Текст книги "Как растения защищаются от болезней"
Автор книги: Ольга Озерецковская
Соавторы: Лев Метлицкий
Жанры:
Биология
,сообщить о нарушении
Текущая страница: 11 (всего у книги 13 страниц)
Чем больше число линий, составляющих многолинейный сорт, тем больше будет эффект. К тому же и композицию отдельных сортов можно каждый год менять в соответствии с составом генов популяции паразита. Из-за этого популяция паразита будет все время вынуждена перестраиваться, и угроза эпифитотий тем самым ликвидируется.
Таким образом, мультилинейные сорта будут совмещать в себе преимущества чистолииейиых сортов (выравненность по всем хозяйственно цепным признакам, кроме генов устойчивости) и сортов-популяций прошлого, поскольку они будут гетерогенными по генам устойчивости. Сейчас создаются специальные селекционные программы по получению мультилинейных линий-популяций для пшеницы, овса, ячменя и других цепных культур.
Согласно мнению IO. Т. Дьякова, существующий сейчас в защите растений принцип «слабая поражаемость лучше полной устойчивости» представляет собой один из парадоксов фитоиммунитета, поскольку создание абсолютно непоражаемого сорта не только не осуществимо, по и порочно в своей основе. Маловероятно уничтожить какой-либо вид патогенного микроорганизма, поскольку он имеет преимущества перед растением-хозяином из-за способности быстро размножаться и мигрировать на большие расстояния. Но даже если и допустить, что это удастся, то на освободившуюся экологическую нишу всегда найдется какой-либо претендент, потенциальную опасность которого заранее трудно предсказать. Так что лучше не рисковать.
Исходя из вышесказанного, решение проблемы защиты культурных сортов от эпифитотий предполагает установление того равновесия между растениями и их паразитами, которое было нарушено чистолинейной селекцией, и лежит на пути расширения генетического разнообразия культурных сортов. Создавая и внедряя монокультуры, человек переусердствовал и слишком решительно и недальновидно вмешался в законы природы, чем не замедлили воспользоваться патогены.
Селекция на устойчивость – длительный процесс, и часто требует не менее 10–15 лет упорного труда. Правда, развитие теории, так же как и оснащение селекционного процесса современной техникой и оборудованием, позволяет сейчас сократить эти сроки. В поисках доноров устойчивости чрезвычайно перспективным представляется искусственный мутагенез, с помощью рентгеновских и ультрафиолетовых лучей, гамма-излучения или нейтронов, а также химических мутагенов. Под влиянием этих воздействий возникают индуцированные' мутации, которые могут дополнить природное разнообразие таким образом, что шансы на редкие гены будут увеличены. В результате разработки новых более топких методов индуцированные мутации будут становиться все более важными в селекции на устойчивость, особенно по мере истощения естественных источников генетического разнообразия. Обнадеживают также новые методы клеточной селекции и слияние протопластов для получения гибридов между нескрещивающимися сортами.
Устойчивые сорта в будущем, по-видимому, будут играть все более и более важную роль в борьбе с вредителями и болезнями растений. И в этом отношении селекция на устойчивость начинает успешно конкурировать с разработкой и применением пестицидов.
ПЕСТИЦИДЫ:
ВЧЕРА, СЕГОДНЯ, ЗАВТРА
История биологии знает немало событий, взволновавших широкую общественность. Однако есть события совершенно особые, и к ним можно отнести применение пестицидов.
Пестициды в дословном переводе с латинского – заразоубивающие средства (пестис – зараза, цедерс – убивать). Сам термин «пестициды» собирательный: это и инсектициды, используемые для борьбы с насекомыми (инсектум – насекомые); и фунгициды, направленные против паразитарных грибов и бактерий (фунгус – гриб); и гербициды против сорняков (герба – трава); и зооциды против грызунов; и нематоциды против нематод. Имеются и другие пестициды, обладающие комплексным действием. Например, нитрофан является инсектицидом против тлей, клещей, щитовок и фунгицидом для борьбы с возбудителями таких болезней, как рак, антракноз, мильдью.
Наибольший накал страстей ученых и общественности, несомненно, вызвал инсектицид под сокращенным названием ДДТ – дихлордифенилтрихлорэтан. В его оценке одно быстро сменяло другое. Радужные надежды и горькие разочарования, восторженные отзывы и тяжкие обвинения. Пестициды называли чудом современной химии и непростительной ошибкой ученых.
ДДТ был синтезирован еще в 1874 г. Но только в 1937 г. было открыто его инсектицидное действие. Автору открытия швейцарскому ученому П. Рихтеру была присуждена Нобелевская премия. Двадцать лет спустя Швейцария запретила применение этого препарата.
Чем же так провинился ДДТ, и почему он впал в такую немилость? По данному вопросу написаны тысячи статей и высказаны взаимоисключающие точки зрения.
Еще продолжалась вторая мировая война, когда ДДТ одержал свою первую крупную победу. С его помощью удалось предотвратить вспышку сыпного тифа. Прошло немного лет, и с помощью ДДТ удалось подавить размножение комаров – переносчиков возбудителей малярии, и тем самым спасти жизнь миллионов людей. Затем последовали победы над многими сельскохозяйственными вредителями. Америка вдвое увеличила сбор хлопка благодаря защите хлопчатника от долгоносика. В Советском Союзе были сохранены миллионы тонн пшеницы от вред-пой черепашки. Началось триумфальное шествие препарата по странам и континентам. За 20 лет во всем мире его было использовано около 4,5 миллионов тонн.
Но постепенно над ДДТ сгущались тучи. Появились серьезные опасения, что пестицид оказывает вредное влияние на окружающую среду. Однако вера в пего была настолько сильна, что вначале опасения вообще не воспринимали всерьез, а капиталистические монополии не желали считаться ни с чем, кроме прибыли. Отчеты ученых просто скрывали. Целых семь лет власти США не разрешали опубликовать отчет об ответственности ДДТ за гибель тихоокеанской рыбы.
Отчет был составлен специалистом по исследованию качественного состава воды Уолтером Томсоном. Сравнение содержания пестицида на полях Америки с показателем уловов сардинки привело к «ошеломляющим» результатам: поголовье сардинок убывало в такой же пропорции в какой возрастало применение ДДТ. Попадание пестицида в районы лова рыбы объяснялось размыванием почвы при разливах рек, которые несли его с собой в океан. Он оказался ядовитым не только для рыб, по и для организмов, которыми они питаются.
Последовали и новые отчеты о вреде ДДТ для других организмов, в частности птиц. Скрывать их от общественности становилось все труднее. Гром разразился в 1962 г. с выходом в США книги Речел Карсон под названием «Безмолвная весна». В ней изображены страшные последствия применения ДДТ. Не слышно пения птиц, не плавают в водоемах рыбы, многие виды животных на грани полного исчезновения. В США книга вызвала бурю протестов (подогреваемых радио, телевидением, газетами) против ДДТ и других пестицидов, которые могли принести вред окружающей среде.
В ноябре 1972 г. на заседании Продовольственной и сельскохозяйственной организации ООН (ФЛО) выступил с лекцией Норман У. Борлоуг – лауреат Нобелевской премии мира 1970 г. за личный вклад в так называемую зеленую революцию. Лекция была названа «Человечество и цивилизация снова на распутье». В ней была отдана дань уважения Р. Карсон, сделавшей очень много для понимания красоты природы. Но книга была подвергнута резкой критике, прежде всего за то, что она внушала читателям, что без пестицидов будто бы можно обойтись. По мнению Берлоуг, такой день если он вообще наступит, пока еще очень далек.
Лекция была страстной, но одновременно и пристрастной. Теории противников были объявлены шаткими, а приводимые факты сокращения численности животных объяснялись не столько применением пестицида, сколько другими причинами нарушения экологического равновесия, например сбросом в водоемы отходов промышленных предприятий.
Факты, однако, со всей неоспоримостью говорили об отрицательном влиянии ДДТ. Приведем лишь некоторые[19].
Если в воде концентрация ДДТ составляет 0,000005 единицы, то в планктоне она достигает 0,04 единицы, т. е. увеличивается почти в 10 тысяч раз; в мелкой рыбе, питающейся планктоном, увеличивается до 0,5 единицы; в крупной рыбе, пожирающей мелкую, до 2. Тогда как у птиц, кормящихся крупной рыбой, до 2,5, т. е. в 500 тысяч раз выше по сравнению с исходной концетрацией. Превышение содержания ДДТ в фитопланктоне лишь на несколько частей на миллиард уже отражается на процессе фотосинтеза. А ведь фитопланктон производит почти 70 % кислорода, содержащегося в воздухе.
На острове Калимантан в Индонезии ящерицы «устроили пир» из мух, убитых ДДТ. Но это поистине был пир во время чумы, так как вскоре погибли и ящерицы. Вслед за ними стали гибнуть и кошки, питавшиеся ящерицами. В результате крысы, которых уничтожали кошки, наводнили деревни и создали угрозу возникновения эпидемий.
Но это лишь одна сторона проблемы. Другая, не менее острая, состоит в том, что вредители, против которых применялся ДДТ и считавшиеся к нему весьма чувствительными, в итоге меньше всего от него пострадали. Объясняется это тем, что они приобрели к нему настолько высокую устойчивость, что даже при увеличении концентрации препарата в несколько раз против разрешенных нормами, они оставались живыми. Более того, насекомые, ставшие устойчивыми к ДДТ, приобрели устойчивость и к некоторым другим хлорорганическим пестицидам. Неудивительно, что в большинстве стран мира, в том числе и в нашей стране, применение ДДТ было запрещено в законодательном порядке или крайне ограничено. Заметим, что в нашей стране, когда ДДТ применялся, допустимые его остатки в полевых, плодовых и овощных растениях были самыми низкими: в 7 раз ниже, чем в США и Канаде, в 2 раза ниже, чем в Швейцарии. И сейчас у нас действуют самые строгие критерии оценки всех пестицидов.
Итак, ДДТ во многом помог, во многом навредил, но и многому научил, хотя и дорогой ценой. Этот урок следует всегда помнить, когда речь заходит о применении пестицидов, без которых, по признанию ведущих ученых мира, пока обойтись нельзя.
Подсчитано, что в настоящее время чуть ли не каждые 10 минут в мире создается соединение, обладающее пестицидными свойствами. Но подавляющая их часть отбрасывается уже после первичного отбора (скрининга). После полевой оценки и определения безвредности остаются считанные единицы. И в этом тоже один из уроков, извлеченных из применения ДДТ.
В прошлом при испытании пестицидов ограничивались определением степени их токсичности путем скармливания препаратов животным. В дальнейшем уже стали определять, как быстро препарат выводится из организма и не накапливается ли он в каком-либо органе, например в печени. Далее начали выяснять, а не оказывает ли препарат или продукты его распада, возникающие в организме, мутагенное и канцерогенное действие.
Правда, чрезвычайно низкий выход пестицидов из огромного числа синтезируемых соединений связан еще с несовершенством самого принципа их синтеза и первичного отбора, основанного на методе проб и ошибок. Вполне попятно, что при этих условиях с каждым годом стоимость нового пестицида сильно возрастает. По мнению специалистов, при более рациональном использовании ужо существующих пестицидов они могут давать вдвое больший эффект по сравнению с ныне получаемым. Особо важное значение имеет улучшение службы прогнозирования времени появления вредителей и возбудителей болезней, а также усовершенствование техники нанесения пестицидов.
Пестициды могут быть эффективны только в том случае, если они применяются в нужное время, в нужном количестве и нужном месте. В противном случае пестициды приносят больше вреда, чем пользы. Несоблюдение этого требования служит причиной порою возникающих и поныне бесплодных дискуссий о пользе или вреде химизации сельского хозяйства.
Поскольку наша книга посвящена устойчивости растений к болезням, остановимся лишь на фунгицидах.
Фунгицидами называются вещества, убивающие или подавляющие споры грибов или их мицелий. Еще с древних времен было известно, что подобным действием обладает сера. О ней вновь вспомнили во Франции, когда в середине прошлого века туда проник из Америки одни из паразитарных грибов – оидиум, нанесший большой ущерб виноградникам. Опыливание виноградников серой помогло приостановить распространение этой опасной болезни.
Однако сера оказалась малоэффективной против другого, также проникшего с Американского континента паразита виноградников, называемого мильдью. И тогда против пего во Франции была предложена смесь, состоящая из медного купороса и негашеной извести, в которой действующим началом является медь. Подобная смесь, названная бордосской жидкостью, оказалась весьма эффективной не только против мильдью, но и других возбудителей болезней, благодаря чему была признана царицей фунгицидов. Так было положено начало промышленного производства фунгицидов с использованием для этих целей как неорганических веществ, так и сложных органических соединений.
С увеличением числа фунгицидов их стали классифицировать по биологическому действию, химическому составу, способу применения и ряду других важных признаков. В самом общем виде существующие сейчас фунгициды можно разделить на контактные и системные.
Первое поколение фунгицидов относится к контактным, для действия которых необходим контакт фунгицида с патогеном. Все они обладают широким спектром биологической активности. Они действуют не избирательно, а сразу на многие структуры клетки и разные звенья обмена веществ, являющиеся более или менее общими для всех живых организмов. Благодаря этому паразитарным грибам и бактериям довольно трудно приспособиться к контактным фунгицидам и многие из них используются в течение длительного времени. Примером является та же бордосская жидкость.
Однако все эти фунгициды вступают в контакт с паразитом только на поверхности растения. Ни один из них не может проникать в ткани растений в сколько-нибудь эффективных дозах. Кутикула, покрывающая поверхность листьев, стеблей, плодов, является для них непреодолимым барьером. Это и хорошо, и плохо. Хорошо потому, что, не проникнув в растение, они не оказывают на них токсическое действие. Но по этой же причине они являются эффективными лишь против паразитов, развивающихся на поверхности растения. И это плохо. Они могут оказаться эффективными и против паразитов, проникающих в растение, по лишь в том случае, если вступают с ними в контакт еще до их проникновения в растительную ткань, когда они находятся на поверхности растения. Следовательно, против таких паразитов контактные фунгициды приходится применять еще до появления симптомов болезни. Но до встречи с паразитом фунгицид может разложиться, его может смыть дождь или сдуть ветер. Кроме того, и это весьма существенно, контактными фунгицидами надо покрывать всю поверхность растения, как верхнюю, так и нижнюю сторону листьев. В небольшом хозяйстве такая обработка растений хотя и является трудоемкой, по осуществима. На больших же площадях достичь такого равномерного нанесения фунгицида с помощью существующих технических средств практически невозможно.
Ученые начали создавать второе поколение пестицидов системного действия, т. е. соединения, которые способны проникать внутрь растения и перемещаться в нем. О возможности вводить в растения чужеродные вещества давно известно. Еще в XII в. пытались получать плоды с новым ароматом, вкусом и цветом путем введения в просверленные в стволах отверстия пряностей и красителей.
13 конце 30-х годов нашего столетия на основе учения о передвижении веществ в растениях был создай первый системный инсектицид, а четверть века спустя – первый системный фунгицид.
Отличительная особенность системных фунгицидов состоит в том, что они способны проникать в растение, продвигаться по нему, убивать или подавлять в нем рост проникшего паразита, не повреждая при этом растительную клетку. Иными словами, мирно существовать с пей. Все они действуют избирательно, т. е. на определенное звено в системе обмена организма. Если контактные пестициды бьют бесприцельно, то системные поражают лишь определенную мишень. Так, одни из первых системных фунгицидов – бенлат, или беномил, связывается только с одним белком тубулином, а такие контактные фунгициды, как карбаматы, инактивируют более 20 белков-ферментов.
Следует, правда, признать, что действие системных фунгицидов все же еще мало изучено. Многими работами показано, что системные фунгициды в отличие от контактных оказывают влияние преимущественно на биосинтетические процессы, т. е. ведущие к получению нового вещества, необходимого для роста и сохранения организма. Контактные фунгициды в первую очередь вызывают нарушение структуры клетки.
Конечно, прицельный удар системного фунгицида является более точным и поэтому более сильным. Действительно, все системные фунгициды оказались более сильными по сравнению с контактными. Но в то же время и паразитам легче приспосабливаться к фунгицидам, которые бьют только по определенной мишени. Так оно и произошло. В результате вместо уничтоженных рас паразита стали появляться новые, еще более агрессивные, а взамен одних видов микроорганизмов начали усиленно развиваться другие. Знакомая ситуация. Возникли новые проблемы, и начался поиск путей их решения. Проблемы в общем уже знакомые, близкие к тем. которые возникали при использовании сортов растений с вертикальной и горизонтальной устойчивостью. Подобно сорту с вертикальной устойчивостью, системный фунгицид хотя и действует сильно, однако быстро теряет свою активность в силу адаптации к нему фитопатогенов. А подобно сорту с горизонтальной устойчивостью, действие контактного фунгицида хотя и менее сильно, но зато более продолжительно, поскольку к нему трудно адаптироваться. Поэтому как при выведении сортов необходимо заботиться о многообразии генов их устойчивости, так и при подборе фунгицидов нужно стремиться к многообразию их химического строения. Это может быть достигнуто разными путями. Во-первых, созданием фунгицидов в виде смесей из различных химических соединений, обладающих синергическим действием. Во-вторых, чередованием применения разных фунгицидов. Задача не простая, так как пока еще далеко не ясно, что с чем смешивать, в какой последовательности и что с чем чередовать.
Но даже системный фунгицид, каким бы избирательным действием он пи обладал, если он убивает или подавляет паразита, то может оказаться токсичным и для других организмов и, следовательно, потенциальным нарушителем экологического равновесия со всеми вытекающими отсюда отрицательными последствиями. Наряду с дальнейшим совершенствованием системных фунгицидов перед учеными встала новая задача – найти соединения, которые не были бы ни фунгитоксичными, ни фитотоксичными, а усиливали бы естественные механизмы устойчивости растений к болезням.
Сравнительно недавно удалось синтезировать соединения, которые, будучи слабо токсичными или вовсе нетоксичными для паразитов, тем не менее защищали от них растения. Механизм их действия пока не изучен, но поскольку они не токсичны для паразитов, то можно предположить, что они каким-то образом действуют на механизмы, контролирующие фитоиммунитет, хотя это и необязательно.
Некоторые фитопатологи предлагают па. звать соединения, действующие по принципу повышения устойчивости растений к болезням, системными терапевтантами. Но дело не в терминологии. Главное – найти вещества, которые действительно повышали бы устойчивость растений к болезням, не оказывая при этом отрицательного влияния на биосферу. Их поиск начат, и постепенно выявляются трудности, которые придется преодолеть.
ИММУНИЗАЦИЯ
Триумфом медицинской иммунологии является избавление человечества от многих весьма опасных в прошлом болезней. Достигнуто это путем искусственно привитого иммунитета. Достаточно упомянуть о ликвидации таким путем оспы, уносившей в прошлом сотни тысяч человеческих жизней. Вакцины созданы и против других тяжелых болезней. Иммунологи рассчитывают на новые вакцины, включая вакцины против рака. Ничего этого пока нет в активе фитоиммунологии. Нет «пока», но мы убеждены, что будет, причем будет в самом ближайшем будущем. Для подобного оптимизма сейчас уже имеются достаточные основания.
Перенесемся мысленно в не столь далекое прошлое, когда повсюду свирепствовала оспа. Из каждой сотни людей шестьдесят заболевали оспой, двадцать из них умирали, а оставшиеся сорок оставались на всю жизнь обезображенными. Древние китайцы и арабы давно знали, что люди, перенесшие оспу, редко заболевают ею вновь. Предполагается, что именно на Востоке впервые начали вырабатывать у людей искусственный иммунитет, заражая их веществом из гнойников больных и вызывая при этом несильный приступ болезни.
Однако прививание здоровому человеку вещества из оспенных язв больного было крайне опасной процедурой: само оспопрививание вызывало немалую смертность, а прививки могли стать причиной эпидемии.
Существовала и еще одна форма оспы – коровья. Люди ею почти не болели или болели в легкой форме. При этом бытовало поверье, что человек, переболевший коровьей оспой, никогда не заболевает настоящей. Этим заинтересовался английский врач из Глочертершира Эдвард Дженнер, который несколько лет своей жизни посвятил изучению этого явления. В 1798 г. он привил мальчику коровью оспу, а затем заразил его настоящей. Мальчик не заболел. Отсюда и возник термин вакцинация, поскольку инфекционный материал брался от коровы, а корова по-латыни – vacca.
И хотя Дженнер подарил человечеству способ предупреждать оспу, тем не менее его опыты не создали общего принципа защиты от болезней. Прошло еще 85 лет, прежде чем Луи Пастер открыл закон стимуляции иммунитета с помощью вакцин. Пастер разработал универсальный принцип: искусственный иммунитет можно создать, если в организм предварительно ввести ослабленный возбудитель той болезни, к которой нужно выработать невосприимчивость.
В последующие годы ученые добивались успеха, иммунизируя животный организм возбудителями той же болезни, ослабленными с помощью обработки теплом, светом, недостатком кислорода, культурами убитых микроорганизмов, токсинами микроорганизмов и, наконец, анатоксинами (обезвреженными токсинами, сохранившими свои антигенные группировки). Использовалась и пассивная иммунизация, в том случае когда в организм вводили готовые антитела, полученные от других животных.
С помощью этого арсенала средств удалось создать действенные вакцины против оспы, бешенства, сибирской язвы, дифтерии, полиомиелита и других опасных болезней. Практическая иммунология торжествовала.
Естественно, что фитоиммунология, которая к тому времени только зарождалась как наука, не могла оставаться в стороне от успехов медицины. И столь же естественно, что она пошла по пути, проложенному медиками. Исследователи вводили в растения, поливали их ослабленными культурами микроорганизмов, их авирулентными штаммами, либо экстрактами. Мнения ведущих фитоиммунологов того времени относительно возможности приобретенного иммунитета у растений расходились. Так, Овенс в своем обстоятельном трактате «Принципы растительной патологии» в 1928 г. писал: «Заметного прогресса в этом направлении пет, и сомнительно даже, будет ли он когда-нибудь в отношении растений, как это имеет место применительно к животному царству. Структура растений так отлична от животных, особенно в отношении сообщающейся системы, что кажется мало вероятным, чтобы когда-либо были достигнуты успехи в этом направлении»[20].
Однако отдельные успехи все же были. Уже в начале века были проведены опыты, подтверждающие возможность иммунизации растений. Так, Г. Ноэль и Н. Бернар показали, что орхидеи после заражения их паразитарными грибами из рода Rhizoctonia приобретали иммунитет к повторным заражениям. Т. Боверн и О. Рай еще в 1901 г. применили вакцинацию бегонии, овса, фасоли и люпина как ослабленными культурами грибов и бактерий, так и экстрактами из этих культур и получили положительные результаты. Итальянские исследователи Д. Карбоне и С. Арнауди провели многочисленные опыты по иммунизации растений путем воздействия на них ослабленными культурами или экстрактами из микроорганизмов. На основании их исследований установлен факт усиления или образования заново иммунитета у растений.
В общем имелись отдельные примеры успешной иммунизации растений путем вакцинации как ослабленными культурами паразитарных грибов и бактерий, так и экстрактами. К сожалению, срок действия такой иммунизации, как правило, был очень невелик.
Но наряду с этим существовали противоположные результаты, свидетельствующие о неудачах иммунизации, и таких было большинство.
Положение было крайне неопределенным. Многие авторитеты резко возражали против попыток иммунизации растений. Но не Н. И. Вавилов, который писал, что возможность приобретенного иммунитета у растений в результате вакцинации и влияния паразитов может считаться доказанной. Неясна только природа такого иммунитета. Последнее, вероятно, и служило возможной причиной неудач. Ведь опыты по иммунизации растений проводились вслепую, методом проб и ошибок. Никакой теории иммунитета не существовало. Было совершенно неясно, что именно в растениях следует иммунизировать и чем следует проводить иммунизацию. Простая аналогия с принципами иммунизации животных к успеху не приводила. Нужна была теория, вскрывающая отличия и единство животных и растений, чтобы с ее помощью вооружить исследователей методом иммунизации.
Каково же положение с иммунизацией растений к настоящему времени? Если в теоретических аспектах иммунизации наметился определенный прогресс, то в вопросах ее практической реализации исследователи недалеко ушли по сравнению с состоянием дел в начале нашего века. Пожалуй, единственным исключением из этого правила является метод вакцинации, предохраняющий от вирусных болезней.
Вакцинация, защищающая растения от вирусов, предполагает индуцирование в них вирусоустойчивости в ответ на обработку ослабленными штаммами вирусов. В вакцинированных растениях вирулентные штаммы вирусов развиваются медленнее, их распространение сдерживается, а вредоносность снижается. Считалось, что в вакцинированном растении происходит антагонистическое взаимодействие или интерференция между двумя вирусами, один из которых представляет собой предварительно введенный в растение вакцинный штамм, а другой – патогенный штамм, которым осуществляется заражение.
Наибольшие успехи достигнуты при вакцинации томатов вирусом табачной мозаики для борьбы с мозаичным заболеванием томатов в условиях закрытого грунта. Такого рода вакцинация уже сейчас успешно осуществляется в Голландии, Швеции, Дании, Англии, Канаде, США, Японии. В СССР вакцинация томатов против вирусов официально одобрена и рекомендована к внедрению МСХ СССР. Теоретически не отвергается возможность вакцинации и других культур. Уже появляются отдельные экспериментальные работы по использованию слабо-патогенных вирусов в борьбе с вирусными болезнями картофеля и огурцов.
Однако метод вакцинации ослабленными штаммами вирусов должен использоваться с соблюдением осторожности, поскольку не исключено, что в популяции вакцинного штамма могут появиться агрессивные формы, которые при благоприятных условиях могут поразить устойчивые сорта. Именно поэтому метод пока еще не выходит за пределы закрытого грунта.
О механизмах вакцинации пока еще известно мало. Существует несколько гипотез, ни одна из которых пока еще не может считаться окончательно доказанной. Одна из таких гипотез, так называемая гипотеза белкового пленения, состоит в предположении, что РНК патогенного вируса захватывается в белковую оболочку вакцинного штамма. Вторая – построена на конкурирующих антагонистических отношениях между двумя типами вирусов. Однако при такой трактовке сводится на нет активный защитный ответ клеток вакцинируемого растения. Поэтому другая часть гипотез рассматривает вакцинацию как активацию защитных функций самого хозяина. Здесь наиболее популярна возможность образования в вакцинированном растении иптерферопоподобпых белков, ингибирующих развитие вируса. Возможно также, что в вакцинированных растениях возрастает активность рибонуклеаз, которые разлагают РНК вирулентного вируса, образуя так называемый РНКазный барьер.
Другим примером успешной иммунизации, правда пока еще в порядке экспериментов в условиях закрытого грунта, является иммунизация растений против фитопатогенов с помощью самих фитопатогенов, которой в течение последних лет активно занимается американский фитоиммунолог Д. Куч. Для защиты растений он использует ослабленные культуры патогенов, непатогены данного растения, их авирулентные расы и, наконец, сами агрессивные патогены. В основном объектом его усилий являются растения из семейства тыквенных (огурцы, дыни, арбузы). Вот один из его типичных опытов.
Первый настоящий лист огурцов заражают патогенным штаммом Colletotrichum lagenarinm, вызывающим антракноз. Через 4 дня все вышерасположенные листья, а также листья, которые еще не раскрылись, становились защищенными от инфекции. Удаление листа иммунизатора на иммунизацию не влияло, по для ее достижения нужно время, в течение которого зараженный лист остается на растении. Можно срезать вышерасположенные иммунизированные листья, и они в срезанном состояния будут продолжать оставаться иммунизированными. Из пазушной почки иммунизированного растения вырастает побег, который после удаления и укоренения превращается в иммунизированное растение.
Сигнал об иммунизации в большей мере передается снизу вверх, чем сверху вниз. Если иммунизировать подвой, то ранее не иммунизированный привой окажется иммунизированным. Если же, наоборот, иммунизировать привой, то подвой иммунизированным не становится.
Кольцевание листа иммунизатора полностью прекращает иммунизацию, что позволяет предполагать, что иммунизирующий сигнал распространяется по флоэме. Одно иммунизирование защищает огурцы на 4–5 недель, а затем устойчивость постепенно теряется. Однако если провести вдогонку повторное иммунизирование, то период устойчивости удается продлить.
Чрезвычайно интересен установленный Кучем факт, что иммунизация становится невозможной, как только огурцы зацветают и начинают плодоносить. Предполагается, что цветение изменяет гормональный баланс, что препятствует иммунизации.
Первые опыты Куча проводились в теплицах, но с 1980 г. они были частично перенесены на опытные делянки. Однако к числу полевых опытов их причислить нельзя, во-первых, потому что иммунизирующее заражение проводилось в теплице, после чего растения высаживали в поле, а во-вторых, потому что результаты иммунизирования проверялись посредством искусственного заражения, а не естественного.








