, однако обитатели примерно 30 пещер на территории Мексики потеряли свою окраску. Ученые обнаружили, что в двух исследованных ими популяциях рыб в результате делеции фрагмента ДНК был инактивирован один и тот же ген, ответственный за пигментацию, однако делеции в каждой популяции были разными. Это доказывает, что популяции, населяющие разные пещеры, утратили окраску независимым образом.

Развитие альбинизма у пещерных рыб проще всего объяснить ослаблением естественного отбора. Какая разница, как вы выглядите, если вокруг темно? Однако для многих других животных окраска тела важна для выбора партнера, спасения от врагов и других важных функций, находящихся под влиянием естественного или полового отбора. Один из самых распространенных вариантов окраски – черный. У многих видов мех, чешуя или перья в той или иной степени окрашены в черный цвет. Существуют и вариации внутри одного вида – особи разного пола или из разных популяций могут различаться по количеству черных полос или пятен на теле. Во многих случаях естественный или половой отбор влиял на один и тот же ген, ответственный за окраску тела позвоночных животных.

Например, голубые северные (снежные) гуси бывают либо белыми, либо «голубыми». «Голубой» цвет связан с появлением в перьях черного пигмента (рисунки M и N цветной вкладки).

Окраска гусей меняется в зависимости от места их обитания: голубые гуси чаще встречаются на востоке Канады, а белые – в самой западной части ареала, в Восточной Сибири. Различие в окраске имеет значение при выборе полового партнера. Молодые гуси очень рано запоминают цвет перьев своих родителей и впоследствии предпочитают спариваться с особями того же цвета. За вариации окраски у северных гусей отвечает одно-единственное генетическое различие. Все дело в гене рецептора меланокортина-1 (MC1R). Различие между генами MC1R у белых и голубых гусей состоит всего в одном триплете, кодирующем аминокислоту в позиции 85.

У других птиц вариации последовательности гена MC1R также коррелируют с изменением окраски. Темный и желтый варианты окраски бананового певуна (сахарной птицы) определяются единственным основанием в гене MC1R. Однако эта единственная замена в данном случае происходит в ином положении, чем у голубых и белых северных гусей. Замена еще в одной позиции в данном гене определяет наличие светлого или темного оперения у третьего вида птиц – короткохвостого поморника (рис. O цветной вкладки).

У этих птиц окраска оперения также играет определяющую роль в выборе партнера и находится под влиянием полового отбора. Необыкновенные различия в окраске самцов и самок прекрасных расписных малюров также определяются геном MC1R (рис. цветной вкладки P и Q).

Однако роль гена MC1R в эволюции окраски тела не ограничена миром птиц. Вариации MC1R ответственны за различия между оранжевыми и черными ягуарами, белыми и темными представителями бурых медведей на западе Северной Америки, светлыми и темными ящерицами, а также за варианты окраса домашних собак, кошек и лошадей.

Одним из наиболее изученных примеров влияния гена MC1R на эволюцию диких животных является изменение окраски мешотчатых прыгунов, распространенных в пустынных юго-западных районах США. Во второй главе на примере генетики и эволюции светлых и темных вариантов прыгунов я проиллюстрировал связь между случайными мутациями, отбором и временем. Эти грызуны обитают в песчаных пустынях и на покрытых окаменелой черной лавой участках земли в Аризоне и Нью-Мексико. Соответствующая окраска позволяет этим животным быть менее заметными на фоне светлого песка или черной лавы. Майкл Нахман, Хопи Хекстра и их коллеги из Университета Аризоны показали, что живущие в районе пустыни Пинакате темные прыгуны отличаются от светлых прыгунов четырьмя позициями в белке MC1R. Интересно, что темные прыгуны имеют точно такую же замену в положении 230, что и короткохвостый поморник. Таким образом, мало того что один и тот же ген задействован в эволюции окраски у некоторых видов птиц, рептилий и млекопитающих, в некоторых случаях у разных видов в этом гене произошли совершенно одинаковые замены.

Еще один пример точного повтора эволюционных изменений – изменение окраски ягуарунди и золотистоголовой львиной игрунки. У темноокрашенных ягуарунди в гене MC1R обнаружена делеция 24 оснований. Точно такая же делеция присутствует у золотистоголовых игрунок, у которых, в отличие от других львиных игрунок, все остальное тело черное (цветная вкладка R).

Эволюция жвачных млекопитающих, метаболизм галактозы у дрожжей, альбинизм у пещерных рыб и темная окраска тела у различных птиц, рептилий и млекопитающих – все это иллюстрирует повторяемость эволюционных изменений на фундаментальном уровне, то есть на уровне отдельных генов.

В ранее приведенных примерах конвергентной эволюции опсинов это воспроизведение было настолько точным, что иногда затрагивало одну и ту же пару оснований. В тех случаях, о которых я упомянул только что, изменения воспроизводятся не с такой высокой точностью. Подробное изучение биохимических свойств рибонуклеазы и рецептора MC1R показало, что в каждом из этих белков есть множество различных участков, изменение которых приводит к похожим результатам.

Разница между идентичным воспроизведением эволюции опсинов и не столь точным повторением эволюции других белков показывает, что для одних «проблем» (или адаптаций) эволюция находит множество решений, а для других – лишь одно. Структура опсина такова, что лишь наличие правильных аминокислотных остатков в нескольких ключевых позициях обеспечивает настройку пигмента на восприятие определенной длины волны. Структуру и активность рибонуклеазы и MC1R настроить легче, поэтому существует много разных способов их изменения. Другими словами, в случае некоторых генов и некоторых признаков для получения одного и того же биологического эффекта генетический текст не обязательно должен меняться одинаково.

Более того, оказывается, что в некоторых случаях конвергентная эволюция может начаться из совершенно разных генетических исходных точек.

Разными путями к одной цели

Одним из важнейших изобретений антарктических рыб был антифриз, состоящий из белков с необычной повторяющейся последовательностью всего трех аминокислотных остатков, чаще всего треонин-аланин-аланин или треонин-пролин-аланин. Этот повтор возник из кодирующей последовательности гена пищеварительного фермента. О происхождении антифриза от гена этого фермента можно судить по его некодирующим последовательностям. Непосредственно прилегающая к гену антифриза последовательность ДНК удивительным образом напоминает последовательность гена фермента, что свидетельствует об образовании гена антифриза из фрагмента ДНК фермента.

Арктические рыбы также живут в очень холодной воде и тоже содержат антифриз в крови и в тканях. Белки-антифризы арктических рыб тоже состоят из повторяющихся последовательностей треонин-аланин-аланин или треонин-пролин-аланин. Понятно, что самым простым объяснением такого совпадения было бы появление белка-антифриза у общего предка арктических и антарктических рыб и его наследование обеими группами потомков.

Однако в данном случае сходство антифризов обманчиво.

Антифриз арктических рыб эволюционировал другим путем и в другое время, чем у антарктических рыб. Это подтверждается множеством доказательств. Во-первых, арктические и антарктические рыбы принадлежат к разным ветвям эволюционного древа и относятся к разным отрядам. Во-вторых, понижение температуры воды в Северной Атлантике и в северной части Тихого океана произошло гораздо позднее, около 2,5 млн лет назад, тогда как на юге температура воды понизилась примерно 10–14 млн лет назад. Конечно, сам этот факт не означает, что какие-то антарктические рыбы не могли мигрировать к северу и дать начало арктической ветви. Однако такой сценарий можно исключить, проследив происхождение антифриза по ДНК.

Есть две основные причины считать, что антифриз арктических и антарктических рыб имеет разное происхождение. Во-первых, в ДНК арктических рыб не обнаружено ни малейшего сходства с последовательностью гена пищеварительного фермента, давшего начало антифризу антарктических рыб. Во-вторых, и это главное, эти два антифриза у арктических и антарктических рыб образуются двумя совершенно разными путями. У антарктических рыб последовательности треонин-аланин-аланин или треонин-пролин-аланин закодированы множество раз и разделены последовательностью лейцин-изолейцин-фенилаланин. Именно в этих местах расщепляется синтезируемая белковая последовательность, давая начало отдельным молекулам антифриза. У арктических рыб разделяющие последовательности имеют совсем иное строение и расщепляются другим ферментом. Таким образом, хотя молекулы антифриза у двух групп рыб поразительно похожи, они образуются из белков с разными «разделителями», которые не могут иметь общего происхождения. Эти белки – аналоги, но не гомологи.

Объяснение удивительного сходства последовательностей пептидных антифризов арктических и антарктических рыб заключается в естественном отборе компонентов, предотвращающих образование льда в теле рыбы. Подробные биохимические исследования показали, что действие пептидных антифризов основано на их способности связываться с кристаллами льда и предотвращать их разрастание. Через остатки треонина пептиды связаны с молекулами углеводов, которые, в свою очередь, играют главную роль во взаимодействии с кристаллами льда. Такой простой повтор, как треонин-аланин-аланин, по-видимому, образует оптимальную повторяющуюся структуру для взаимодействия с регулярной повторяющейся структурой кристалла льда. Конвергентная эволюция антифризов арктических и антарктических рыб свидетельствует о том, что для создания антифриза с определенной структурой и функцией природа нашла несколько путей.

Удивительное сходство антифризов при их различном происхождении вызывает вопрос: обязательно ли молекулы с близкими функциями должны иметь сходные последовательности?

Чтобы ответить на этот вопрос, я предлагаю вам сыграть в одну игру. Ниже представлены последовательности четырех небольших природных белков. Посмотрите внимательно на эти последовательности, изображенные с помощью кода, в котором каждая из 20 основных аминокислот обозначается одной буквой.

1. VCRDWFKETACRHAKSLGNCRTSQKYRANCAKTCELC

2. ZFTNVSCTTSKECWSVCQRLHNTSRGKCMNKKCRCYS

3. CRIONQKCFQHLDDCCSRKCNRFNKCG

4. ZPLRKLCILHRNPGRCYQKIPAFYYNGKKKQCEGFTWSGGCGGNSNRFKTIEECRRTCITRKD

Видите ли вы какое-нибудь сходство между этими последовательностями?

Нет?

Не расстраивайтесь, я тоже не вижу, но при этом между ними обязательно должно быть нечто общее.

Суть вот в чем. Четвертый белок в списке принадлежит змее. Я всю жизнь интересовался змеями и всегда разыскивал их, если оказывался в местах, где встречаются любопытные виды. Эта белковая последовательность принадлежит той единственной змее, которая действительно меня напугала. Однажды я посетил небольшой змеиный питомник вблизи озера Баринго в Кении. Один из дрессировщиков с удовольствием продемонстрировал мне очень нервную трехметровую черную мамбу. Змея была настолько крупной и проворной, что я невольно отступил назад, но дрессировщик придвинулся ко мне еще ближе.

Если бы он допустил ошибку, я уже ничего не смог бы вам рассказать. От укуса черной мамбы человек может погибнуть за полчаса. В яде змеи содержатся мощные нейротоксины (под четвертым номером в списке как раз представлена последовательность основного токсина из яда черной мамбы). Смертельное действие этого токсина основано на блокировании так называемых калиевых каналов. Эти каналы играют важнейшую роль в проведении электрических сигналов в нейронах и мышцах. Когда их функция блокирована, нарушается работа нервов и мышц. После укуса черной мамбы у людей обычно прекращается нервная и мышечная активность, и без немедленного введения противоядия люди умирают от остановки дыхания.

Три других белка в списке тоже блокируют калиевые каналы и тоже обнаружены в различных ядах. И вот что забавно: первый принадлежит морскому анемону (актинии), второй – скорпиону, а третий – морской улитке-конусу. Все четыре вида животных относятся к разным типам: анемон – кишечнополостное, скорпион – членистоногое, конус – моллюск, а мамба – позвоночное. Представленные в списке токсины эволюционировали независимо друг от друга и имеют разное строение, но функция у них одна и та же – перекрывание калиевых каналов жертвы. Это разные молекулы, имеющие разное происхождение, но общее смертоносное назначение.

Я очень надеюсь, что рассказ об эволюции этих токсинов, а также другие примеры повторения эволюционных событий вас не просто впечатлили, но по-настоящему потрясли. Мне кажется, что они принадлежат к числу самых ярких и убедительных свидетельств того, как действует эволюция в природе. В этих примерах сочетаются два важнейших элемента – повторяемость событий и совпадение в деталях.

Есть старая латинская поговорка: repetitio est mater doctrinae, повторенье – мать ученья. А что верно для обучения, то верно и для науки. Примеры адаптации отдельных видов, безусловно, весьма информативны, но повторение эволюционных изменений, иногда в мельчайших деталях, говорит о том, что под влиянием похожих факторов получаются похожие результаты. Эволюция обладает замечательной способностью воспроизводиться.

До сих пор мой рассказ о повторении эволюционных событий сводился к рассмотрению вопроса «как»: каким образом приобретаются похожие способности или теряются определенные признаки. Но мы пока ничего не сказали о том, почему это происходит. Почему эволюция воспроизводит саму себя? Ответ складывается из трех основных составляющих – вероятности, отбора и времени, вступающих в игру по законам простейшей математики эволюции (см. главу 2). Возможно, эти арифметические выкладки покажутся (или уже показались) вам лишними и непонятными, однако взаимосвязь этих трех элементов и их влияние на информационное содержание ДНК полностью объясняют, почему одни и те же события в естественной истории повторяются вновь и вновь.

Вероятность, необходимость и (вос)создание наиболее приспособленного

Во второй главе, когда мы знакомились с основными движущими силами эволюции, у нас еще не было возможности проследить за ходом эволюции на уровне ДНК. Теперь мы знаем, что эволюция опсинов, рибонуклеаз, рецептора MC1R, ферментов, ответственных за расщепление галактозы, и т. д. включала повторяющиеся и иногда совершенно идентичные изменения соответствующих генов. То, что во второй главе было «просто» теорией, мы подтвердили примерами эволюции видов на самом фундаментальном уровне – на уровне отдельных элементов ДНК.

Значение открытий, о которых идет речь в этой главе, можно заключить в ряд общих тезисов, касающихся основных факторов эволюции: i) Стечением времени ii) идентичные или эквивалентные мутации случайным образом возникают снова и снова, iii) причем их судьба (сохранение или устранение) зависит от действия отбора на тот признак, на который эти мутации влияют.

Оставшуюся часть главы я посвящу рассмотрению этих утверждений, используя реальную математику мутаций, реальные биологические факты и реальные примеры из этой и предыдущих глав, чтобы показать, почему эволюция может повторяться и повторяется. Расчеты и закономерности, выявленные на основании анализа ДНК, не оставляют сомнений в том, что причиной и исчерпывающим объяснением биологической эволюции является сочетание случайных мутаций, естественного отбора и фактора времени.

За доказательствами мы с вами обратимся к миру очень больших чисел. Предупреждаю, что по пути вам может прийти в голову мысль: «Это невозможно!» На самом деле противники дарвиновской теории эволюции достаточно часто привлекают математический псевдоанализ, чтобы обосновать ее «невозможность». Однако в их аргументах всегда остается неучтенным один или несколько важных факторов. Мы увидим, что при учете всех факторов оказывается, что эволюция посредством специфических отбираемых изменений в ДНК не просто возможна, а возможна «с избытком».

Случайность: «идентичные или эквивалентные мутации случайным образом возникают снова и снова»

Давайте начнем с фактов, касающихся эволюции ультрафиолетового зрения у птиц. В четырех разных отрядах птиц есть и те, кто видит ультрафиолетовый свет, и те, кто видит только фиолетовый. Это означает, что переход от одной способности восприятия к другой происходил независимо не менее четырех раз. На способность воспринимать ультрафиолетовый или фиолетовый свет влияет аминокислота, находящаяся в положении 90 в последовательности коротковолнового опсина. Птицы, в опсине которых в этом положении находится остаток серина, настроены на восприятие фиолетового света, а те, у которых в этом месте находится остаток цистеина, – на восприятие ультрафиолетового света.

Эти аминокислотные остатки кодируются основаниями ДНК, расположенными в позициях 268–270 в последовательности гена коротковолнового опсина птиц. Более точный анализ показывает, что наличие в этом участке серина или цистеина определяется лишь одним основанием, находящимся в положении 268 (табл. 6.1).

Таблица 6.1. Повторяющаяся эволюция УФ-чувствительного опсина

Зебровая амадина, серебристая чайка, нанду и волнистый попугайчик принадлежат к разным отрядам. Основное различие между их опсинами состоит в замене A на T в положении 268, которое произошло в ходе эволюции как минимум четыре раза.

Какова вероятность того, что одна и та же конкретная мутация произойдет у разных видов животных? Пришло время арифметики.

Вероятность мутации конкретного основания у большинства животных – от рыб до людей – составляет примерно 1 на 500 000 000 оснований ДНК. Это означает, что замена A в положении 268 в одной копии гена опсина SWS в среднем происходит у одного птенца из 500 млн. В организме каждый ген представлен в двух копиях, поэтому средняя[15]15
  Для простоты я оперирую не формальной вероятностью, а «средними» значениями. – Прим. авт.


[Закрыть]
вероятность такого события увеличивается до 1:250 млн птенцов. Однако вариантов замены в этой позиции три: основание A может быть заменено на T, C или G. В соответствии с генетическим кодом только замена A на T приведет к образованию цистеина и к появлению у птиц способности воспринимать ультрафиолетовый свет. Если вероятность всех этих замен одинакова (она неодинакова, но мы с вами проигнорируем существующее небольшое различие), то лишь в одном случае из трех произойдет необходимый переход. Замена основания A на основание T в данной позиции происходит примерно у одного из 750 млн птенцов.

Вам кажется, что это слишком редкое событие?

Но мы пока не учли количество птенцов, ежегодно появляющихся на свет. По данным многолетних исследований, популяции многих видов птиц насчитывают от одного до 20 млн особей и более. За год птицы такого многочисленного вида, как серебристые чайки, производят на свет не менее 1 млн птенцов (и возможно, эта цифра сильно занижена). Поделим это значение на частоту мутаций и получаем, что замена серина на цистеин в данной позиции происходит один раз в 750 лет. По сравнению с человеческой жизнью это может показаться очень долгим сроком, но сейчас мы с вами должны настроиться на иную временную шкалу. Только у одного этого вида птиц за какие-то 15 тыс. лет данная мутация может независимо произойти 20 раз.

Четыре отряда, к которым принадлежат перечисленные виды, являются древними – у их предков были десятки миллионов лет на то, чтобы выработать ультрафиолетовое или фиолетовое зрение. При такой вероятности мутаций замена A на T только у одного вида чаек за миллион лет произошла свыше 1200 раз. Улавливаете идею?

А если эволюционное изменение не должно быть таким точным? Я рассказывал, что за темную окраску перьев у северного гуся, короткохвостого поморника, бананового певуна и других животных отвечают разные мутации гена MC1R (я уверен, что существует великое множество животных, окраска которых определяется вариантами гена MC1R, но здесь привожу лишь несколько хорошо изученных биологами примеров).

Из имеющихся данных понятно, что темная окраска меха, перьев или чешуи возникает в результате как минимум десяти разных мутаций MC1R. При наличии десяти позиций для мутаций и при одинаковой вероятности мутаций (она одинаковая, поскольку все участки ДНК подвержены мутациям в равной степени) получаем, что вероятность появления темной окраски, связанная с изменениями гена MC1R, в десять раз выше, чем вероятность конкретной точечной замены в гене коротковолнового опсина. Таким образом, темную окраску будет иметь один детеныш из 75 млн. Частота появления темной окраски в популяции зависит от плодовитости вида. У тех видов, которые производят 750 тыс. детенышей в год, новый темный детеныш появляется каждые 100 лет (10 тыс. новых черных вариантов за 1 млн лет). У тех видов, которые производят ежегодно 7,5 млн детенышей, черный детеныш появляется один раз в десять лет. Даже у малочисленных видов, производящих не более 75 тыс. детенышей в год, детеныш с новым вариантом черной окраски появляется один раз в 1 тыс. лет.

Теперь вас не удивляет, что черные мыши, черные птицы и черные ящерицы имеют мутации в одном и том же гене? Или что некоторые виды животных имеют одну и ту же замену в гене MC1R?

А как обстоит дело с ископаемыми генами? Легко ли они образуются? Они образуются очень легко. В то время как для изменения функции гена обычно существует лишь несколько возможностей, для нарушения функции гена таких возможностей множество. Примерно 5 % всех точечных мутаций приводят к прерыванию последовательности гена. Кроме этих простых «опечаток» вставки и делеции не кратного трем числа оснований также приводят к нарушению считывания генетической информации. Небольшие вставки и делеции встречаются достаточно часто. На основании этих данных можно сказать, что испортить ген примерно в 50 или 100 раз «легче» (то есть вероятнее), чем произвести специфическую точечную мутацию. Применяем уже знакомую нам арифметику и получаем, что одно животное из примерно 2 млн родится с новым потенциальным ископаемым геном. Из данных табл. 6.2 видно, что частота возникновения ископаемых генов и гораздо более специфических мутаций зависит от скорости размножения.

Таблица 6.2. Частота появления похожих мутаций в одном и том же гене за 1 млн лет

А теперь вдумайтесь: по оценкам ученых, на Земле сегодня существует около 10 тыс. видов птиц. Из цифр в таблице абсолютно ясно, что одни и те же мутации повторяются у всех видов птиц, за исключением самых редких, и возникали несчетное количество раз у их вымерших предков.

Но такая картина вовсе не ограничена миром птиц. Многие другие группы животных имеют сравнимую численность популяции и скорость воспроизводства, а некоторые даже более плодовиты. Мы не будем вновь заниматься вычислениями, чтобы удостовериться, что в гигантских популяциях рыб, насекомых или ракообразных некоторые мутации повторяются еще чаще.

Итак, мутации происходили и происходят в избытке. Возникает другой вопрос: останется ли в популяции новая, потенциально «полезная» мутация или исчезнет, потеряется? Здесь в дело вступает естественный отбор.


    Ваша оценка произведения:

Популярные книги за неделю