Текст книги "История математики. От счетных палочек до бессчетных вселенных"
Автор книги: Ричард Манкевич
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 4 (всего у книги 15 страниц)
6. Математические сутры
Древнейшие свидетельства о наличии математики в Азии мы видим в следах цивилизации Хараппы, существовавшей в долине Инда; они датируются концом четвертого – началом третьего тысячелетия до нашей эры. Хотя самые ранние документы довольно трудно расшифровать, понятно, что это торговые счета, с весами и размерами, с особой ссылкой на передовую технологию производства кирпичей. Приблизительно в 1500-х годах до нашей эры культура Хараппы была уничтожена захватчиками с севера. Их называли ариями. Они были пастухами, говорили на индоевропейском языке, предшественнике санскрита и многих современных языков. Первая письменная кодификация языка была сделана великим филологом Панини в четвертом веке до нашей эры. Он в одиночку сумел сделать санскрит понятным языком, кодировавшим мысли целого субконтинента в течение более чем двух тысяч лет. Если можно сказать, что греческая математика проистекает из философии, то корни индийской математики уходят в лингвистику.
Самая ранняя ведическая литература прежде всего носит религиозный и церемониальный характер. Наиболее ценны с точки зрения математики – приложения к главным «Ведам», известные как «Веданги». Они записаны в виде сутр – коротких поэтических афоризмов, столь типичных для санскритских текстов, которые стремятся передать содержание в наиболее сжатой и запоминающейся форме. «Веданги» разделены на шесть областей: фонетика, грамматика, этимология, поэзия, астрономия и ритуалы. Последние два предмета дают нам возможность оценить уровень развития математики того времени. Раздел «Веданг», посвященный астрономии, называют «Джьотиша-сутра», в то время как раздел, посвященный ритуалам, носит название «Кальпа-сутра». Одна из его частей, посвященная строительству жертвенных алтарей, называется «Шульба-сутра».
Самый ранний текст «Шульба-сутры» был написан приблизительно в 800–600 годах до нашей эры, еще до кодификации санскрита Панини. Геометрия выросла из потребности соответствовать размеру, форме и ориентации алтарей, определенных в священных текстах «Вед». Абсолютная точность была столь же важна для эффективности ритуала, как и правильное произнесение мантр. Геометрия выражена тремя основными способами: явно сформулированные геометрические теоремы; процедуры, необходимые для того, чтобы строить различные формы алтарей; алгоритмы, связанные с предыдущими двумя группами. Самая важная теорема – теорема Пифагора прямоугольных треугольников.
Один пример иллюстрирует, как теоретические результаты шли бок о бок с практическими задачами. Используя теорему Пифагора, всегда можно построить квадрат, площадь которого равна удвоенной площади заданного квадрата. Но если мы начинаем с двух реальных квадратов, скажем сделанных из ткани, каков самый эффективный способ разрезать их и снова сложить куски так, чтобы составить больший квадрат? Хотя этот тип построения не приводится в «Шульба-сутре» в явном виде, существует свидетельство подобных конкретных способов рассуждения. Один из ключей – приближение, используемое для вычисления √2, которое осуществляется с точностью до пятого десятичного знака: «Увеличьте измерение на треть от него, а эту треть – на четверть от этой трети минус тридцать четвертую часть от этой четверти». Это могло отображать разделение одного из квадратов на подходящие прямоугольники и расположение их вокруг другого квадрата, чтобы построить квадрат двойной площади. Этот подход имеет аналоги в китайской геометрии, а результат очень близок к тому, который получали вавилоняне.
Учитывая выдающееся положение индо-арабских цифр в десятеричной системе со знакоместом, стоит кратко вспомнить раннюю историю индийских цифр. Цифры «кхарошти» можно увидеть на надписях, относящихся к четвертому столетию до нашей эры. В них есть особые символы для единицы и четверки, а также для десяти и двадцати. Числа свыше сотни получаются путем сложения. Самые ранние следы цифр «брахми» относятся к третьему столетию до нашей эры, их можно увидеть на колоннах Ашоки, разбросанных по всей Индии. Это более развитая система, в нее входили специальные символы для чисел, кратных десяти и ста, а также для значений второго десятка. Датировка чисел «бакшали» (по названию города, где они были обнаружены) крайне ненадежна, но если она все же верна, то эти числа, относящиеся к третьему веку нашей эры, – первая известная система с учетом знакоместа, где было специальное обозначение для ноля. Там было всего десять символов, но ими можно было выразить любое число, сколь угодно большое. Цифры «гвалиор» (тоже по названию города) девятого века нашей эры узнаваемо похожи на наши современные, это первое бесспорное появление ноля в индийской надписи, За пределами Индии, но тем не менее в рамках ее культурного влияния мы находим кхмерскую надпись в Камбодже, датированную 683 годом, в которой используется ноль.
Классический период индийской математики начался в середине первого тысячелетия. Большей частью Индии правила династия Гуптов, которые поощряли исследования в области наук и искусств. Математическая деятельность была сконцентрирована в трех центрах: в столице Паталипутре (современная Патна), в Удджайне на севере и в Майсуре на юге. Два самых крупных математика этого периода – это Ариабхата (476–550), автор «Ариабхатии» (499), и Брахмагупта (ок. 598–660), который в 628 году сочинил трактат под названием «Брахма-спхута-сидцханта» («Открытие Вселенной»). Основными задачами, которыми занимались эти ученые, были математическая астрономия и анализ уравнений.
«Ариабхатия» состоит из 123 стихов. Трактат начинается с восхваления богам, а затем в нем описываются алгоритмы для вычисления квадратов, кубов, квадратных и кубических корней. В работе приведены 33 правила по арифметике, алгебре и тригонометрии на плоскости. Семнадцать правил посвящены геометрии, 11 – арифметике и алгебре. В десятом правиле приводится значение π как отношение 62,832:20,000, что эквивалентно 3,1416, – это самое точное значение, вычисленное в то время, и оно останется таковым еще тысячу лет. Трактат включает также таблицу синусов. В отличие от Птолемея, использовавшего в качестве основной меры хорды, индусы использовали полухорды и выражали их в радиусах. Поэтому, за исключением постоянного множителя, индийские синусы намного ближе к нашим современным. Разделив четверть окружности на 24 равные части и начав с нескольких базовых результатов и формул, вроде sin 30° = 1/2, Арьябхата составил таблицу синусов для углов от 3°45′ и выше. Ему также приписывают создание формулы, позволяющей приблизительно оценить синус любого угла без использования таблицы с точностью до нескольких десятичных знаков.
Позже Брахмагупта создал формулу интерполяции, используя арифметический метод разностей, чтобы найти синусы промежуточных углов. В дальнейшем тригонометрию развивали арабы на севере и математики Кералы на юге. Арабы, а затем и западный мир познакомились с индийской математикой и астрономией отчасти благодаря переводу «Брахма-спхута-сиддханты».
Брахмагупта основал ставшую широко известной школу в Удджайне. Его «Брахма-спхута-сиддханта» – самый полный трактат по астрономии того времени. В некоторых разделах этого труда производится анализ неопределенностей, взятых из календарных вычислений и астрономии. Арьябхата решал линейные неопределенные уравнения, используя алгоритм Евклида, описанный в «Началах», – сокращение коэффициентов до тех пор, пока уравнения не будет удобно решать методом проб и ошибок. Брахмагупта приводит алгоритм для решения в целых числах уравнений вида ах 2± с = у 2, которые геометрически представляют собой гиперболы. В Европе эта формула получила известность под названием «уравнение Пелля» [6]6
В общем виде эту задачу сформулировал великий французский математик Пьер Ферма (1601–1665), и во Франции оно носит «правильное» название – уравнение Ферма. Название «уравнение Пелля» родилось в результате того, что не менее великий швейцарский, немецкий и российский математик Леонард Эйлер (1707–1783) ошибочно приписал один из способов его решения английскому математику Джону Пеллю (1620–1685).
[Закрыть].
Позднее знаменитый индийский математик Бхаскара (Бхаскарачарья) (1114 – ок. 1185) улучшил эти методы, создав «циклический» метод, известный как «чакравала» (метод нахождения наименьшего нетривиального решения). Он привел решение известной задачи – уравнения 61х 2+ 1 =у 2.Это та самая задача, над которой Пьер Ферма бился в семнадцатом столетии и решение которой было найдено Жозефом Луи Лагранжем лишь сто лет спустя. Но даже и в восемнадцатом веке алгоритм «чакравала» был намного более эффективен. Наименьшие решения: х = 226 153 980, у = 1 766 319 049.
Ни в «Ариабхатии», ни в «Брахма-спхута-сиддханте» не доказываются представленные там результаты. Но это не означает, что их авторы не знали доказательств или не понимали, насколько важно продемонстрировать обоснованность приведенных правил. То, что индийские математики осознавали необходимость доказательств, видно хотя бы из того, что Бхаскара отклонил джайнистское приближенное значение π, представленное как √10: хотя и численно близкое, оно не сопровождалось никакими внятными объяснениями. В любом случае индийские математики не ограничивались только лишь представлением методов расчета и результатов, эти результаты проверялись и перепроверялись много раз, что, в свою очередь, способствовало возникновению еще более строгих методик.
Бхаскара из Удджайны был выдающимся математиком. Ему приписывается открытие некоторых понятий из области вычислений, которые стали широко известны намного позже. Трактаты Бхаскары издавались даже в девятнадцатом столетии. Одним из аспектов индийской астрономии было исследование мгновенных движений планет, особенно Луны. Были сделаны удивительно верные расчеты времени затмений, поэтому будущие затмения могли быть предсказаны с невероятной точностью. И Ариабхата, и Брахмагупта использовали для этого одну и ту же формулу, а Бхаскара усовершенствовал метод расчета, выведя то, что можно считать дифференциалом синуса. В его трактате «Сиддханта-широмани» («Венец учения») используется «бесконечно малая» единица измерения – «трути», равная 1/33,750 секунды. По сути, в определенном смысле трактат Бхаскары можно рассматривать как предварение математического анализа, но, похоже, этот «пред-анализ» не рассматривался как самостоятельная тема и не распространялся на другие ветви математики.
Впоследствии Ньютон в своем математическом анализе будет активно использовать бесконечные ряды. Особенно полезным достижением индийской математики была аппроксимация синусов и косинусов полиномами с бесконечным числом членов – работы именно в этом направлении мы можем увидеть у математиков Кералы. После Бхаскары успехи индийской математики были невелики – страну охватил политический хаос. Но юго-западная Индия оставалась в значительной степени защищенной от этих потрясений, так что там математика могла развиваться вплоть до четырнадцатого – семнадцатого веков. Керала была центром морской торговли, туда стекались люди из самых разных стран. Конечно, необходимо более точно изучить историческую роль Кералы в продвижении математических идей, но некоторые результаты указывают на то, что математика там процветала.
Мадхава из Сангамаграма (ок. 1340–1425), известный более поздним астрономам как Голавид, или «Повелитель сфер», был одним из величайших средневековых математиков. Его работы по исследованию бесконечных рядов были утеряны, но постоянно цитировались более поздними авторами вплоть до шестнадцатого века. Многие результаты, которые были названы в честь европейских математиков, возможно, должны были носить имя Мадхавы. Сюда входят разложение синусов и косинусов в бесконечный многочлен, считающееся заслугой Ньютона, а также формулы малоуглового приближения, представляющие собой часть рядов Тейлора. Эти формулы позволяли составлять тригонометрические таблицы с любой желательной точностью; таблицы Мадхавы были составлены с точностью до восьми десятичных знаков. Мы также находим у него бесконечный ряд, выражающий значение числа π. Один пример, приведенный в стихотворной форме, иллюстрирует, как определенные объекты традиционно использовались для того, чтобы обозначить числа и способствовать их последующему вспоминанию:
Боги [33], глаза [2], слоны [8], змеи [8], огни [3], тройка [3], качества [3], веды [4], наксатры [27], слоны [8] и руки [2] – мудрые говорят, что это длина окружности, когда диаметр круга – 900 000 000 000.
Прочтение чисел справа налево и деление получившегося числа на указанный диаметр приводят к значению π сточностью до одиннадцати десятичных знаков. Такое вычисление с использованием бесконечного ряда сразу напоминает о гениальном индийском математике-самоучке из Кералы – Сринивазе Рамануджане (1887–1920), невероятные способности которого позволили ему поступить в Кембриджский университет.
7. Дом Мудрости
В седьмом веке нашей эры на Аравийском полуострове возникла новая монотеистическая религия, которая должна была втиснуться между христианским и персидским мирами. В 622 году пророк Мухаммад бежал из Мекки и нашел прибежище в Медине. Восемь лет спустя он возвратился во главе армии и триумфально вошел в Мекку. Вдохновленные прозрениями Мухаммада, его последователи распространили слово Корана и создали Арабский халифат, который в пору своего расцвета раскинулся от Кордовы до Самарканда. С 661 года империей, со столицей в Дамаске, правила династия Омейядов, но в 750 году они были свергнуты Аббасидами, которые перенесли столицу в Багдад (с 762 года). Омейяды бежали в испанские земли, где создали Кордовский халифат.
Халифы династии Аббасидов стремились построить в Багдаде новую Александрию и основали там астрономическую обсерваторию, библиотеку и исследовательский центр под названием «Байт аль-Хикма» («Дом Мудрости»). Был задуман и осуществлен гигантский проект, согласно которому на арабский язык были переведены все лучшие научные труды того времени, какие только можно было найти. В арабской математике мы можем увидеть влияние вавилонских, индийских и греческих идей. Их синтез и развитие привели к созданию фундаментальных трудов, особенно по алгебре и тригонометрии. Хотя алгебраическая символика, какой мы ее знаем сегодня, – это намного более поздняя европейская разработка, создание алгебраических рассуждений с большой долей вероятности можно приписать арабским математикам. Более ранняя математика нередко могла алгебраически интерпретироваться, но явное признание того факта, что геометрические проблемы могут быть выражены алгебраически, что геометрические процедуры могут быть преобразованы в алгебраические алгоритмы и что алгебраические процедуры могут выйти за рамки своих геометрических корней, – это вклад арабов в математику.
Очень важной работой в истории алгебры был труд Диофанта Александрийского (ок. 200 – ок. 284) «Арифметика». При том, что даты жизни Диофанта, казалось бы, известны, тем не менее до сих пор нет окончательной ясности, к какому столетию следует его отнести, хотя решение математической загадки, которая, по слухам, была начертана на его могиле, указывает на его возраст в момент смерти. «Арифметика» считается новой ветвью греческой математики, она посвящена решению определенных и неопределенных уравнений в числовой форме, независимо от геометрических обоснований. Ограничение на целочисленные решения ныне сформировалось в отдельную ветвь математики, известную как диофантовы уравнения. Примером таких уравнений может служить поиск пифагоровых троек. Диофант также использовал то, что называют синкопированной алгебраической записью, то есть промежуточной стадией между риторической и полностью символической алгеброй. Эта работа была переведена на арабский язык и тщательно изучалась арабскими математиками.
Одним из наиболее значительных арабских математиков был Абу Джафар Мухаммад ибн Муса ал-Хорезми (ок. 783 – ок. 850). По его имени можно понять, что он приехал из Хорезма – города в Средней Азии. Похоже, что большую часть своей жизни ал-Хорезми провел в Багдаде, где занимал должность директора библиотеки недавно основанного там Дома Мудрости. Его трактат по алгебре «Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала» («Книга о восполнении и противопоставлении») позднее оказал огромное влияние на развитие математики в Европе. Наше слово «алгебра» возникло от латинской транслитерации слова «ал-джабр». Ал-Хорезми стремился решить практические задачи, возникающие в торговле, при наследовании и в использовании земли. В алгебраических разделах рассматриваются линейные и квадратные уравнения – термины «восполнение» и «противопоставление» относятся к алгебраическим преобразованиям. Ал-Хорезми разделяет квадратные уравнения на шесть различных групп. В арабской математике требовалось, чтобы все коэффициенты и все ответы были положительными, поэтому вместо того, чтобы писать общий вид уравнения ах 2+ bx + с = 0, где х – неизвестная величина, и а, b,с – коэффициенты, что было бы бессмысленным, поскольку сумма положительных элементов никогда не могла быть равна нолю, ал-Хорезми рассматривал уравнения ax 2+ bx = с и ax 2+ с = bx как два различных типа уравнений. Алгебраические решения для каждого типа уравнения приводятся отдельно, они сопровождаются геометрической иллюстрацией, возможно используя работы Евклида, но он также применяет методы, похожие на вавилонские и индийские. Геометрические иллюстрации алгебраических методов пока еще риторические: ал-Хорезми не развил символический язык, но непринужденность, с которой он перемещается между царствами алгебры и геометрии, значительно отличается от греческого стиля математики.
Ко времени ал-Караджи (953-1029) арабские математики пытались освободить алгебру от геометрических рассуждений и превратить ее в общепринятую технику арифметической работы с неизвестными. Выдающийся персидский математик Фахр ад-Дин Абу Бакр Мухаммад ибн ал-Хусайн ал-Караджи основал очень влиятельную школу алгебры в Багдаде. Его главная работа «Ал-Фахри» содержит учение об алгебраическом исчислении и об определённых и неопределённых уравнениях. Ал-Караджи дал правила для определения суммы арифметической прогрессии, а также суммы квадратов и кубов последовательных чисел, хотя он не сумел определить, что х 0= 1. Ал-Караджи вывел формулу бинома и привел таблицу биномиальных коэффициентов, известную ныне как треугольник Паскаля, – интересно, что персидский математик пришел к этому индуктивным методом. Его доказательство, строго говоря, нельзя назвать доказательством по индукции, тем не менее это числовая и алгебраическая процедура без ссылки на геометрию.
Ко времени Гиясаддина Абу-ль-Фатха Омара ибн Ибрахим ал-Хайяма Нишапури, более известного как Омар Хайям (1048–1131), турки-сельджуки захватили Багдад и объявили там ортодоксальный мусульманский султанат. После обучения в Нишапурском медресе Хайям в 1070 году оставил эти политически опасные земли и перебрался в относительное спокойствие Самарканда. Хотя он больше известен как поэт и автор рубаи, Хайям главным образом был ученым и философом. Именно в Самарканде он написал свою «Алгебру», самая оригинальная часть которой была посвящена решению кубических уравнений геометрическими средствами. Его открытие состояло в том, что решение кубического уравнения можно было найти путем определения точки пересечения двух конических сечений, с которыми он познакомился, читая перевод труда Аполлония Пергского. Например, уравнение вида х 3+ ах = с решалось как пересечение соответственно построенного круга и параболы. Он разделил по типам кубические уравнения и их решения, создал алгебраические методы для того, чтобы упростить некоторые сложные кубические уравнения до уже известных типов или до более простых квадратных уравнений. Хотя с точки зрения развития алгебры это может показаться шагом назад, многие аспекты делают вклад Хайяма уникальным. Он утверждал, что древние не оставили никаких сведений относительно решения кубических уравнений, так что нам следует предположить, что у него был достаточный доступ к лучшим библиотекам в империи. Хайям также заявлял, что геометрическое решение кубических уравнений не может быть найдено с использованием только циркуля и линейки – доказательство этого факта будет получено только через семьсот лет. Хайям первым сумел понять, что в кубическом уравнении может быть больше одного решения, но не сумел уловить, что их может быть три. Хайям признавал, что его работа не закончена, и искал полное алгебраическое решение кубического уравнения и уравнений более высокого порядка, аналогичное формуле для решения квадратных уравнений. Но это достижение будет сделано только в эпоху итальянского Ренессанса. Аналитическая геометрия Хайяма стала кульминацией арабского сплава алгебраических и геометрических познаний. Затем до Декарта не было сделано практически ни одного серьезного шага.
Арабские математики в основном интересовались астрономией, их достижения в области тригонометрии позволили им построить более точные астрономические таблицы. Исламский календарь был основан на лунных месяцах. Каждый месяц начинался с первого появления лунного месяца после новолуния. Ежедневно, в зависимости от положения Солнца, должны были читаться пять молитв: например, дневная молитва должна происходить в тот момент, когда длина тени, отбрасываемой предметом в полдень, увеличилась на величину, равную высоте самого предмета. Верующий должен произносить молитву, обратившись лицом в направлении Каабы в Мекке. Все три этих правила требовали астрономических знаний и понимания движений планет, а также географии Земли. Поначалу они в основном использовали методы наблюдения, а из греческих и индийских источников пришли таблицы. Арабы значительно улучшили и таблицы, и методы наблюдения, в мечетях в тринадцатом веке работали астрономы, профессионально использовавшие астролябии, секстанты и солнечные часы.
Стало очевидно, что любой шаг вперед в области астрономических вычислений требовал создания более точных тригонометрических таблиц. Давайте оценим это развитие по методам, используемым для вычисления синуса 1°. Были даны определения синуса, косинуса и тангенса, были выведены различные формулы, вроде синуса суммы и разницы двух углов. Общие методы начинали создаваться с тех синусов, которые были точно известны из геометрических вычислений, вроде синуса 60° = √3/2 или синус 30° = 1/2, а затем использовались формулы для уменьшения угла вдвое. Угол последовательно делился пополам, пока не доходил до значения в 1° или становился близок к этому значению. Один из крупнейших математиков и астрономов средневекового Востока Абу-л-Вафа (Абу-л-Вафа Мухаммад ибн Мухаммад ибн Яхья ибн Исмаил ибн Аббас ал-Бузджани) (940–998) начал с известного значения синуса 60° и уже вычисленного значения синуса 72°, и, применяя подходящие формулы, он смог вычислить синус 2°. Используя формулу двойного угла, он постепенно вычислил синус 1°30′ и синус 45'. Поскольку эти два угла достаточно близки, он предполагал, что промежуточные значения будут подчиняться относительно линейным соотношениям и арифметический метод, таким образом, привел бы к необходимому значению синуса 1°. При использовании подобных методов Абу-л-Вафа смог построить полную таблицу синусов, с углами около 1/4°, или 15' в шестидесятеричной системе. Он добился точности в 5 шестидесятеричных знаков или 8 десятичных знаков.
Следующий серьезный шаг был сделан только через триста лет, несмотря на то что теория была полностью разработана. К тому времени Багдад находился уже под властью монголов, которые разорили и разрушили его. Внук Тимура Улугбек (Султан Мухаммед ибн Шахрух ибн Тимур Улугбек Гураган) (1394–1449) – выдающийся астроном и астролог – в 1409 году был объявлен правителем Мавераннахра со столицей в Самарканде. Став правителем державы Тимуридов, Улугбек перенес центр науки в Самарканд. Математик и астроном Ал-Каши (1380–1429), первый директор новой Самаркандской обсерватории, значительно уточнил значения синусов в таблице. Используя формулу синуса тройного угла, он составил кубическое уравнение, чтобы найти синус 1° исходя из синуса 3°. Затем, используя повторяющуюся процедуру, он вычислил синус 1° до 9 шестидесятеричных знаков, что эквивалентно 16 десятичным знакам. Остальную часть таблицы можно было завершить с помощью уже установленных взаимоотношений, однако в любом случае это был феноменальный вычислительный подвиг. Аналогичный метод использовал Иоанн Кеплер двести лет спустя. Помимо увеличения точности вычислений, арабы усовершенствовали астролябию и использовали ее не только как инструмент для астрономических наблюдений, но и как аналоговый калькулятор, с помощью которого определяли время. Впрочем, звезда Багдада уже закатилась. За монгольским завоеванием последовало нашествие оттоманских турок, которые сделали столицей и интеллектуальным центром Стамбул.
…я был лишен возможности систематически заниматься этим делом и даже не мог сосредоточиться на размышлении о нем из-за мешавших мне превратностей судьбы. Мы были свидетелями гибели ученых, от которых осталась малочисленная, но многострадальная кучка людей. Суровости судьбы в эти времена препятствуют им всецело отдаться совершенствованию и углублению своей науки. Большая часть из тех, кто в настоящее время имеет вид ученых, одевают истину ложью, не выходя в науке за пределы подделки и притворяясь знающими. Тот запас знаний, которым они обладают, они используют лишь для низменных плотских целей. И если они встречают человека, отличающегося тем, что он ищет истину и любит правду, старается отвергнуть ложь и лицемерие и отказаться от хвастовства и обмана, они делают его предметом своего презрения и насмешек.
Омар Хайям.Трактат о доказательствах задач алгебры и алмукабалы (ок. 1070) [7]7
Цит. по: Омар Хайям. Трактаты. Перевод Б. А. Розенфельда. Вступительная статья и комментарии Б. А. Розенфельда и А. П. Юшкевича. / Трактат досточтимого мудреца Гийас ад-Дина ‘Омара Ал-Хаййами ан-Найсабури, да освятит Аллах его драгоценную душу, о доказательствах задач алгебры и алмукабалы. – М.: Издательство восточной литературы, 1961. – С. 70.
[Закрыть].