355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Новомир Лысогоров » Когда отступает фантастика » Текст книги (страница 8)
Когда отступает фантастика
  • Текст добавлен: 8 сентября 2016, 21:58

Текст книги "Когда отступает фантастика"


Автор книги: Новомир Лысогоров


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 8 (всего у книги 15 страниц)

Таким образом, преемственность, связь между различными поколениями организмов, осуществляется через одну клетку. И поскольку из этой клетки, как правило, развивается организм, имеющий черты сходства с родителями, естественно сделать вывод, что основные черты строения будущего организма заложены уже в зиготе и половых клетках, в результате слияния которых она образовалась. К такому пониманию биологическая наука пришла давно.

Но это только общее, хотя и правильное, заключение. Оно ведь не может объяснить, как, в виде каких материальных структур качества и признаки родителей заложены в половых клетках. И пока наука не была вооружена микроскопической техникой, ученые серьезно полагали, что в половых клетках уже в готовом виде присутствует миниатюрный организм с зачатками всех будущих органов, а поэтому развитие – лишь рост этих зачатков. Спорили лишь о том, где помещается этот микроскопический организмик – в яйцеклетке или сперматозоиде. Когда же для изучения половых клеток применили сильные микроскопы, спор решился сам собой – обе стороны были не правы.

Оказалось, что по своему строению половые клетки в принципе не отличаются от других клеток тела. Никакого маленького организмика, который потом должен вырасти, в них нет. Они, как почти все клетки, имеют оболочку, протоплазму, ядро.

Какая же часть клетки играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям: ядро или протоплазма? Этот вопрос давно волновал ученых.

В настоящее время, когда процесс деления клеток у различных видов животных и растений детально изучен, можно считать общепризнанным, что в большинстве случаев ведущую роль в передаче наследственных признаков играет именно клеточное ядро.

О роли ядра можно судить по тем последствиям, которые влечет за собой удаление его из клетки или пересадка ядра из одной клетки в другую.

При современной технике микрохирургии такие операции вполне доступны. Можно проделать, например, следующую операцию. Взять амебу и при помощи стеклянной иглы разрезать на две части: безъядерную и содержащую ядро.

Теперь, наблюдая за поведением полученных частей, мы увидим такую картину. Безъядерная часть некоторое время двигается, но вскоре округляется, становится нечувствительной к воздействиям внешней среды и гибнет. Та же, где осталось ядро, нормально реагирует на внешние раздражители, двигается, поглощает пищу и вовремя делится. Итак, протоплазма без ядра существовать не может.

Но здесь возможны и возражения. Дескать, это все равно, что отрезать кому-то ногу и ожидать, что она будет самостоятельно жить. Но вот другой опыт. При помощи микроскопического стеклянного кружочка из амебы удаляется ядро. Амеба сейчас же округляется и начинает вести себя, как безъядерная часть в предыдущем опыте. Однако, если осторожно ввести ядро обратно, нормальная жизнедеятельность амебы восстанавливается. Здесь уже совершенно четко видно, что изолированная протоплазма нежизнеспособна и что ее жизнедеятельность каким-то образом вызывается и регулируется ядром.

Опыты по пересадке ядра в некоторых случаях помогают также установить, на какие функции клетки оно влияет. Таковы, например, опыты, проделанные на водорослях ацетобуляриях. Каждая из этих водорослей, хотя и имеет подошву, стебелек и шапочку, представляет собой всего одну клетку. Шапочка у этих водорослей восстанавливается заново, если ее удалить механическим путем, допустим, оборвать. Кроме того, форма шапочки является характерной для каждого вида ацетобулярий.

Водоросли эти довольно велики для одноклеточных и достигают шести сантиметров.

Итак, у водоросли одного вида удаляли шапочку, и, до того как она успеет регенерировать (восстановиться), в эту водоросль пересаживали ядро, взятое от ацетобулярии другого вида. Теперь легко наблюдать интересное явление: восстановившаяся заново шапочка имела форму, среднюю для этих двух видов.

Мало того, если водоросли с удаленной шапочкой пересаживали не одно, а несколько ядер другого вида, то ее новая шапочка становилась больше похожей на шапочки тех водорослей, от которых брали ядра, чем на шапочки своего вида.

Совершенно очевидным образом клеточное ядро влияло на процессы формообразования. Но ведь форма шапочки – признак наследственный, характерный для каждого вида ацетобулярий!

Вопрос о том, какая же часть клетки (ядро или протоплазма) играет основную роль в передаче наследственных признаков от материнской клетки к дочерней, от родителей к детям, явился предметом многих споров и дискуссий в самом недавнем прошлом. Сейчас мало у кого вызывает сомнение, что такая роль принадлежит именно ядру.

Особенно это становится ясным, если познакомиться со строением ядра и его поведением в процессе деления клетки.

Если поместить под микроскоп живую клетку и попытаться рассмотреть структуру ее ядра, то в большинстве случаев такая попытка окажется безуспешной.

Во многих живых клетках часто невозможно различить не только внутреннее строение ядра, но и само ядро. Чтобы ядро стало ясно видно и доступно изучению, клетки обрабатывают специальными красками, которые впитываются веществом ядра гораздо лучше, чем цитоплазмой.

Теперь на окрашенном препарате можно различить нежную ядерную оболочку, а в самом ядре одно или несколько крошечных телец, так называемых ядрышек. Но этого мало. Все ядро оказывается пронизанным пересекающимися по разным направлениям и переплетающимися нитями, зернами и глыбками. Это ядерная сеть. Она очень хорошо красится ядерными красками, и поэтому получила название «хроматина» (от греческого «хрома» – цвет). Все остальное пространство в ядре заполнено вязкой жидкостью – ядерным соком.

Таково вкратце строение «покоящегося» ядра, когда клетка не делится.

Но вот клетка начинает делиться, и весь ядерный аппарат приходит в движение. Ядро увеличивается в размерах и становится почти шарообразным, если в покоящейся клетке его форма была иной. Количество хроматина в ядре быстро нарастает. Отдельные хроматиновые зерна слипаются друг с другом, образуя нить, свернутую в тугой клубок. Но процесс идет дальше. Постепенно плотный клубок хроматиновой нити делается рыхлым, а сама нить становится короче и толще. Это уже не нить, а лента. Проходит еще некоторое время, и лента хроматина распадается, дробится на отдельные участки всегда определенного количества. Образующиеся таким путем куски хроматиновой ленты получили название хромосом. «Хрома», как вы помните, по-гречески – цвет; «сома» – тело. Хромосома – красящееся тельце. Ничего больше, кроме обозначения реально существующих и возникающих в ходе деления клетки отдельных участков хроматиновой ленты, это слово не значит. Однако запомните его хорошенько, ибо очень многое как в судьбе отдельной клетки, так и в судьбе сложнейших многоклеточных организмов связано именно с хромосомами.

Но вернемся к процессу деления клетки.

Обычно для его изучения используются, так сказать, «мертвые», окрашенные препараты. Однако современная техника микроскопирования и киносъемок позволяет в некоторых случаях наблюдать и деление живой клетки. Несколько лет назад мне довелось присутствовать на демонстрации одного из первых фильмов такого рода.

…Клетка жила на экране. Ее цитоплазма мягко колыхалась, переливаясь и мерцая возникающими и пропадающими бликами гранул и вакуолей. Ядро выглядело то более светлым, то вдруг начинало темнеть. Иногда оно как будто вздрагивало. Его строение ни на минуту не оставалось постоянным: шел процесс образования хромосом, шла полная реконструкция ядра. Вот вдруг исчезло ядрышко. Затем, совершенно неожиданно для наблюдателей, пропала и ядерная оболочка. Ядра как такового уже не стало: ядерный сок смешался с цитоплазмой. И весь вид клетки стал иным. Там, где когда-то было ядро, теперь лежали хромосомы. Они располагались почти правильной звездой, напоминая одну из фигур хоровода «Березка».

Зал замер. И, хотя здесь собрались цитологи, люди, просмотревшие под микроскопом не одну тысячу препаратов, все глядели на экран с напряженным вниманием. Наступал самый существенный и замечательный момент – деление ядра. На глазах у всех должно было произойти чудо, на котором природой основано существование всего живого. И оно произошло. Изображение вдруг дрогнуло, и хромосом стало вдвое больше. Из одной звезды образовались две, наложенные друг на друга. Каждая хромосома расщепилась вдоль строго пополам, и теперь на ее месте лежали две дочерние хромосомы, абсолютно похожие друг на друга и на свою прародительницу. Так все хромосомы клетки воспроизвели самих себя.

Но картина двух «звезд» держалась недолго. Вначале незаметно, а потом все быстрее и быстрее хромосомы начали расходиться к противоположным полюсам клетки. Пары хоровода распались, дочерние хромосомы неотвратимо удалялись друг от друга. Клетка делила свое наследство. Происходило это все удивительно четко. Как будто на двух половинах экрана показывали из двух аппаратов один и тот же фильм. И в левой и в правой сторонах клетки хромосомы совершали одинаковые движения. Но вот, наконец, они остановились, собравшись в кучку у противоположных полюсов клетки. Здесь между хромосомами начали образовываться соединения и перемычки. Хромосомы теряли свою индивидуальность, складываясь в хроматиновые ленты, свернутые в клубок. Затем каждый из клубочков оделся нежной ядерной оболочкой. Так в результате сложных превращений из одного материнского ядра образовались два новых.

Параллельно с делением ядра протоплазматическое тело клетки также подвергалось изменениям. В момент расхождения хромосом к полюсам клетки на ней по экватору появились перетяжки (бороздки). Они все больше и больше углублялись в тело клетки, и в конечном итоге она оказалась расчлененной пополам. Процесс деления клетки завершился. Теперь вместо одной материнской клетки на экране были две новые. Каждая из них жила своей жизнью. И в каждой ритмично пульсировало свое ядро.

Дочерние клетки, как правило, очень похожи друг на друга, а также на ту исходную, из которой они произошли. И, наблюдая процесс деления клетки, легко понять, откуда возникает такое сходство. Ведь весь механизм деления был направлен именно на то, чтобы вещество материнской клетки распределилось между дочерними как можно более точно. И особенно это относится к веществу ядра, к его хроматиновой части. Вспомним, как распределялся хроматин. Хроматиновая лента распалась на сегменты – хромосомы; хромосомы расщепились вдоль на половинки, из которых и образовались новые ядра. Таким образом, количество хроматина было разделено предельно точно. И что особенно важно подчеркнуть, произошло не только точное распределение хроматина по количеству, но он оказался также точно распределенным и качественно. Ведь вновь образовавшиеся хромосомы (половинки) расходились всегда в противоположные стороны.

На основании изучения механизма деления клеток и роли хромосом в равномерном распределении ядерного вещества в биологии возникло представление, что именно через хромосомы и происходит передача наследственных признаков от клетки к клетке. Такое представление получило название хромосомной теории наследственности.

Давайте посмотрим, на какие же еще факты опирается эта теория. А факты интересные. Так, изучение количества хромосом в клетках различных животных и растительных органов выявило удивительную закономерность. Выяснилось, что в каждой клетке (любого организма данного вида) содержится строго определенное число хромосом, характерное для данного вида. Например, в клетках тела кролика всегда присутствуют 44 хромосомы. У кошки их 36, у лошади – 60. Твердые пшеницы имеют 28 хромосом, мягкие – 42 хромосомы, а у кукурузы их 20.


Но числовой разброс велик. И вот границы. У одного из видов круглых червей в клетках тела имеется всего лишь 2 хромосомы, в то время как у микроскопического морского животного радиолярии их около 1600. Таким образом, число хромосом в клетках тела характерно для каждого вида животных и растений. На этом основании утвердилось правило, что все особи внутри каждого вида должны иметь одинаковое число хромосом. Это положение получило название «закона постоянства числа хромосом».

Число хромосом в клетках тела человека равно 46. Такое число хромосом содержат все клетки тела человека, независимо от того, идет ли речь о клетках сердца или печени, пальца или легкого. Почему? На этом стоит остановиться подробнее.

Под микроскопом легко видеть, что присутствующие в клетках хромосомы далеко не одинаковы. Они отличаются друг от друга по длине, форме, наличию утолщений или перетяжек и т. д. Каждая хромосома имеет как бы свое лицо. Однако, присмотревшись внимательно, можно найти и «лица», похожие друг на друга. Еще внимательнее: и вы видите, что таких похожих не больше двух. Пары! Да, в каждой клетке нашего тела не просто 46 хромосом, а 23 различные пары. Как бы двойной набор одного определенного ассортимента. Такой двойной набор хромосом называется диплоидным, а отсюда и содержащие его клетки диплоидными. Все клетки нашего тела диплоидны. Исключение составляют только зрелые половые клетки, или гаметы (яйцеклетки и сперматозоиды), в которых содержится не двойной, а одинарный, или гаплоидный, набор хромосом (у человека 23 хромосомы).

В чем же смысл такой, всегда двукратной, разницы в количестве хромосом между воспроизводящими (половыми) и телесными клетками?

Давайте рассуждать. Как вы помните, развитие любого организма начинается с одной клетки – зиготы. Образуется зигота в результате слияния двух клеток: мужской и женской. И каждая из них привносит в зиготу свой (одинарный) гаплоидный набор хромосом.

Уже в первичной клетке, из которой впоследствии разовьется новый организм, наследственные признаки родителей представлены на равных началах. Зигота имеет уже двойной (диплоидный) набор хромосом, который и будет воспроизведен во всех клетках тела при последующем росте и развитии. Следовательно, биологический смысл присутствия в клетках тела всегда двойного набора хромосом заключается в том, чтобы представить в потомстве наследственность обоих родителей.


Итак, детальное изучение процесса деления клетки приводило к выводу, что передача наследственных признаков и свойств исходной клетки связана с распределением вещества ее ядра между клетками дочерними. Было бесспорно установлено, что важнейшими структурами, обеспечивающими необходимую точность такого распределения, являются хромосомы.

И естественно, следующим логическим шагом было выяснение химического состава хромосом. Оказалось, что они построены главным образом из двух химических соединений: белка и нуклеиновой кислоты. Оба эти органические соединения представляют собой гигантские молекулы с огромными (миллионными) атомными весами.

Итак, по химическому строению хромосомы – нуклеопротеиды, соединение белка с нуклеиновой кислотой.

Но какое из этих веществ ответственно за передачу наследственных признаков? Белок или нуклеиновая кислота? А может, оба вместе? И наконец, каким образом на микроскопически маленьких образованиях, хромосомах, «записано» огромное число «сведений» о чертах строения будущего взрослого организма или пусть даже отдельной клетки?

Загадка казалась неразрешимой. Решить ее одной генетике (науке о наследственности) было не под силу. Здесь нужны разносторонний, комплексный подход, усилия ученых многих специальностей. И особенно это было необходимо по отношению к нуклеиновой кислоте. Биологическая роль и строение белков во многом не представляли секрета. А что можно сказать о нуклеиновых кислотах?


70 лет… первого знакомства

В 1871 году двадцатипятилетний физиолог швейцарец Мишер, работавший в лаборатории немецкого биохимика Гоппе-Зейлера, опубликовал несколько работ. Он сообщил, что нашел в ядрах лейкоцитов неизвестные вещества, содержащие фосфор. Мишер назвал их нуклеинами («нуклеус» – ядро). Конечно, он тогда не знал, что открыл новую главу в биологии. Не подозревал он и о том, что глава эта долго еще останется открытой на первой странице.

Почти 70 лет с момента открытия нуклеиновых кислот (так их стали называть впоследствии) оставалось неизвестным их назначение.

Между тем нуклеиновые кислоты находили в составе буквально каждого живого организма, каждой его клетки. Их нашли и у животных, и у растений, и у микробов, и даже у мельчайших живых существ – вирусов. Некоторые вирусы вообще состояли только из белка и нуклеиновой кислоты. Значит, догадывались ученые, нуклеиновые кислоты должны иметь какое-то очень важное значение. Но какое? Этого никто не мог сказать. Назначение нуклеиновых кислот оставалось загадкой. И в учебниках после описания химического состава этих соединений и некоторых их химических свойств, хотя и говорилось, что они играют важную биологическую роль, никогда не конкретизировалась – какую.

Только перед самой войной, в 1941 году, советский ученый Кедровский и швед Касперсон высказали догадку, что нуклеиновые кислоты принимают участие в синтезе белка. Кроме того, удалось установить, что существуют два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота, располагающаяся всегда в клеточных ядрах, и рибонуклеиновая, находящаяся в протоплазме. Сокращенно их обозначают теперь как ДНК и РНК.

Вот, пожалуй, и все, что знали биологи об этих соединениях до 1944 года, когда были опубликованы поразительные работы английского микробиолога Эвери с сотрудниками.


Результаты, которых никто не ожидал

По установившейся в науке о микробах терминологии кокки – это бактерии, имеющие круглую форму. Пневмококки – бактерии, вызывающие крупозную пневмонию, воспаление легких. Микробиологи давно выяснили, что у пневмококков существуют разновидности, или типы, которые и были обозначены римскими цифрами I, II, III, IV и т. д. Различия, стоящие за этими цифрами, довольно четкие, а для высших организмов и весьма ощутимые, так как связаны они с вирулентностью микробов, то есть их способностью распространяться в организме и вызывать болезнь. Но есть и различия, которые можно просто увидеть и по ним отличить один тип от другого.


У III типа есть массивная полисахаридная капсула, окружающая клетки, которая у пневмококков II типа под микроскопом имеет вид узкой полоски. Вирулентность пневмококков, их способность вызвать болезнь как раз зависит от наличия или отсутствия полисахаридной капсулы.

Английский микробиолог Гриффит работал с пневмококками, изучая их способность поражать мышей. И привлекали Гриффита именно пневмококки II и III типа. Результаты своих опытов он опубликовал в 1928 году. Они были столь разительны, что объяснить их автор не мог. И не удивительно.

Понадобилось еще 16 лет усилий целых коллективов ученых и сложнейшие исследования, чтобы понять, что же все-таки произошло в опытах Гриффита. А опыты были не ахти какие сложные. Повторить их не составляло большого труда. Но вот объяснить?!

…Итак, в распоряжении Гриффита пневмококки II и III типов.

Вначале проводится проверка штаммов на их вредоносность.

Вот мышам вводится взвесь пневмококков II, бескапсульного типа (авирулентного). Как и следовало ожидать, все животные остаются живы. Применение штамма III (вирулентного) типа, имеющего массивные полисахаридные капсулы, приводит к поголовной гибели мышей.

Теперь Гриффит берет пробирку со взвесью пневмококков этого штамма и нагревает ее на газовой горелке. Температура должна убить культуру микробов, и они станут безвредными. И действительно, введя животным убитых нагреванием пневмококков, Гриффит убеждается, что ни одна из мышей не гибнет. Собственно говоря, пока ничего поразительного не происходит, все естественно и закономерно. Но Гриффит продолжает эксперимент дальше.

В пробирку с убитыми температурой пневмококками III типа добавляется взвесь живой культуры II типа пневмококков. Они живые, но, как показывает контроль, для мышей безвредны (авирулентны). Теперь мышам вводится смесь пневмококков двух штаммов; вирулентного, но мертвого III и живого, но авирулентного II типа. И неожиданный результат – все животные гибнут. Почему? Казалось бы, такая смесь не должна причинять животным никакого вреда, ведь порознь ни убитые огнем пневмококки III типа, ни живые, но вообще безвредные пневмококки II типа не дали ни одного случая гибели.

Может быть, в опыте допущена какая-нибудь ошибка? Ну, например, нагревание убило не всех пневмококков III типа? Гриффит тщательно проверяет каждый этап эксперимента, ставит его несколько раз подряд, но эффект все тот же: смесь штаммов вызывает безусловную гибель подопытных мышей. В группах контрольных, где используется каждый штамм отдельно, все животные живы. Необъяснимо, но факт! И совсем уже поразительно другое: когда из погибших животных Гриффит выделяет пневмококков, то все они оказываются… III типа.

Под микроскопом видны массивные полисахаридные капсулы, а гибель мышей, которым Гриффит вводит этих микробов, подтверждает их высокую вирулентность. Что же произошло? Почему ранее убитые нагреванием пневмококки III типа «воскресли»? Объяснить этого Гриффит не в состоянии. Не могут найти объяснения и другие исследователи, повторившие опыты Гриффита. Но странное явление установлено, и его надо изучить и понять. Конечно, мертвые пневмококки III типа не «воскресали». Но что же тогда? Может быть, в смеси штаммов, используемых Гриффитом, живые авирулентные пневмококки II типа в присутствии убитых нагреванием превращались в III тип, приобретая его капсулу и вирулентность? Но ведь это же невероятно. Такого никогда не бывало. И все-таки английский микробиолог Эвери с сотрудниками решает вести работу, исходя именно из такого невероятного предположения.

Причем Эвери хочет изучить возможность такого превращения не в опытах на животных, что у биологов называется in vivo, а исследовать это явление вне организма, то есть in vitro, в пробирке. Задача заключалась в том, чтобы выделить и определить химическую природу веществ, под влиянием которых может произойти превращение (трансформация) одного типа пневмококков в другой. И вот, проработав несколько лет и преодолев огромные технические трудности, Эвери и его сотрудники на нескольких парах штаммов пневмококков доказали, что трансформация одного типа в другой существует.

Насколько это была кропотливая и трудоемкая работа, можно судить хотя бы по тому, что в первых опытах Эвери частота трансформации составляла лишь одну на миллион обрабатываемых клеток.

Вещество, под влиянием которого происходит превращение пневмококков, Эвери назвал трансформирующим фактором. Дальнейшее изучение химической природы выделенного вещества, проведенное Эвери, Мак-Леодом и Мак-Карти, анализы, проделанные другими исследователями, позволили установить, что это дезоксирибонуклеиновая кислота (ДНК). Произошло это в 1944 году.

Итак, если из пневмококков III типа выделить дезоксирибонуклеиновую кислоту и добавить ее в питательную среду, где растут пневмококки II типа, то эти последние приобретают некоторые ранее им не свойственные признаки, в точности соответствующие признакам III типа пневмококков, из которых была выделена ДНК. В частности, пневмококки II типа «одеваются» в массивные полисахаридные капсулы, которых у них до этого никогда не было.

После выделения и дальнейшего выращивания трансформированные клетки не только сохраняли капсулу, но и приготовленные из них экстракты обладали той же трансформирующей способностью, как и полученные из исходного штамма. Тем самым было показано, что трансформация in vitro приводит к точно такому же наследственному изменению, какое происходило in vivo шестнадцать лет назад в опытах Гриффита.

Наследственный для одного типа пневмококков признак наличия капсул стал наследственным уже для другого типа. Это был первый в истории случай наследственной передачи признаков с одной разновидности микробов на другую через искусственно выделенное химическое вещество. Дезоксирибонуклеиновая кислота – вещество, через которое передаются наследственные признаки, – материальный субстрат наследственности. Только такой вывод можно было сделать из опытов Эвери. Вывод этот был столь разительным, что не все генетики с ним сразу согласились. Действительно, почему следует отдать предпочтение какой-то нуклеиновой кислоте, когда в экстрактах, которыми пользовался Эвери, имелась, хотя и очень незначительная, примесь белков? Белок и нужно считать тем веществом, которое передало наследственные признаки от одного типа пневмококков другому. Ведь белок – основа жизни.

Жизнь – форма существования белковых тел. Вся живая природа – от гигантского дуба до маленькой былинки, от слона и кита до микроскопической бактерии – построена из белков. Да и строение самих белковых молекул известно. Немногим более 20 «строительных кирпичиков» – аминокислот, из которых складываются молекулы белков, встречается в природе. Как будто очень немного. Однако если допустить, что в образовании существующих в живой природе белков принимают участие всего лишь 16 аминокислот, и то число возможных сочетаний, в которые способны вступить эти соединения в различных количественных отношениях, будет поистине астрономическим. Оно выражается цифрой 24 с 17 нулями! Поскольку каждая такая комбинация дает определенный белок, не удивительно, что белки различных видов животных и растений, а также индивидуумов данного вида и различных тканей каждого индивида представляют собой нечто более или менее своеобразное, специфическое. Так обстоит дело с белками.

А что можно сказать про нуклеиновые кислоты? Строение их молекул неизвестно, их место в общей цепи обмена веществ в клетке непонятно. И приписывать ДНК участие в передаче наследственных признаков просто абсурдно.

Так рассуждали некоторые биологи, и в тот период в какой-то мере их можно было понять. Для доказательства наследственной роли ДНК опытов Эвери было мало.


Новые факты

Всего несколько лет прошло со времени опубликования работ Эвери, как биологию потрясла новая сенсация. На этот раз героем дня оказались бактериофаги – самые мельчайшие и примитивнейшие существа в природе. Каких-нибудь 25 лет назад некоторые биологи не признавали их даже за живые организмы и считали просто соединением нескольких белковых молекул. И вот теперь этому существу было суждено сыграть важную роль в развитии генетической науки.

Выяснилось, что бактериофаг – организм, но столь примитивный, что построен только из белка и нуклеиновой кислоты. Так была найдена «живая модель хромосомы». Как вы помните, хромосома по своему химическому строению тоже нуклеопротеид – соединение белка с нуклеиновой кислотой. Теперь, исследуя бактериофаг, можно было полученные результаты (разумеется, с какой-то долей приближенности) переносить на хромосомы сложных организмов. Например, мы знаем, что при делении клеточного ядра происходит расщепление хромосом и их становится вдвое больше.

А как размножается бактериофаг? Это явление исследовали английские ученые Хершей и Чейз в 1952 году.

Прежде всего они решили выяснить, что же, собственно, проникает в бактериальную клетку: весь фаг или только какая-то его часть? Вот как проходил этот эксперимент.

Сначала исследователи вырастили бактерий на питательной среде, содержащей радиоактивную серу и радиоактивный фосфор. Затем размножили там фаг. Он вобрал в себя оба радиоактивных элемента: серу – в белки, фосфор – в нуклеиновую кислоту. Меченый фаг пустили на бактерий, выращенных на обычной среде. А через некоторое время (достаточное, чтобы фаг успел проникнуть внутрь бактерий) отделили остатки фагов, задерживающиеся на поверхности клеток. И что же? Почти весь фосфор фага (97 процентов) оказался внутри бактерий, а вся сера – вне клеток. Но ведь фосфор метил только нуклеиновую кислоту. Значит, она внедрилась в клетки, а белок фага, меченный серой, остался «за бортом».

Изящно поставленный эксперимент дал четкий ответ: при заражении бактерий фагом внутрь бактериальной клетки проникает только стержень фага – нить, состоящая из ДНК. Почти вся белковая оболочка (97 процентов) остается снаружи и в бактериальную клетку не попадает.


Впоследствии эти опыты были подтверждены и при помощи электронного микроскопа, позволяющего видеть пустые белковые оболочки (тени) фагов, после того как их нуклеиновая кислота проникла внутрь бактериальной клетки. А в 1962 году данные, полученные на бактериофаге, были подтверждены и на вирусах животных.

Советский ученый Виктор Михайлович Жданов совместно со своей сотрудницей Букринской, применив тот же метод радиоактивной метки гриппоподобного вируса Сидней, пришел к заключению, что и в этом случае в клетку проникает лишь нуклеиновая кислота вируса. Проходя затем в клеточное ядро, она обеспечивает образование вирусного потомства.

Однако вернемся к размножению фага. Итак, фаг (вернее, его ДНК) проникает в бактериальную клетку. Теперь, когда бактерия погибает, из нее выходят молодые фаги. Они имеют такое же строение, как и бывший родительский организм. Их ДНК одета уже белковой оболочкой.

Что же произошло?

Вывод напрашивался сам собой: родительская ДНК, внедрившаяся в бактериальную клетку, во-первых, размножилась там и, во-вторых, каким-то образом приобрела оболочку из бактериальных белков.

Здесь многое казалось неясным. И прежде всего трудно было объяснить, как происходит размножение нуклеиновой кислоты внутри бактериальной клетки: принятая в то время в химии структурная формула ДНК исключала эту возможность. Однако факт оставался фактом.

Молодые фаги обладали всеми признаками своего прародителя, и в передаче этих признаков участвовала ДНК – ведь белок в бактериальную клетку почти не попадал. Отсюда снова был сделан очень важный для генетической науки вывод: передача признаков по наследству связана с дезоксирибонуклеиновой кислотой, обладающей способностью к самовоспроизведению (редупликации). Видимо, и генетически активной частью хромосом, представляющих по своему строению нуклеопротеид, следует считать ДНК.

Хромосомы, как известно, при делении ядра самоудваиваются. На примере бактериофага можно видеть, что молекулы ДНК тоже способны воспроизводить самих себя. Но как это происходит? Каково строение этих удивительных молекул, которые в отличие от других химических соединений могут размножаться?

Многие крупнейшие ученые бились над разрешением этого вопроса, применялись самые новейшие методы исследования, высказывалось много остроумных предположений о структуре нуклеиновых кислот. Но решение не приходило. Ни одна из предложенных моделей не могла объяснить все свойства этих соединений. И только в 1953 году английский физик Крик, занимавшийся во время войны разработкой способов обнаружения немецких подводных лодок, и молодой американский ученый Уотсон, проведя рентгеноструктурный анализ нуклеиновых кислот и собрав все сведения об их строении, предложили свою модель структуры ДНК, которая оказалась столь удачной, что в настоящее время стала общепризнанной.


    Ваша оценка произведения:

Популярные книги за неделю