Текст книги "История математики. От счетных палочек до бессчетных вселенных"
Автор книги: Ричард Манкевич
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 5 (всего у книги 15 страниц)
8. Семь свободных наук и искусств
В 529 году Юстиниан, римский император и христианин, закрыл языческие философские школы, включая Академию в Афинах. Так подошла к концу тысячелетняя история греческой математики. Многие ученые покинули страну и двинулись на Восток, в более интеллектуально развитую Персидскую империю. За двести лет до этого Константин Великий сделал христианство официальной религией римского мира и переместил административный центр из Рима в Византий, который он переименовал в Новый Рим, Константинополь. Карл Великий, император Священной Римской империи (742/747 или 748–814), впервые объединил в своих руках духовную и светскую власть. В то время Константинополь входил в состав зарождающейся исламской империи, а Багдад был научной столицей известного мира того времени. Как правитель западноевропейской империи, Карл Великий был обеспокоен интеллектуальной неполноценностью христианского мира и стимулировал проведение образовательных реформ, опиравшихся на соборные школы. Отвечал за эти реформы ученый и поэт Алкуин Йоркский (735–804), глава придворной школы Карла Великого в Ахене. Алкуин также разработал каролингское строчное письмо, легшее в основу современных латинских прописных букв. После смерти Карла Великого три его сына перессорились и снова разделили Европу на части. Образование не входило в список их важнейших интересов, но в соборных школах и монастырях все же бился скудный огонек научных знаний.
Список научных дисциплин состоял из семи гуманитарных наук. Учебный план их изучения был расписан еще в римские времена. Список был разделен на «тривиум» – грамматика, риторика и логика, и «квадривиум» – геометрия, арифметика, астрономия и музыка. Можно предположить, что математика была ключевой частью учебного плана, но в действительности уровень знаний был очень низким. Боэций (Аниций Манлий Торкват Северин Боэций) (ок. 480–524) – вероятно, лучший математик римского мира – определил то, что должно было стать стандартными текстами для каждой ветви квадривиума. Его трактат «Наставление в арифметике» был просто сокращенной копией «Введения в арифметику» – последней работы известного неопифагорейца Никомаха Герасского (ок. 60 – ок. 120). «Наставление в геометрии» базировалось на первых четырех книгах Евклида (причем доказательства были исключены). «Наставление в астрономии» представляло собой сильно сокращенную версию «Альмагеста» Птолемея, а «Наставление в музыке» – сборник греческих источников. Казалось, эта программа была разработана для того, чтобы соответствовать минимальным стандартам, а не создать трамплин для движения к новым открытиям. Математика использовалась, главным образом, для того, чтобы обслуживать календарь и вычислять дату Пасхи – обе задачи требовали астрономических знаний. Научная мысль Западной Европы начала возрождаться благодаря проникновению идей через границу между христианским и исламским мирами.
Вдохновленные пророком Мухаммадом и учением Корана, арабы выплеснулись за пределы своего полуострова, стремясь завоевать Персидскую и Восточную Римскую империи. Границы с Западной Европой шли от южной Испании и Сицилии до восточных регионов. Именно в Испании, особенно в городе Толедо, шел интенсивный интеллектуальный диалог между двумя культурами, которые в то же время находились практически в бесконечном конфликте друг с другом. Почти чудо, что удалось достичь такого климата научной терпимости в период, включавший два столетия крестовых походов. Прежде чем в восьмом веке нашей эры арабские войска захватили Толедо, город был столицей вестготов. В конце одиннадцатого века христианские армии отбили Толедо. Кордова стала столицей иберийского арабского государства, и его правители – Омейяды – планировали превзойти управляемый Аббасидами Багдад по блеску и учености. Гранада, столица султаната Насридов, последний оплот ислама на Иберийском полуострове, просуществовала как таковая до 1492 года, когда насридский правитель Мохаммед XII капитулировал перед испанцами и передал город королеве Изабелле Кастильской и королю Фердинанду II Арагонскому, после чего мусульмане и евреи были изгнаны из католической Испании. Однако за предшествовавшие века этот западный форпост арабской империи добился многого и, уж во всяком случае, сравнялся с Багдадом как пристанище искусств и наук. Христианские, мусульманские и еврейские ученые тесно сотрудничали здесь, стремясь свести воедино все наиболее важные научные работы на всех основных языках того времени. Тексты работ переводились с языка на язык, а основными языками науки того времени были арабский, латынь, греческий, еврейский и кастильский. Для Европы то был важнейший период: повторно открывалась утерянная греческая математика, впервые прочитывались оригинальные арабские и индийские математические труды. Космополитический характер Толедо XI–XII веков можно понять, перечислив имена некоторых ведущих ученых того времени: Роберт Честерский, Майкл Скот, Герман Каринтийский, Платон Тиволийский, Евгений Палермский, Рудольф из Брюгге, Иоанн Севильский, Герард Кремонский, Аделард Батский.
Аделард Батский (ок. 1080 – ок. 1160) – вероятно, самый известный переводчик, который тем не менее отсутствует на «доске почета» толедских переводчиков. Считается, что он выучил арабский язык на Сицилии, где столетием раньше власть перешла от арабов к норманнам, однако сохранился дух исламской науки. В 1126 году Аделард перевел с арабского языка на латынь астрономические таблицы ал-Хорезми, а в 1142 году – «Начала» Евклида. Приблизительно в 1155 году он перевел «Альмагест» Птолемея с греческого на латынь. О жизни Аделарда известно очень немного, за исключением того, что он много путешествовал по Франции, Италии и Турции.
Возможно, самым блестящим переводчиком был Герард Кремонский (1114–1187), которому приписывается выполнение более чем 85 переводов. Первоначально он пришел в Толедо, чтобы изучить арабский язык, – Герард хотел прочитать «Альмагест» Птолемея, перевода которого на латынь в то время не существовало. Герард так и остался в Толедо до конца жизни, переводя работы по математике, естественным наукам и медицине. Помимо прочего, он перевел переработанную арабскую версию «Начал» Евклида, выполненную астрономом, математиком и врачом Сабитом ибн Коррой (836–901), усовершенствовав более раннюю работу Аделарда. Первый перевод «Книги о восполнении и противопоставлении» ал-Хорезми был сделан в 1145 году Робертом из Честера. Именно в это время в европейский словарь вошли многие слова, ставшие ныне привычными, часто в результате недопонимания или неправильной транслитерации. Такие слова, как «алгоритм» и «алгебра», были искажением имени ал-Хорезми и слова «ал-джабр» из названия его труда «Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала». В полном арабском названии термин «ал-джабр» означает «завершение» и относится к методу удаления отрицательных элементов из уравнения. В тот же период в обиход вошли и другие арабские слова, такие, как «надир», «зенит», «зеро» («ноль») и «цифра».
Вскоре после этого переводы вдохновили людей на поиски новых знаний. Ранние доктрины Церкви впитали в себя значительную дозу платоновской философии, тем не менее в 529 году, спустя девятьсот лет после основания платоновской Академии в Афинах, император Юстиниан закрыл ее из страха распространения языческих воззрений. Приблизительно в то же время логика Аристотеля была бережно сохранена в «тривиуме» Боэция. Учения Платона и Аристотеля были, хотя и по-разному, тесно переплетены с христианским богословием. В результате критическая переоценка греческой науки и философии считалась в некоторых регионах атакой на власть самой Церкви. Аристотель писал работы на самые разные научные темы, включая механику, оптику и биологию. К сожалению, несмотря на то, что он делал особый акцент на наблюдения, многие из его теорий противоречили реальному опыту. Платон же весьма немного писал на темы науки и часто весьма презрительно относился к ее практическим аспектам, однако именно он подчеркивал примат математики при описании Вселенной. Согласно Аристотелю, математика должна была быть подчинена физике. Ситуация еще более усложнялась наличием переводов арабских и греческих работ, которые противоречили друг другу. Выдающимися научными центрами в то время были Париж и Оксфорд, и мы уделим особое внимание движению, известному как Оксфордская школа. Эта школа прежде всего связана с научной деятельностью членов Мертонского колледжа при Оксфордском университете. В возникающем научном подходе математика играла центральную роль.
Начало этой новой философии рационального познания положил Роберт Гроссетест (ок. 1175–1253). Он получил образование в Мертонском колледже, с 1215 по 1221 год был канцлером Оксфордского университета, с 1224 по 1232 год – первым ректором оксфордского францисканского колледжа, а затем стал епископом Линкольна – епархии, к которой относится Оксфорд. Сама по себе математика в значительной степени теологически нейтральна, но сочетание математики и физики бросило серьезный вызов общепринятым космологическим доктринам того времени. Это отлично иллюстрирует средневековая оптика. Гроссетест демонстрирует некоторую симпатию к идеям неоплатонизма, вследствие важности, которую он приписывает свету как основе всей Вселенной. Он создал космологическую теорию, напоминающую нашу концепцию Большого взрыва, согласно которой Вселенная началась как вспышка света и, расширяясь, уплотнилась до материи. В основном Гроссетест был последователем таких арабских авторов, как, например, Ибн ал-Хайсам (965–1039, возможно, более известна латинизированная версия его имени – Альхазен), и отдавал предпочтение грекам – главным образом, конечно, Аристотелю. Он утверждал, что свет – это пульсация материи, распространяющаяся в воздухе по прямой линии подобно тому, как распространяется звук. И свет, и звук двигаются с постоянной скоростью, но ясно, что свет движется быстрее. Гроссетест экспериментировал с линзами и описал их использование для увеличения предметов. Арабы делали линзы в одиннадцатом веке, а в тринадцатом веке в северной Италии уже умели изготовлять очки, хотя и не очень хорошего качества. Гроссетест считал, что радуга создается облаком, работающим как линза, поскольку свет дважды преломляется, входя в облако и выходя из него, – в отличие от Аристотеля, который полагал, что радуга возникает за счет отражения света от капелек воды. Самый знаменитый ученик Гроссетеста – Роджер Бэкон (ок. 1214 – после 1294) – пошел еще дальше. Он изучал видимый центр радуги, ее диаметр и пространственные отношения с Солнцем и наблюдателем. Более того, Бэкон считал, что радуга создается за счет внутреннего преломления в каждой капельке воды, а не во всем облаке. В трудах Бэкона, который в свое время был известен как «удивительный доктор» (doctor mirabilis), рассматривается широкий спектр математических и естественно-научных вопросов. Его рассуждения о подводных лодках и самолетах можно сравнить со значительно более поздними трудами Леонардо да Винчи (1452–1519). В конце тринадцатого века немецкий монах Теодорих (Дитрих, Тьерри) Фрейбургский (ок. 1250 – ок. 1310) экспериментировал со сферическими стеклянными флягами, заполненными водой, и хрустальными шарами, пытаясь смоделировать капли воды. Его наблюдения привели к теории внутреннего преломления света и расщепления света на цветные лучи внутри капли воды или в стекле. Сейчас эта теория обычно приписывается Рене Декарту, но мы можем видеть, что за триста лет до Декарта ученые Средневековья достигли огромных успехов в оптике.
В некоторых регионах звезда Аристотеля начала гаснуть. Роджер Бэкон писал: «Если бы я имел власть, то сжег бы все работы Аристотеля». Он видел в них тормоз на пути прогресса из-за чрезмерной самоуверенности Аристотеля, предпочтения философских догм наблюдению и опыту. Его откровенные и решительные идеи привели его в тюрьму, что в ту эпоху нередко происходило и с другими интеллектуалами. Уильям Оккам (ок. 1285–1349) продолжал нападать на Аристотеля, утверждая, что богословие и натурфилософия должны быть отделены друг от друга, поскольку первая имеет дело со знанием, полученным в результате откровения, а вторая – на основании опыта. То, что теперь известно как «бритва Оккама», было уже заявлено Гроссетестом – это философия, согласно которой в науке нужно искать самое простое решение, соответствующее фактам. Богословие и схоластическая философия стремились объяснить физическую действительность посредством дедуктивной системы, основанной на чистых предположениях. Средневековые ученые искали индуктивный переход от экспериментальных данных к физической гипотезе, который, будучи выраженным на языке математики, позволил бы вывести следствия, поддающиеся проверке. Можно увидеть, что эти средневековые ученые предпринимали колоссальные усилия, чтобы создать реальную эмпирическую философию.
Уильям из Оккама умер преждевременно в 1349 году от чумы – Черной смерти, которая неистовствовала по всей Европе. Неясно, чума была виновата в угасании математики и естественных наук, или их погубило убеждение церковников, что эта напасть была наказанием за непокорство и свободный дух. Какой бы ни была причина случившегося, но средневековая наука была пресечена в корне, и потребовалось еще двести лет, прежде чем она снова смогла расцвести.
9. Перспектива в эпоху Возрождения
Очень много писалось об итальянском Ренессансе как о периоде, определившем направление европейского сознания. Пробуждение интереса к классическим наукам соединилось с желанием выйти за пределы простого подражания и изучить новые стили, новые идеи и новые направления исследования. Этот новый путь отлично иллюстрирует взаимодействие между искусством и геометрией, и, в частности, использование перспективы. Натурализм Ренессанса был заметен в искусстве еще до того, как исследование перспективы принесло свои плоды, но перспектива усилила реалистичность изображения, формально включив точку зрения зрителя в ткань живописи. Перспектива была также очень важна для архитекторов. Возрождение классического стиля в архитектуре в значительной степени основывалось на трактате римского архитектора и инженера Марка Витрувия Поллиона (ок. 80/70 до н. э. – после 15 н. э.) «Десять книг об архитектуре» и возобновившемся интересе к изучению оставшихся классических зданий. Одними из первых авторов, писавших о перспективе, были великий итальянский архитектор Филиппо Брунеллески (1377–1446) и итальянский же ученый Леон Баттиста Альберти (1404–1472), которые соединили практическую математику каменщиков и архитекторов с геометрическими построениями, однако считается, что первым трудом, посвященным вопросам перспективы и предназначенным для живописцев, был математический трактат «О перспективе в живописи» итальянского художника и теоретика Пьеро делла Франчески (ок. 1415–1492).
Пьеро делла Франческа был сыном торговца из Борго-Сан-Сеполькро, городка под Флоренцией, и, вероятно, чтобы занять место в семейном бизнесе, изучал математику в одной из многочисленных школ практической математики, которые возникали в Италии в то время. Он выказал большой талант и, возможно, стал бы математиком, специализирующимся на задачах из области торговли, но вместо этого решил пойти в обучение к местному художнику. Уникальная комбинация его навыков сделала Пьеро одним из немногих людей, упоминающихся одновременно в анналах как искусства, так и математики. Скорее всего, он провел некоторое, очень короткое время во Флоренции, и большинство его известных работ находили в небольших городках вроде Урбино. До нас дошли только три его трактата, причем не известны ни точные даты их написания, ни их оригинальные названия. Прежде чем мы обратимся к его работе о вопросах перспективы, стоит упомянуть одно новшество в геометрии. Считается, что Пьеро вновь открыл пять из архимедовых тел, которые называются так потому, что в четвертом веке нашей эры математик Папп Александрийский (ок. 290 – ок. 350) приписал их открытие Архимеду. В работе Иоганна Кеплера 1619 года приводятся тринадцать архимедовых тел – в это число входят и пять Платоновых тел. Пять архимедовых тел строятся путем усечения ребер Платоновых тел. До Пьеро эти фигуры описывались риторически – просто заявлялось об использовании необходимых многоугольников, – но Пьеро описывает их построение и изображает его. Не все фигуры изображались с правильной перспективой, однако это был огромный шаг вперед в то время, когда в работах по практической геометрии фигуры нередко иллюстрировались схематично, например, конус изображался как треугольник, стоящий поверх круга. Работа Пьеро была использована в трактате итальянского математика Луки Пачоли (1445–1517) «О божественной пропорции», изданном в Венеции в 1508 году. В трактат были включены иллюстрации друга Пачоли – Леонардо да Винчи – и рисунок шестого архимедова тела – ромбокубоктаэдра.
Рукопись дела Франчески «О перспективе в живописи» сохранилась до наших дней. Трактат был написан Пьеро как на латыни, так и на тосканском диалекте. Во введении сказано, что в нем объясняется только использование перспективы живописцами. Но Пьеро и его современники видели в правилах перспективы часть более общей науки – оптики. Речь идет не только о создании натуралистических картин – дело в том, что, для того чтобы картины выглядели естественно, они должны подчиняться правилам, объясняющим, как глаз видит мир. Таким образом, глаз наблюдателя – центр всей работы. Если на картине изображается сценка, увиденная в окно, существует только одна точка в пространстве, с которой зритель может видеть ее правильно. Глаза зрителя должны располагаться на той же высоте, что и горизонт картины, и фокусироваться на точке схода. Трансверсали, которые помогают в построении изображений объектов с учетом перспективы, сходятся в одной точке на горизонте. Обычно эта точка находится за рамками изображения, и расстояние между этой точкой и точкой схода – оптимальное расстояние от холста, с которого следует рассматривать картину. Трактат «О перспективе в живопи си»написан на манер «Начал» Евклида, в виде теорем и их доказательств. Пьеро представляет множество конструкций, отображающих реальные «идеальные фигуры» на плоскость картины, таким образом, создавая «ухудшенные» фигуры, которые должны быть изображены на холсте, с линиями взгляда, сходящимися в глазу зрителя. Он использует квадратные плитки мощеного пола – pavimento, – чтобы показать, как плитки, более удаленные от зрителя, выглядят в перспективе с увеличением расстояния. Затем он рассматривает другие многоугольники, приводя как их надлежащую форму, так и их «ухудшенные», искаженные формы. Далее Пьеро рассматривает призмы, от куба до различных форм колонн, например шестиугольную призму, и показывает, как длинный ряд колонн выглядел бы с учетом перспективы. Он заканчивает рядом изображений человеческой головы с множества различных точек зрения.
Работа Пьеро позднее использовалась живописцами и архитекторами, а также художниками-декораторами в театрах. На картинах той эпохи уже использовался эффект перспективы. Мы видим, что он использовался и до Пьеро, на таких картинах, как «Благовещение» (ок. 1445–1447) Доменико Венециано (1410–1461) и «Битва при Сан Романо» (1456–1460) Паоло Уччелло (1397–1475). Мы видим его на картине Пьеро «Бичевание Христа» (1469), которую можно считать практическим воплощением его трактата, но на его же фреске «Благовещение» (1464) мы видим, что фигуры святых намного больше, чем они были бы в случае реалистической живописи, – художник сделал это, чтобы подчеркнуть важность святых. Микеланджело утверждал, что мало обращал внимания на математическую точность, потому что «циркуль – в глазах, не в руке, ибо руки работают, а глаз оценивает». Однако Сикстинская капелла расписана в строгом соответствии с перспективой; и в «Страшном суде» Микеланджело сделал фигуры в верхней части картины намного большими, чем фигуры внизу, заранее предположив: они будут рассматриваться с большего расстояния, – цель не очевидная, если смотреть на фреску как на изображение в книге. Хотя художники очень быстро изучили эту новую технику, они не жертвовали живописностью в угоду математической точности.
В шестнадцатом веке о Пьеро помнили уже скорее как о математике, чем как о художнике. В эпоху Ренессанса его трактат не издавался, но циркулировал в форме рукописи, а содержание работы часто цитировалось в публикациях других авторов. Однако многие его построения самых сложных фигур было трудно повторить, и содержащие их разделы – наиболее трудные для понимания – часто опускались. Однако возрастал интерес к измерительным инструментам, подобным тем, которыми пользуются землемеры, – они помогали художникам изображать предметы в перспективе. В трактате Альбрехта Дюрера «Руководство к измерению циркулем и линейкой» изображено множество таких инструментов. В большинстве из них натянутая веревка представляла собой линию взгляда, упирающуюся в рамку с подвижным перекрестьем нитей; изображение при этом наращивалось точка за точкой. Художник мог также рассматривать сцену через квадратную сетку, которая действовала наподобие системы координат. Такое устройство уже использовалось и ранее – как способ привести рисунок к определенному масштабу, перед тем как наносить краски.
Альбрехт Дюрер (1471–1528) был одним из восьми детей, рожденных в Нюрнберге в венгерской семье. По всей видимости, он должен был, как и его отец, заниматься торговлей украшениями. Однако к тринадцати Альбрехт проявил себя как очень хороший художник. Позднее он был направлен на учебу к нюрнберскому живописцу и граверу Михаэлю Вольгемуту (1434–1519), и Альбрехт освоил не только живопись, но и гравирование по дереву и меди. В начале 1490-х годов Дюрер предпринял путешествие по Германии, Швейцарии и Нидерландам и начал разрабатывать планы создания нового искусства, основанного на математике. После возвращения в Нюрнберг он принялся изучать работы Евклида, Витрувия, Пачоли и Альберти. Позднее Дюрер даже посетил Пачоли в Болонье и планировал сам написать крупный труд по вопросам математики и искусства. Ко времени создания его известной гравюры «Меланхолия» (1514) он был уже известным мастером. Дюрер получал очень хорошие заказы от курфюрста Саксонии Фридриха Мудрого и от императора Священной Римской империи Максимилиана I, владел процветающей печатной компанией. В 1523 году он уже закончил свой трактат «Четыре книги о пропорциях» (издан в 1528 году), но посчитал его математическую составляющую слишком сложной для читателей и потому приступил к редактированию и сокращению своего труда. В результате получилось более легко читаемое «Руководство к измерению циркулем и линейкой», которое Дюрер издал в 1525 году. Если не считать книг о применении арифметики в торговле, которые уже выходили к тому времени, это была первая книга по математике, напечатанная на немецком языке, что сделало Дюрера одним из крупнейших математиков эпохи Возрождения. Работа по большей части охватывала проблемы планиметрии и стереометрии, включая методы построения фигур. Один из ее разделов был посвящен перспективе. Значительная часть работы отдана изображению пространственных фигур в плане и в проекциях – это та ветвь математики, которая ныне носит название начертательной геометрии, – а также решению практических задач, стоявших перед архитекторами и инженерами.
Брак начертательной геометрии с коническими сечениями – рассечениями конуса, которые создают фигуры вроде круга, эллипса и параболы, – привел к рождению другой новой ветви математики – проективной геометрии. Математик и военный инженер Жерар Дезарг (1591–1661) из Лиона за свою жизнь опубликовал немного работ, однако он был в курсе математических событий, узнавая о них от физика и философа Марена Мерсенна, который вел обширную переписку с выдающимися учеными того времени – Галилеем, Декартом, Паскалем, Ферма и многими другими. В 1639 году Дезарг издал брошюру с забавным названием «Первоначальный набросок попытки разобраться в том, что получается при встрече конуса с плоскостью». Читать этот текст было очень тяжело, поэтому было напечатано только пятьдесят экземпляров, которые Дезарг раздал знакомым.
Основой начертательной геометрии был тот факт, что с точки зрения зрителя «идеальные» и «ухудшенные» фигуры кажутся одинаковыми. Распространение этого результата за пределы плоскости живописи означает, что исходное изображение может быть спроецировано на бесконечное число плоскостей и все еще казаться неподвижному наблюдателю неизменным. Дезарг изучал, какие свойства фигур оставались неизменными, или инвариантными, при таких проективных преобразованиях. Одним из его достижений было объединение конических сечений – он рассматривал их как проективные преобразования круга, движущегося по световому конусу. Наклонный круг действительно становился эллипсом.
Красота этого подхода заключается в том, что, сформулировав теорему для одного конического сечения, скажем для круга, можно было просто выполнить соответственную проекцию и перетолковать теорему. Однако достижением Дезарга было скорее развитие нового метода, чем создание новаторских теорем. В то же время алгебраическая геометрия Декарта оказалась таким мощным инструментом, что сам Декарт высказал предположение: не исключено, работа Дезарга станет несколько более ясной, если ее перевести на язык алгебры. Позднее Декарт признал, что, возможно, это была придирка к стилю, а не к содержанию. Однако математика того времени двигалась совсем в ином направлении, и работа Дезарга затерялась. И его проективная геометрия, и начертательная геометрия Дюрера возродились позднее, в начале девятнадцатого столетия, уже на надежной математической основе.
Когда великие и искусные художники созерцают свои столь нелепые творения, можно заслуженно высмеивать слепоту этих людей. Нет ничего столь ненавистного, как картины, написанные хотя и с большим усердием, но без наличия технических познаний. Ныне же единственная причина, почему подобные живописцы не знают о своей ошибке, заключается в том, что они не изучали геометрию, без которой никто не может быть совершенным художником, но вина за это должна быть возложена на их учителей, которые сами не осведомлены в этом искусстве.
Альбрехт Дюрер.Руководство к измерению с помощью циркуля и линейки в линиях, плоскостях и целых телах, составленное Альбрехтом Дюрером и напечатанное на пользу всем любящим знания с надлежащими рисунками в 1525 году.(Из Посвящения Пиркгеймеру) [8]8
Цит. по: Альбрехт Дюрер. Дневники. Письма. Трактаты. В 2-х тт. Пер. с ранневерхненем., вступит, статья и коммент. Ц. Г. Нессельштраус. / Руководство к измерению. – М. – Л.: Государственное издательство «Искусство», 1957. – Т. 2.Вилибальд Пиркгеймер (1470–1530) – известный немецкий гуманист, с детства был ближайшим другом Дюрера.
[Закрыть].