355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ричард Манкевич » История математики. От счетных палочек до бессчетных вселенных » Текст книги (страница 13)
История математики. От счетных палочек до бессчетных вселенных
  • Текст добавлен: 6 октября 2016, 00:20

Текст книги "История математики. От счетных палочек до бессчетных вселенных"


Автор книги: Ричард Манкевич


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 13 (всего у книги 15 страниц)

21. Военные игры

Люди всегда любили играть в игры, и в каждую эпоху существовало свое повальное увлечение. Большинство игр – сочетание умения и удачи, и лишь после многократных розыгрышей, нивелирующих влияние случая, выяснялось, кто на самом деле самый хороший игрок. Однако существуют некоторые игры, которые практически ничего не оставляют на откуп судьбе – никакого бросания игральных костей, никакой опоры на удачу. Это стратегические игры, и их исследование – предмет теории игр. Есть также игры, выигрыш в которых в буквальном смысле становится вопросом жизни или смерти. Поскольку грубые тактические ошибки менее дорого обходятся на смоделированном поле битвы, военные стратеги всегда обращались к военным играм, чтобы отточить свои навыки, так что нет ничего удивительного, что шахматы или японская игра го – это идеальные военные игры. Также не стоит удивляться тому, что первым практическим применением теории игр был анализ нового вида войны – скорее всего, последней.

В девятнадцатом веке пруссаки изобрели игру, называвшуюся «Кригшпиль», буквально «военная игра». В нее играли на специальной доске. Это была тактика в чистом виде, и она стала реалистичной, как никогда после, когда в ней появился рефери, выносящий решение по спорным ситуациям при помощи таблиц данных, полученных во время реальных сражений. Военный успех прусской армии в значительной степени приписывался их изощренной тактике, отработанной на этой игре. Эту игру взяли на вооружение такие удаленные от Германии страны, как Америка и Япония. Поражение Германии в Первой мировой войне положило конец мифическому статусу игры. Становилось очевидным, что быстрое развитие нового вооружения и систем поставок означало полный пересмотр военной стратегии. Вооруженные силы нуждались в математиках и ученых не только для того, чтобы развивать вооружение, но также и для разработки новых стратегий, что до этого времени было прерогативой генералов, погруженных в изучение военной истории. Особенно заметно это стало после Второй мировой войны, и понимание, что две супердержавы обладают оружием массового поражения, полностью изменило правила. Настольные игры с конницей и пушками казались почти доисторическими.

Но математики продолжали анализировать стратегические игры, чтобы создать теорию, имеющую практическое применение. Эмиль Борель, французский математик, бывший в 1920-х годах военно-морским министром Франции, написал труд, озаглавленный «Теория игр», в котором он проанализировал такие вещи, как блеф в покере и применение математики игр в экономике и политике. Влияние Бореля можно увидеть в такой значительной книге, как «Теория игр и экономического поведения», изданной в 1944 году. Она была написана венгерским математиком Джоном фон Нейманом и австрийским экономистом Оскаром Моргенштерном. Оба этих ученых в то время работали в Принстоне. Они представили теорию игр как возможную модель экономических взаимодействий. Экономисты не спешили хвататься за новую теорию, которая своими корнями уходила в военные стратегии.

Янош фон Нейман (1903–1957), позже известный как Джон фон Нейман, родился в Будапеште и с самого раннего детства демонстрировал феноменальные математические способности. В 1921 году он стал одним из крайне ограниченного числа евреев, поступивших в Будапештский университет, а в 1926 году получил докторскую степень, защитив диссертацию по теории игр, несмотря на то что никогда не посещал лекции. Вместо этого он провел предшествующие годы в Берлине и Цюрихе, изучая химию – предмет, который его отец считал наиболее перспективным с точки зрения выбора карьеры, продолжая математические исследования совместно с такими математиками, как Герман Вейль и Джордж Полья, а позднее учился вместе с Давидом Гилбертом в Геттингене. В 1930 году он отправился в Принстон, и в 1933 году стал одним из пяти первых математиков, поступивших в недавно основанный Институт специальных исследований в Принстоне, где провел большую часть своей жизни. Когда нацисты пришли к власти, он отказался от всех постов в Германии и решил обосноваться в Америке, но не как беженец, а потому, что считал, что там у него будет больше возможностей для работы. С 1940 года он активно занимался научным консультированием по военным вопросам, работал в Лос-Аламосе над проблемами квантовой механики для создания атомной бомбы, а в 1955 году был назначен в Комиссию по ядерной энергии. Вспоминая о днях, проведенных в Цюрихе, Полья рассказывает: «Джонни был единственным студентом, которого я боялся. Если по ходу лекции я упоминал о нерешенной проблеме, то почти всегда он подходил ко мне по окончании лекции с полным решением, накарябанным на клочках бумаги». Нейман умер в 1957 году от рака, и друзья рассказывали о его отчаянии от потери мыслительных способностей после того, как он всю жизнь старательно взращивал их. Самая запоминающаяся из его работ была посвящена теории игр, квантовой механике и методам вычисления.

Самый простой тип игры – игра с нулевой суммой, с двумя стратегиями и двумя игроками – игра, в которой два совершенных, рационально мыслящих игрока стремятся к победе. В этой игре общий счет равен нулю, то есть то, что один игрок выигрывает, другой проигрывает. Забавный пример такой игры – «раздел пирога». Этот сценарий случается во многих домах – надо разделить пирог между двумя детьми так, чтобы ни один из них не считал, что другому досталось больше. Решение – двухступенчатый процесс; один ребенок разрезает пирог пополам, а второй ребенок имеет право первого выбора. Оба ребенка хотели бы кусок побольше, но при разумном предположении, что каждый ребенок понимает жадность другого, это оптимальное решение. Первый ребенок должен разрезать пирог самым справедливым способом, потому что, если одна часть будет намного большей, тогда второй ребенок, без сомнения, выберет именно его. Так называемая минимаксная теория, разъясненная фон Нейманом, гласит, что в этом случае возникает «седловая точка», или оптимальное решение, когда оба игрока будут довольны. Теория была дополнена включением большего числа игроков. Когда число игроков увеличивается, решение задачи становится все более трудным. Большая часть книги обсуждает игры в терминах таблиц выплат игрокам, и, по мере того, как число игроков все увеличивается, таблицы становятся все больше и больше, требуя значительных матричных расчетов.

В 1940-х годах Джон Форбс Нэш дополнил теорию игр фон Неймана играми «с ненулевой суммой». Пример такой игры – фондовая биржа: среди игроков могут быть победители и проигравшие, но общий денежный банк также меняется вследствие увеличения капитализации рынка. Нэш обнаружил, что игры с «ненулевой суммой» также имеют равновесное решение. Он родился в 1928 году в Западной Вирджинии, закончил Технологический институт Карнеги и получил докторскую степень в Принстоне, защитив в 1950 году диссертацию по бескоалиционным играм. Подготавливая докторскую диссертацию, он написал статью, которая, в сочетании с многими другими, стала основанием для присуждения ему в 1994 году Нобелевской премии по экономике. Начиная с 1951 года он занимался преподаванием в Массачусетском технологическом институте, где провел революционную работу, посвященную геометрии, многочленам Римана и евклидовому пространству. В 1959 году этот самый многообещающий из молодых математиков заболел шизофренией. События его жизни и излечение в середине 1970-х годов были описаны им лично на Всемирном конгрессе по психиатрии в 1996 году. Он продолжал создавать выдающиеся работы даже во время пребывания в больнице, занимаясь такими областями математики, как геометрия, топология и дифференциальные уравнения. Он также продолжал заниматься геометрией пространства.

Работа Нэша показала, что есть сценарии, в которых оптимальный результат не является следствием действий, кажущихся наиболее очевидными. Известный пример этого – так называемая дилемма заключенного, изобретенная Мелвином Дрешером и изложенная Альбертом Такером на лекции студентам-психологам. Сценарий при пересказывании изменился, но в его оригинальной форме двое мужчин были арестованы за нарушение закона и помещены в отдельные камеры. Если один из них признается, он будет вознагражден, а второй – оштрафован. Если оба признаются, то оба будут оштрафованы. Если ни один не признается, то они оба будут освобождены. Суть дилеммы в том, что оптимальной стратегией будет сохранять спокойствие, в результате чего оба будут выпущены на свободу, но страх, что такая стратегия может иметь неприятные последствия, если другой человек признается, вполне может вынудить обоих признаться, и тогда оба будут оштрафованы. Именно такие сценарии и стратегические игры используют на переговорах, будь то торговля, военные переговоры, бизнес или работа с персоналом. Экспериментально было выяснено, что люди отлично умеют находить теоретически оптимальные решения, и случайное отступничество ведет к быстрому и неотвратимому возмездию другой стороны – тактика, известная как «зуб за зуб».

Есть игры, в которых существует оптимальная стратегия, и как только она нащупывается, игра становится чрезвычайно тривиальной. Например, крестики-нолики – популярная детская игра, но как только ее стратегия становится понятной и каждый игрок начинает действовать согласно этой стратегии, интерес к игре сразу теряется.

Нэш доказал, что даже шахматы имеют оптимальную стратегию, но эта игра настолько сложна, что оптимальная стратегия все еще не найдена, даже не ясно, будет ли результат ничьей или победой для белых. Если оптимальная стратегия когда-либо будет найдена, шахматы станут столь же тривиальными, как крестики-нолики. Есть ли оптимальная стратегия для применения ядерного оружия? В течение нескольких коротких лет Америка была единственной ядерной державой, но страх, что Россия создаст ядерный арсенал, заставил некоторых мыслителей, вроде фон Неймана и даже Бертрана Рассела, протестовать против первого ядерного удара по России и призывать всемирный парламент добиваться глобального мира. Это не было осуществлено, и мир вскоре перешел к политике сдерживания и взаимно гарантированного уничтожения. Подобные стратегии были разработаны в секретном консультативном органе ученых Корпорации RAND.

Корпорация RAND была основана в 1945 году на оборонные фонды, оставшиеся после войны. Первоначально они были частью проекта «Дуглас Эркрафт». В 1948 году она была формально заявлена как некоммерческая организация с финансированием, осуществляемым военными и деловыми кругами. Это был типичный мозговой центр, ученые которого должны были «придумывать невероятное». Целью RAND были «исследования и развитие», большая часть его проектов была сосредоточена в области национальных ядерных стратегий. В 1940-е и 1950-е годы там какое-то время работали все известные математики США. Нэш познакомил их с семейством стратегических игр, включая «Кригшпиль». Была тщательно изучена логистика войны, были задействованы предохранительные механизмы, чтобы предотвратить любые случайности. Поскольку обе стороны выражали опасения относительно растущего запаса оружия, применение стратегии «зуб за зуб» казалось маловероятным – ядерная игра была одной из тех, в которую можно играть только один раз. Подобная политика привела к сильнейшему напряжению в жизни двух поколений населения мира и их лидеров.

RAND работал скорее как университет, чем как военное агентство, позволяя ученым свободно вести привлекательный для них образ жизни. Здание агентства было открыто круглосуточно. В RAND имелось процветающее издательство. Одной из самых популярных книг, изданных в 1954 году, была книга «Умелый стратег», написанная Джоном Д. Вильямсом, – популярное описание применения теории игр для непрофессионалов. В книге присутствовал столь типичный для этой корпорации черный юмор. Сейчас существует множество других мозговых центров, порожденных успехом RAND, но ни один из них не имел такого мощного коллектива математиков, занятых исключительно абстрактным мышлением.

Терминология, используемая в этих стратегических играх, включает сотрудничество и измену. Позднее теория игр много критиковалась за циничный взгляд на людей как на существ совершенно корыстных и пекущихся только о своей выгоде. Однако последующие исследования показали, что реальные стратегии людей действительно отражают их восприятие относительной пользы. В игре с нулевой суммой ничья оставила бы каждого игрока с теми же деньгами, с которыми он начал ее, но в игре с «ненулевой суммой», типа фондовой биржи, победа и проигрыш относительны, и там игра заключается скорее в получении максимального выигрыша, чем в уничтожении противника. Таким образом, сотрудничество становится более обычным делом, если обе стороны извлекают выгоду из сделки. Хотя поначалу теория игр развивалась довольно медленно, теперь это неотъемлемая часть анализа рыночной экономики. Недавно она была использована в глобальной продаже с аукциона лицензий предприятия коммунального обслуживания частным фирмам, в результате чего был получен очень необходимый доход и открыты новые рынки. Весь глобальный рынок – это сцена, где игроки колеблются между сотрудничеством и соревнованием. Это мир теории игр.

Я собираюсь рассмотреть вопрос: могут ли машины мыслить. Но для этого нужно сначала определить смысл терминов «машина» и «мыслить». Можно было бы построить эти определения так, чтобы они по возможности лучше отражали обычное употребление этих слов, но такой подход таит в себе некоторую опасность. Дело в том, что, если мы будем выяснять значения слов «машина» и «мыслить», исследуя, как эти слова определяются обычно, нам трудно будет избежать того вывода, что значение этих слов и ответ на вопрос «могут ли машины мыслить?» следует искать путем статистического обследования… Однако это нелепо. Вместо того чтобы пытаться дать такое определение, я заменю наш вопрос другим, который тесно с ним связан и выражается словами с относительно четким смыслом.

Эта новая форма может быть описана с помощью игры, которую мы назовем «игрой в имитацию». В этой игре участвуют три человека: мужчина (А), женщина (В) и кто-нибудь задающий вопросы (С), которым может быть лицо любого пола. Задающий вопросы отделен от двух других участников игры стенами комнаты, в которой он находится. Цель игры для задающего вопросы состоит в том, чтобы определить, кто из двух других участников игры является мужчиной (А), а кто – женщиной (В). Он знает их под обозначениями X и Y и в конце игры говорит либо: «X есть А и Y есть В», либо: «X есть В и Y есть А». Ему разрешается задавать вопросы такого, например, рода:

С: «Попрошу X сообщить мне длину его (или ее) волос».

Допустим теперь, что в действительности X есть А. В таком случае А и должен давать ответ. Для А цель игры состоит в том, чтобы побудить С прийти к неверному заключению. Поэтому его ответ может быть, например, таким:

«Мои волосы коротко острижены, а самые длинные пряди имеют около девяти дюймов в длину».

Чтобы задающий вопросы не мог определить по голосу, кто из двух других участников игры мужчина, а кто – женщина, ответы на вопросы следовало бы давать в письменном виде, а еще лучше – на пишущей машинке. Идеальным случаем было бы телеграфное сообщение между двумя комнатами, где находятся участники игры. Если же этого сделать нельзя, то ответы и вопросы должен передавать какой-нибудь посредник. Цель игры для третьего игрока – женщины (В) – состоит в том, чтобы помочь задающему вопросы. Для нее, вероятно, лучшая стратегия – давать правдивые ответы. Она также может делать такие замечания, как «Женщина – я, не слушайте его!», но этим она ничего не достигнет, так как мужчина тоже может делать подобные замечания.

Поставим теперь вопрос: «Что произойдет, если в этой игре вместо А будет участвовать машина?» Будет ли в этом случае задающий вопросы ошибаться столь же часто, как и в игре, где участниками являются только люди? Эти вопросы и заменят наш первоначальный вопрос «могут ли машины мыслить?».

Алан Тьюринг.
Статья «Могут ли машины мыслить?» (1950) [24]24
  Цит. по: А. Тьюринг. Может ли машина мыслить? С приложением статьи Дж. фон Неймана «Общая и логическая теория автоматов». Пер. и примечания Ю. А. Данилова. М.: ГИФМЛ, 1960.


[Закрыть]
22. Математика и современное искусство

В двадцатом веке произошли множество научных открытий и взрыв технологического развития физики, биологии и гуманитарных наук. В эпоху Просвещения считалось, что накопленные знания обеспечат нам неограниченную власть над природой и освободят от власти материального мира. Реакция искусства на эти события не всегда была позитивной, о чем свидетельствует отказ Уильяма Блейка от ньютоновского представления о Вселенной, как о часовом механизме. В начале двадцатого века наш взгляд на Вселенную радикально изменился – теория относительности и квантовая механика вернули Вселенной ее тайну и магию. Однако, поскольку во время двух мировых войн научные и политические события столкнулись в непримиримом конфликте, было много серьезных оснований для того, чтобы по-новому оценить наше место во Вселенной. Хочется надеяться, что в будущем наша мудрость будет развиваться пропорционально нашим знаниям.

В других главах я уже рассматривал роль математики в этих событиях. Здесь я сконцентрируюсь на влиянии математики, порой тесно сплетающейся с новейшей физикой, на культуру и искусство. Искусство нередко становится самым общепринятым выражением философских изменений и личных реакций художников на изменяющуюся технологическую среду. Конечно, будет преувеличением думать, что лишь математика оказывает влияние на различные культурные движения, не следует даже говорить, что она оказывает на них наиболее заметное влияние, но интересно рассмотреть те области, в которых математика играла уникальную и важную роль. Само использование математических терминов в артистической среде наглядно продемонстрировало, что художники впитали язык и идеи математики и преобразовали их в реалии мира искусства.

Во многих новых художественных движениях, возникавших в течение первых двух десятилетий двадцатого века, использовались язык и идеи новых версий геометрии, разработанных математиками. Живопись и скульптура по самой своей природе – художественное выражение соответственно двухмерного и трехмерного пространств. Но и живопись, и скульптура – это лишь ограниченное представление о мире и человеческом существовании. Как новые геометрии помогли по-новому увидеть окружающее пространство?

В эпоху итальянского Ренессанса математический расчет перспективы позволил более реалистично отобразить трехмерный мир на двухмерной поверхности. Перспектива расширила язык живописи, и художники быстро освоили новые правила. Позже они сознательно нарушили эти правила ради визуального и эстетического эффекта. В двадцатом веке концепции новых геометрий, вроде неевклидовой геометрии и многомерного пространства, и в особенности понятие четвертого измерения, легли в основу кубизма, футуризма и сюрреализма. В начале века новые геометрии оказывали влияние на отдельных художников в большей степени, чем на художественный стиль в целом. К концу 1920-х годов получила распространение концепция теории относительности Эйнштейна о четвертом временном измерении, но к тому времени уже было проведено множество исследований пространственного четвертого измерения. В середине девятнадцатого века, приблизительно в 1830 году, в результате независимого открытия Лобачевским и Бойаи неевклидовой геометрии, произошла математическая революция (Глава 16). В 1854 году Бернхард Риман издал свой труд «О гипотезах, которые лежат в основе геометрии», подготовивший почву для математического исследования многомерных пространств и физических экспериментов, нацеленных на изучение истинной геометрии пространства.

Евклидова геометрия была теперь всего лишь одной из многих возможных конфигураций. Фактическая геометрия пространства была и продолжает быть предметом исследований математиков и физиков, но одновременно с ними художники начали исследовать геометрию восприятия и изображения. Если мы посмотрим на расширение идеи трех измерений пространства на четвертое, мы сразу же натолкнемся на проблему отображения. В книге Эдвина Эбботта «Флатландия» (1844) описана классическая аналогия того, как будут воспринимать двухмерные существа, живущие в выдуманном им плоскостном двухмерном мире, случайно попавший к ним трехмерный объект. Это представление было проиллюстрировано Клодом Брагдоном во многих книгах, включая «Человек-квадрат: притча о пространстве более высокого порядка» (1912). Смысл этого представления заключался в том, чтобы составить интуитивное представление о целом объекте при помощи последовательного выполнения ряда срезов, или поперечных сечений, проходящих через объект. Таким образом, чтобы живопись могла выполнить свое предназначение как средство выражения и отобразить весь объект, не важно трехмерный или четырехмерный, нужно было выполнить последовательность сечений, проходящих через объект, или сделать множество изображений объекта с различных ракурсов. Кубисты именно так и представляли себе предмет их живописи.

Перспектива стала считаться ограничением и была отброшена, поскольку сужала представление об объектах. Различие между восприятием объектов и самими этими объектами, о котором говорил философ Иммануил Кант, легло в основу многогранных форм кубизма. Возникло множество формулировок четвертого измерения, выходящих за пределы строго математического и пространственного определения: для некоторых людей это было платоновское царство идеального, мистики и иррациональности. Короче говоря, четвертое измерение освободило художника, позволив ему исследовать действительность, лежащую за рамками трехмерной перспективы. Эта свобода была подхвачена не только кубистами, но и итальянскими футуристами. Их интеллектуальный манифест 1909 года был отчасти политическим, отчасти художественным. Они провозглашали современность, индустриализм и технологичность. Художники типа Умберто Боччони, Джино Северини и Джакомо Балья выражали в своем творчестве динамизм четвертого измерения.

Давайте себе представим любое трехмерное тело, например африканского льва, в промежуток времени между любыми двумя моментами его существования. Между львом L0, или львом в момент времени t=0, львом L1, или финальным львом, расположено бесконечное число африканских львов самых разных видов и форм. Теперь, если мы рассмотрим множество, сформированное всеми этими точечными львами, существовавшими во все мгновения и во всех положениях в пространстве, и затем изучим развертывающуюся поверхность, то мы получим огибающего суперльва, наделенного чрезвычайно тонко нюансированными морфологическими особенностями. Именно такие поверхности мы называем «литохрониками».

Оскар Домингес.
Статья «Окаменение времени» (1942)

Вероятно, самым влиятельным математиком в мире официоза Франции в то время был Анри Пуанкаре, уважаемый интеллектуал, статьи которого выходили далеко за пределы математики, затрагивая вопросы политики, образования и этики. В 1906 году он стал президентом Академии наук, и его популярные работы вывели физику и математику на общественную сцену. Его философия относительности знания и сосредоточенность на творческой стороне математической деятельности, включая роль подсознательной инкубации трудных проблем, оказали огромное влияние на научную мысль начала двадцатого столетия. Возможно, в кубистских кругах не меньшее влияние имел малоизвестный математик Морис Принсе, специалист по страховой математике и живописец-любитель, который исследовал математику неевклидовой геометрии совместно с художниками Жаном Метцингером и Хуаном Грисом.

В 1905 Альберт Эйнштейн, в то время все еще скромный патентный чиновник, впервые написал о специальной теории относительности. В 1916 году, став профессором, он издал свою общую теорию. К концу 1920-х годов четвертое пространственное измерение было почти полностью заменено идеей относительно четвертого темпорального, или временного, измерения. Время, а следовательно, и движение полностью завладело умами некоторых художников, таких, как Марсель Дюшан и Умберто Боччони с его скульптурой «Уникальные формы непрерывности в пространстве» (1913), а также Франтишека Купки, и породило абстрактное искусство Казимира Малевича.

Кубизм был основан Пабло Пикассо и Жоржем Браком. Картина Пикассо «Авиньонские девицы» (1907) была первой кубистской картиной. Наиболее плодотворный период кубизма закончился в 1922 году, поскольку его последователи к тому времени отошли от ранее единого стиля. Хотя кубизм считался последовательным течением в искусстве, в основной философии и практике всегда существовали некоторые различия. Пикассо, кажется, находился в некоторой степени под влиянием математических идей, заявляя, что на него сильно повлияли смещающиеся перспективы Сезанна и строение африканского искусства и скульптуры. Брака также очень интересовали геометрические представления, ведь именно он придумал термин «кубизм». Конечно, можно проследить и непрекращающийся интерес к более традиционным геометрическим представлениям перспективы и структуры пространства. В 1912 году в Париже происходила выставка, оказавшая значительное влияние на развитие искусства. Она называлась «Золотое сечение» – ссылка на классическую пропорцию, которую часто можно увидеть в архитектуре и в искусстве. В то же самое время художники вроде Гриса и Жака Виллона приблизились к чисто абстрактной и геометрической форме кубизма, лишенного любых предметно-изобразительных свойств.

Оценить влияние на искусство начала двадцатого столетия неевклидовой геометрии намного труднее, чем воздействия идеи четвертого измерения. Проблема может корениться в сложности отображения неевклидовых пространств. Итальянский математик Эудженио Бельтрами (1835–1900) отобразил геометрию Лобачевского в виде физической модели псевдосферы. Простого знания о существовании неевклидовой геометрии было достаточно, чтобы дать волю артистическому воображению. Возможно, ее формальный математический характер привел к тому, что она оказалась менее плодотворной, чем артистическая свобода, предложенная четвертым измерением. Живописцы вроде Дюшана были очень влиятельными, но они оставались в меньшинстве со своим предложением, чтобы художники изучали математику и другие точные науки. Однако анализ неевклидовой геометрии оказал влияние на основателя дадаизма – Тристана Тцара – и сюрреалистов.

В 1936 году живописец Шарль Сирато издал «Манифест дименсионизма». Цитируя теории Эйнштейна как один из источников своего вдохновения, он объявляет, что, «одухотворенные новой концепцией мира», искусства проникли в новое измерение. Живопись должна была оставить плоскость и выйти в объемное пространство, таким образом придя к пространственным конструкциям и инсталляциям. Он настаивал, что «скульптура должна покинуть замкнутое, неподвижное и мертвое пространство, то есть трехмерное пространство Евклида, чтобы завоевать артистически выразительное, четырехмерное пространство [Германа] Минковского». Манифест был подписан внушительным числом ведущих художников. Декларация учитывала и основные интерпретации четвертого измерения, то есть как пространственное и духовное измерение, так и время.

Однако, вообще говоря, немногие живописцы после 1930-х годов демонстрировали открытый интерес как к четвертому пространственному измерению, так и к неевклидовым пространствам, за исключением сюрреалистов. Андре Бретон нашел новые геометрии идеально подходящими в качестве аргументов в пользу новой «сюрреальности». Хотя сюрреалистичная теория Бретона в значительной степени базировалась на анализе подсознания Фрейда, на их создание также оказали влияние измерения высшего порядка, четырехмерное пространство-время, объединенное с более высокими измерениями иррационального и подсознательного. Мы можем заметить этот интерес в названиях некоторых из их работ, вроде «Молодой человек, удивленный полетом неевклидовой мухи» Макса Эрнста (1942), а также в их содержании. Примеры таких произведений – «пластичные» часы Сальвадора Дали, а также «Постоянство памяти» (1931) и гиперкуб – четырехмерный аналог куба – в его «Распятии» (Corpus Hypercubicus) 1954 года. Наиболее научный подход к искусству продемонстрировал сюрреалист Оскар Домингес, который, работая в скульптуре, был очарован жизнью объектов во времени. Его идеи относительно литохронических поверхностей кажутся очень близки к скульптурным работам Боччони. Оскар Домингес создал ряд пространственных «космических» картин, многогранные формы которых сравнивались с геометрическими моделями, построенными в Институте Анри Пуанкаре и показанными на фотографиях Мэна Рея на выставке сюрреалистов 1936 года. Но, чтобы неевклидовы геометрии явились миру во всей своей эстетической прелести и математической точности, надо было дождаться появления компьютеров.

Новые многомерные и неевклидовы геометрии, которые зародились как абстрактные математические теории, не только стали использоваться в новой физике, но и послужили источником вдохновения для художественных и философских движений, которые стремились свергнуть привычный образ мышления. В мире искусства эти геометрии принимали самые разные формы, от духовных до совершенно анархических, а порой и оба вида одновременно. Отказ от евклидовой геометрии как пространственной парадигмы означал, что было создано пространство для нового взгляда на жизнь, Вселенную и все сущее.

Новые художники подвергались яростному нападению за их озабоченность геометрией. Однако геометрические фигуры – сущность рисунка. Геометрия – наука о пространстве, его измерениях и соотношениях – всегда определяла нормы и правила живописи.

До сих пор трех измерений геометрии Евклида было вполне достаточно для выражения беспокойства, которое чувствуют великие художники, тоскующие по безграничности.

Новые живописцы не собираются, как и их предшественники, быть геометрами. Но можно сказать, что геометрия для скульптуры – то же самое, что грамматика для искусства слова. Сегодня ученые не ограничиваются тремя измерениями Евклида. Живописцы совершенно естественно, можно сказать интуитивно, увлеклись новыми возможностями измерения пространства, которые на языке современных студий обозначаются термином «четвертое измерение».

С точки зрения пластики четвертое измерение выходит из трех известных измерений. Оно отображает необъятность пространства во всех направлениях в любой взятый момент. Это само пространство, это измерение бесконечности. Четвертое измерение придает всему пластичность. Оно придает всему правильные пропорции, в то время как в греческом искусстве, например, из-за несколько механического ритма пропорции постоянно нарушаются.

В греческом искусстве было чисто человеческое понимание красоты, в нем нужен человек как мера совершенства. Но в искусстве новых живописцев за новый идеал принимается бесконечная Вселенная, и именно по этому идеалу мы сверяем новые формы прекрасного, именно он позволяет живописцу располагать предметы в соответствии с желаемой им степенью пластичности…

И наконец, я должен отметить, что четвертое измерение… призвано поддержать устремления и предчувствия многих молодых художников, которые изучают скульптуры Египта, Африки и народов Океании, медитируют на различных научных работах и живут в ожидании великого искусства.

Гийом Аполлинер.
Статья «О предмете современной живописи».
Журнал «Суаре де Пари», февраль 1912 г.

    Ваша оценка произведения:

Популярные книги за неделю