355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Новомир Лысогоров » Когда отступает фантастика » Текст книги (страница 1)
Когда отступает фантастика
  • Текст добавлен: 8 сентября 2016, 21:58

Текст книги "Когда отступает фантастика"


Автор книги: Новомир Лысогоров


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 1 (всего у книги 15 страниц)

Новомир Васильевич Лысогоров
Когда отступает фантастика

Художник Радий Матюшин

Вместо введения

Много миллиардов лет прошло с тех пор, когда из космической пыли первичной туманности образовались солнечная система и наша планета – Земля. Ландшафт и внешние условия на этой тогда еще необитаемой планете были совсем не похожи на окружающие нас. Воды древних морей и океанов покрывали лишь небольшую часть суши, а воздух был нацело лишен кислорода.

В воде морей и океанов молодой Земли постепенно накапливались различные углеродистые соединения, вымываемые древними реками из горных пород и потоками ливней из первичной земной атмосферы. Под влиянием ультрафиолетового излучения Солнца, космических частиц, электрических разрядов простые соединения углерода изменялись, усложнялись, становились более разнообразными. Наконец 2–3 миллиарда лет назад в водоемах юной Земли зародились прототипы современных бактерий и водорослей – примитивные микроскопические существа, уже способные, однако, питаться, расти и размножаться.

Существа эта были столь же не похожи на современных животных и растения, сколь условия их жизни отличались от наших. Так, первые существа не дышали – им просто нечем было дышать, ибо в атмосфере Земли еще отсутствовал кислород. Энергию, позволяющую расти и размножаться, они черпали из химических превращений простейших углеродистых соединений, растворенных в воде.


Иногда среди первожителей нашей планеты возникали новые существа, способные питаться иной пищей. Так, место сахара и крахмала в их рационе могли занимать входящие в состав земной коры неорганические химические вещества, содержащие серу или железо. Питаясь столь «невкусной» пищей, они отнюдь не погибали. Напротив, когда они попадали в подходящие условия, наступало бурное размножение, количество их неуклонно нарастало, а их массу уже можно было исчислять сотнями тысяч тонн.

Они заселяли все новые и новые участки земной поверхности. Столь непривередливые в пище, они проникали всюду, где только оказывалась вода. Они «съедали» целые пласты различных горных пород. Мириады их отмирали, мириады крошечных мертвых телец оседали на дно водных бассейнов, образуя древние осадочные породы биогенного происхождения, составленные из «переплавленных» в микроскопических живых «печах» различных химических соединений, послуживших им пищей. Толщи осадочных пород, покрывавшие дно древних водоемов, при различных геологических сдвигах выносились на сушу. Так уже первые обитатели Земли приняли участие в изменении ее внешнего облика, в изменении химического строения ее поверхностных слоев.

Но этого мало. Естественный отбор создавал новые, все более совершенные формы живых существ, все более экономично использующие энергию, скрытую в простых окружающих их химических веществах. Наконец появились существа, способные «питаться»… солнечным светом. Возник фотосинтез. Древние прототипы наших земных растений научились строить белки своего тела прямо из молекул воды и углекислого газа, при помощи квантов солнечных лучей. И как продукты отхода производства «солнечных консервов» в первичную атмосферу Земли стали поступать кубические километры кислорода.

Земной шар оделся кислородной оболочкой. В верхних слоях атмосферы возник защитный слой озона, предохраняющий от нередко гибельной бомбардировки квантами ультрафиолета. Условия на Земле коренным образом изменились. И это сразу же сказалось на образе жизни ее обитателей.

Появились живые существа, способные дышать. Дыхание, окисление кислородом воздуха различных органических соединений – наиболее выгодный в энергетическом отношении процесс. Эволюция дышащих живых существ пошла ускоренным темпом.

Вместе с ростом «населения» земного шара менялся его состав. Теперь основную массу обитателей водных бассейнов составляли организмы, способные дышать. Началось освоение суши. Но и возникновение многоклеточных животных и растений и дальнейшее развитие их вплоть до высших цветковых и человека происходило в уже довольно стабильных внешних условиях, почти не отличающихся от современных.

Итак, весь процесс развития жизни на Земле не только начался с первичных простейших организмов, но и стал возможным благодаря их жизнедеятельности. Первые микроскопические живые существа и были творцами биосферы – мощной живой пленки, покрывающей нашу планету.

Можно прямо сказать, что все великое многообразие жизни на Земле, созданное эволюцией, было порождено миром микробов. А многообразие это поистине велико.

Сейчас даже трудно подсчитать, сколько различных видов живых существ обитает на нашей планете. Так, зоологи полагают, что существует 1,5 миллиона видов животных. Число же различных видов растений составляет 500 тысяч, а по другим подсчетам – миллион. Конечно, в будущем эти цифры придется увеличить. Ежегодно ученые открывают и описывают десятки до того не известных видов. А ведь нога человека еще не ступала на колоссальные подводные материки, где в сумеречных лесах малоизученной подводной флоры наверняка обитают многие неведомые науке существа.

Но, породив весь огромный мир высших организмов, микробы в то же время сделали его средой своего обитания. Миллионы посторонних жильцов населяют тело каждого животного и растительного организма. Мир микробов буквально заполняет и небо, и землю, и море. Бактерии, кокки, спириллы, макроскопические грибы и их споры насыщают и воздух, и воду, и почву.

И нет такой среды на Земле, где бы не могли существовать микробы. Многие из них легко обходятся без кислорода. Это так называемые анаэробы.

Термофильные (теплолюбивые) микроорганизмы не гибнут, если их кипятить 100 часов.


Одни бактерии процветают и размножаются в арктических морях при температуре –7 градусов; другие выживают после погружения в жидкий гелий, температура которого близка к абсолютному нулю.

В Италии, в минеральных источниках, найдены бактерии, прекрасно себя чувствующие в насыщенном растворе борной кислоты. Есть микробы, способные существовать в таких ядовитых средах, как хлористая ртуть, медный купорос, селитра.

Вообще в этом удивительном мире понятия «пища» и «яд» совершенно не укладываются в привычные житейские представления. Так, есть бактерии, для которых сахар – яд. Но есть и другие, которые питаются раствором карболовой кислоты – той самой карболки, что обычно употребляется для уничтожения микробов.

Хитин, из которого состоит панцирь рака, с большим трудом поддается воздействию кислот. Но для некоторых микробов это вполне «удобоваримая» пища. Чтобы разложить каолин (белую глину), необходима температура около 1000 градусов. Микробы же в подобных случаях обходятся температурой обычной.

Известно, как губительно действует на все живое ионизирующая радиация, но советский микробиолог, член-корреспондент Академии наук СССР Анатолии Евсеевич Крисс высказал предположение, что существуют микроорганизмы, способные использовать энергию, выделяющуюся при радиоактивном распаде веществ. Правда, с этой гипотезой многие не согласны, и сейчас очень трудно сказать, окажется ли она вообще правильной. Но даже если и не признавать за микроорганизмами способности существовать за счет энергии радиоактивного распада, из приведенных примеров видно, сколь велика приспособленность обитателей мира микробов.

Однако микробы не только приспосабливаются к различным условиям внешней среды, но и сами активно влияют на окружающую среду, делая ее более пригодной для обитания. Простой пример: когда для бактерий или грибов среда оказывается слишком кислой, они ее нейтрализуют; когда же слишком щелочной, они ее подкисляют. Все это достигается выделением десятков и сотен разнообразных химических веществ. В том, что мириады различных микроорганизмов в процессе своей жизнедеятельности потребляют одни вещества и выделяют другие, и проявляется влияние мира микробов на живую и неживую природу нашей планеты, влияние, обеспечивающее возможность существования высших организмов.

Тысячи видов одноклеточных водорослей и всевозможных бактерий, потомки примитивных первосуществ, поддерживают количество кислорода в земной атмосфере на том уровне, который столь благоприятен для жизни; осуществляют гигантский круговорот веществ в природе; поглощают удушливый углекислый газ; «убирают» трупы себе подобных и высокоразвитых собратьев; создают плодородные почвы; очищают водоемы.

Но существует и оборотная сторона медали. Ведь если одни обитатели мира микробов своей деятельностью создают условия существования жизни на Земле, то другие его представители в то же время собирают обильную жатву смерти.

Трудно даже себе представить, как много различных болезней растений, животных и человека вызывают микроорганизмы. И если даже оставить в стороне страшные эпидемии чумы, холеры, гриппа и других болезней, унесшие за всю историю человечества миллионы и миллионы жизней, проблема продления жизни людей – это прежде всего проблема борьбы с болезнетворными микробами. Ведь за многие тысячелетия существования человечества ни один человек на Земле не прожил отведенного ему природой срока и не умер естественной физиологической смертью от старости. Таково мнение современной науки. Причиной смерти всегда было какое-нибудь нарушение жизненного процесса, а не его логическое завершение, называемое физиологической смертью. И если устранить все моменты, укорачивающие жизнь, человек может дожить до двухсотлетнего возраста, то есть естественного отведенного ему природой срока.

Задача науки – сделать «второй век» жизни достоянием каждого. И хотя не все болезни имеют инфекционный характер и не всегда в их основе лежит действие именно болезнетворных микробов, борьба с болезнями – это борьба за долголетие человека, за приближение его жизни к естественному пределу.

Но было бы неверным думать, что изучение огромного мира микробов и вирусов имеет целью только решение проблемы продления жизни человека. Успехи микробиологии и вирусологии последних десятилетий так велики, что разрешение многих важных общебиологических проблем оказалось связанным с изучением строения и образа жизни вирусов и микробов. Это прежде всего относится к проблеме наследственности, выяснению механизмов синтеза белка, проблеме… Впрочем, не будем забегать вперед. Скажем только, что, раскрыв многие тайны микроскопических существ, наука сегодняшнего дня стала перед новыми волнующими загадками этого удивительного мира.

Борьба миров


Я должен заранее предупредить читателя, что в этом очерке он не встретит ни пауконогих уэллсовских марсиан, ни воинственных покорителей многих галактик с Альдебарана, блестяще описанных Станиславом Лемом. И вообще речь пойдет не о космосе. Но война будет. С наступлением и обороной и даже с применением химического оружия.


Вакцины и сыворотки

Со времени великих открытий Пастера предупреждение инфекционных заболеваний сводилось главным образом к использованию вакцин, то есть ослабленных или убитых возбудителей заразных болезней. Искусственное введение таких микроорганизмов создает у животного или человека невосприимчивость к заболеванию – иммунитет.

В чем же тут секрет?

Оказывается, стоит чужеродному белку (в том числе и микробному) попасть в организм, как в крови и тканях образуются особые вещества. Ученые их назвали антителами. И когда в тот же организм снова попадут те же белки (читай – микробы), антитела нейтрализуют их.

Казалось бы, инфекционные болезни не должны больше представлять угрозы для человечества, коль скоро в руках медицины есть такое мощное оружие, как вакцины. Но… Собственно, здесь не одно «но», а несколько. Во-первых, антитела образуются далеко не на всю жизнь и не у всех людей одинаково. Во-вторых, и это большая беда, антитела обладают способностью воздействовать только на те вещества (белки), которые вызвали их образование. Другими словами, они специфичны. Если, например, морской свинке ввести убитую культуру холерных вибрионов, то образуются антитела, специфически действующие только против возбудителей холеры, но совершенно бессильные против других даже менее опасных микробов.

А возбудителей болезней великое множество, и создать вакцины против каждого из них просто невозможно. Да и получить ослабленную культуру микробов – дело не всегда легкое.

Семь лет непрерывных пересевов в неблагоприятных для данного микроорганизма условиях понадобилось французским ученым, чтобы получить ослабленную культуру возбудителя туберкулеза – палочки Коха. Этот закаленный микроб выдерживает температуру +110 градусов и не гибнет при охлаждении до –7 градусов. Впрочем, управа была найдена и на палочку Коха. Но это особая история.

Итак, использование защитных свойств организма – иммунитета – не всегда предотвращает заболевания. Инфекционные болезни существуют, и их надо лечить. А как? Можно вводить в организм сыворотки. Их получают из крови животных, обладающих иммунитетом, и поэтому они содержат антитела. Это мощное средство. Тысячи людей были спасены сыворотками, и все-таки полностью проблема лечения инфекционных болезней таким путем не могла быть решена. Ведь принцип оставался прежним. Чтобы получить сыворотку, надо иммунизировать животное, ввести в его организм именно тех возбудителей, против которых сыворотка будет использована. Но возбудителей-то тысячи.

Воспаление легких вызывается пневмококками. Но есть несколько типов пневмококков (I, II, III и т. д.), и антитела, полученные против одного типа, безвредны для другого. И ученые, не отказываясь от вакцин и сывороток, вынуждены были искать иные пути в борьбе с инфекционными заболеваниями.


«Магические пули»

Немец Пауль Эрлих был человеком веселым и шумным. Глядя в его лучистые глаза, мало кто догадывался, что их хозяину далеко не весело. Лишь самые близкие из друзей Эрлиха знали, что его постоянно преследует мысль о несовершенстве методов медицины и безоружности врачей против многих болезней.

«Нельзя, нельзя лечить людей вслепую, на ощупь, в надежде на одну только спасительную природу человека! Вакцины и сыворотки – как это мало! – думает он. – Ведь должны же быть другие способы уничтожения болезнетворных микробов! Их только надо найти».

И Эрлих ищет. Он верит, что есть «магическая пуля», которая может убивать микробов, не причиняя вреда организму хозяина. Это должно быть какое-то химическое вещество. Но химических соединений много, очень много.

И опыт идет за опытом. Испытываются сотни химических препаратов. Результаты все время отрицательные. Как правило, препараты либо не действуют на микробов, либо оказываются вредными и для самого организма. Но Эрлих не падает духом от неудач. Он только чаще повторяет свою излюбленную фразу: «Нужно научиться стрелять по микробам „магическими пулями“», – и тотчас начинает испытывать новую серию химических соединений.


На чем же основывается эта безудержная вера, питающая ученого? Может быть, это просто фанатизм? Нет, у Эрлиха есть серьезные основания верить в то, что химия даст медицине «магическую пулю».

Он родился в 1854 году и учился в эпоху бурного развития химической промышленности в Германии. Особенно быстро росла тогда химия красителей. На огромных заводах красителей химики испытывали тысячи и тысячи различных химических соединений.

Эрлих еще в юности увлекся окраской тканей человека и животных.

Опытов ставилось много. Уже тогда Эрлих отличался завидным упорством. В одном из экспериментов в ушную вену кролика была введена метиленовая синька. Разлившись по кровяному руслу, краска, к удивлению исследователя, окрасила в голубой цвет только окончания нервов. Это было нечто новое. Удача окрылила Эрлиха, и работа продолжалась до тех пор, пока не был сформулирован четкий обоснованный вывод: окрашивание тканей организма происходит избирательно, каждая ткань удерживает лишь определенный краситель. Например, нервную ткань окрашивает метиленовая синька, и только она.

Хорошо, значит, таким путем можно изучить расположение нервных клеток. А как ведут себя по отношению к красителям микроорганизмы?

И вот наблюдательный ученый замечает, что болезнетворные паразиты, поселившиеся в высшем организме, впитывают в себя некоторые красители лучше, чем клетки хозяина. Дальше Эрлих начинает рассуждать как химик. Почему дифтерийный токсин (яд, вырабатываемый возбудителем дифтерии) поражает сердечную мышцу, а столбнячный – нервные клетки? Значит, между молекулами токсинов и тех клеток, которые они поражают, существует химическое сродство. Значит, если какие-нибудь молекулы, обнаружив химическое сродство к токсинам, соединятся с ними, то микробные яды будут нейтрализованы, а ткани организма останутся здоровыми. Но ведь это новый способ лечения болезней!

Так родилась идея «магической пули» – целебных антитоксинов.


Идет 1904 год. Эрлиху 50 лет. Он уже многое сделал в науке и руководит Французским институтом серотерапии, но «магическая пуля» еще не найдена.

Со своим ассистентом, японским врачом Шига, Эрлих ставит огромное количество опытов. Они ищут средства борьбы с опасным паразитом трипанозомой. Микроскопическая инфузория – у нее вытянутое тельце с ядром и двумя жгутиками на концах – почти вездесуща. Она живет паразитом в крови птиц, рыб, лягушек, млекопитающих, обнаружена и в крови человека.

Эрлих торопится. Он пробует краситель за красителем и, наконец, получает обнадеживающие результаты. Их дают особенно активные красители: трипановый синий и трипановый красный. Кажется, «магическая пуля» вот-вот будет найдена. И снова опыты, опыты, опыты…

Эрлих еще не знает, что самая крупная победа впереди, а имя его будет напечатано в золотой книге медицины рядом с Пастером, Кохом, Мечниковым, Пироговым, Павловым. И одержит он эту победу не над трипанозомой, а над другим, еще более страшным микробом – бледной спирохетой – возбудителем сифилиса.

В 1905–1907 годах химиками был выпущен препарат мышьяка под названием атоксил (нетоксичный, неядовитый). Эрлих его испробовал.

Трипанозом препарат убивал, гибли от него и спирохеты. Победа? Нет. Препарат оказался все-таки токсичным для высших организмов. И Эрлих решил переделать атоксил, чтобы тот действительно стал безвредным для больного. Работа эта потребовала необыкновенного терпения и упорства.

Под руководством Эрлиха химики синтезировали одно производное атоксила за другим, и каждое проходило полный курс испытаний на животных. Тысячи мышей и морских свинок были принесены в жертву во время этой битвы исследователя с двумя едва видимыми под микроскопом злейшими врагами человечества.

Но вот в 1909 году препарат № 418 дал обнадеживающие результаты. Однако, как вскоре выяснилось, радость была преждевременной. Пришлось отказаться и от этого препарата. По-прежнему полный энтузиазма и веры в свою «магическую пулю», Эрлих продолжал поиски. Наконец в мае 1909 года в одном из опытов соединение № 606 уничтожило всех трипанозом, не убив при этом ни мышей, ни свинок. Немногим позже состав испробовали и на кроликах, зараженных сифилисом. В течение трех недель животные были излечены.

Эрлих нашел «магическую пулю».

Она била прямо в цель, уничтожая паразита и не нанося вреда тканям хозяина. Найденное лекарство Эрлих назвал «сальварсаном», что значит в переводе «спасающий мышьяком». Так был создан первый антимикробный препарат и этим заложены основы новой мощной науки – химиотерапии инфекционных болезней. Медицина получила новое оружие в борьбе с микробами.


Химиотерапия развивалась быстро. Не прошло и двух десятилетий, как появилась еще одна «магическая пуля» – сульфамидные препараты. Производные серы оказались эффективными против многих кокковых инфекций: менингококков, пневмококков, гонококков. Особенно хорошие результаты получались при комбинированном лечений вакцинами и химическими препаратами. И все-таки в борьбе против некоторых микробов сульфамиды были бессильны. Здесь врач по-прежнему оставался безоружным. К тому же, когда бактерии внедрялись в омертвевшие или воспаленные ткани, то становились для сульфамидов недосягаемыми. Да и вне организма, в лабораторной культуре, сульфамиды не всегда могли справиться с микробами. Препараты легко расправлялись с разведенной культурой, где микробы присутствовали в малых концентрациях, но приостановить рост свежих, неразведенных культур не могли.


И все-таки значение химиотерапии нельзя переоценить. И по сей день создаются все новые и новые препараты. «Магические пули» уничтожают несметные количества болезнетворных микробов. Но микробы не сдаются. Они берут числом. При лечении болезни мириады болезнетворных бактерий гибнут от действия химических препаратов, мириады, но иногда не все. А из этих «недобитых» (и стало быть, устойчивых) возникают новые штаммы, на которые препарат уже не действует.

Борьба продолжается. Человек, совершенствуя старые, испытанные способы борьбы, ищет новые пути уничтожения болезнетворных микробов.


Микробы против микробов

Со времен Дарвина известно, что мир – вековая арена борьбы за существование всего живого. Смерть рано или поздно губит все, что неспособно выдержать эту борьбу, эту конкуренцию с более совершенными, более приспособленными к жизни существами. Однако, пожалуй, сам Дарвин не подозревал, что и в мире, который находится за пределами человеческого зрения, среди мельчайших живых существ, среди микробов, бушует та же вековая борьба за существование. Но кто с кем борется? Какие виды оружия используются при этом? Кто оказывается побежденным и кто победителем?

На эти и подобные им вопросы ученые нашли ответы далеко не сразу. Долгое время в распоряжении исследователей были лишь отдельные разрозненные наблюдения.

Еще в 1869 году профессор Военно-медицинской академии Вячеслав Авксентьевич Манассеин заметил, что, если на питательной среде поселилась плесень, на ней никогда не растут бактерии. В то же время другой ученый, профессор Алексей Герасимович Полотебнев, использовал на практике наблюдение своего коллеги. Он успешно лечил гнойные раны повязками с зеленой плесенью, которую соскабливал с лимонных и апельсиновых корок.

Луи Пастер заметил, что обычно бациллы сибирской язвы хорошо растут на питательном бульоне, но, если в этот бульон попадут гнилостные бактерии, они начинают быстро размножаться и «забивают» бациллы сибирской язвы.

Илья Ильич Мечников установил, что гнилостные бактерии, в свою очередь, подавляются бактериями молочнокислыми, образующими вредную для них молочную кислоту.

Известно было и еще несколько фактов такого же рода. Этого оказалось достаточно, чтобы зародилась мысль использовать борьбу микроорганизмов друг с другом в целях лечения заболеваний. Но как? И каких?

Вот если бы заглянуть в жизнь микромира, рассмотреть, что делают микробы в естественной обстановке, а не в искусственно выращенной лабораторной культуре. Ведь в одном грамме почвы, взятой где-нибудь в лесу или на огороде, содержится несколько тысяч спор плесневых грибов, несколько сотен тысяч других грибов-актиномицетов, миллионы бактерий различных видов, не говоря об амебах, инфузориях и других животных.

И, конечно, в таких тесных сообществах микробы вступают в самые различные взаимоотношения друг с другом. Здесь могут наблюдаться и случаи взаимопомощи – симбиоза, и ожесточенная борьба представителей разных микробных видов, так называемый естественный антагонизм микробов, и просто безразличное отношение друг к другу.

Но как это увидеть?!

…Киев. 1930 год. Опыт за опытом ставил доцент Киевского университета Николай Григорьевич Холодный, пытаясь найти «способ изучения микроорганизмов в их естественной обстановке». Такой способ им уже найден для микробов, обитающих в водной среде. Но как рассмотреть жизнь микробов в почве?

Собрав в окрестностях Киева образцы почв, Холодный по нескольку дней не выходит из своей лаборатории. К тому же университетская лаборатория – его дом. Квартира, где Николай Григорьевич жил раньше, была разрушена артиллерийским снарядом еще в 1919 году. С тех пор он поселился в лаборатории. Равнодушный к материальным благам и удобствам жизни, он даже считает, что устроился неплохо: можно работать в любое время суток.

Сейчас Холодный уже известный исследователь железобактерий, «крестный» нескольких дотоле науке неведомых видов из рода Лептотрикс. Пройдет несколько лет, и две его статьи, «Почвенная камера, как метод исследования микрофлоры» и «Метод непосредственного изучения почвенной микрофлоры», положат начало новому направлению в микробиологии. «Войны микробов» в их естественном состоянии станут предметом прямого изучения. Но пока пробуется один прием за другим, опыт следует за опытом. Многое из найденного Холодного не удовлетворяет, сложно. Во всех своих методических разработках он ищет простоты. Способ должен быть таким, чтобы им легко мог воспользоваться любой исследователь. Вот, например, острым ножом ученый делает вертикальный разрез в почве и вставляет в него четырехугольное стерилизованное стеклышко, стекло закапывается. Со временем оно покрывается почвенными растворами, мелкими частичками почвы, среди которых поселятся обитающие в ней микроорганизмы. Теперь остается только извлечь стекло и после специальной обработки рассмотреть его под микроскопом. Приставшие к стеклу частички почвы и микробы сохраняются в их естественном расположении, и, таким образом, можно наблюдать отдельные «кадры» из грандиозного фильма о жизни микробов в почве. Проще, кажется, не придумаешь.

Действительно, это было то, что так упорно искал Холодный. Он видел, как мир микробов жил своей бурной и тайной жизнью. Ежесекундно здесь шла ожесточенная борьба, приводящая к смерти одних обитателей и усиленному размножению других.

Теперь уже ученые знают, каким оружием пользуются различные виды микробов в своих непрекращающихся «войнах». Это не обязательно прямое уничтожение, как делают амебы и инфузории с бактериями. Очень часто микробы применяют и другие методы воздействия на своих врагов. Винные дрожжи, например, выделяют спирт, а уксуснокислые бактерии – уксусную кислоту. Такое «химическое оружие» угнетает развитие большинства других видов микробов, являясь для них ядом. Это как бы оружие против всех, кто посмеет приблизиться.


Однако в арсенале некоторых микроорганизмов встречается и оружие «персонального» прицела. Оно направлено только против некоторых видов микробов, угнетает только их и не поражает все остальные микроорганизмы. Как правило, такие вещества вырабатываются специально для нападения и защиты против микробов, с которыми первым приходится чаще всего сталкиваться в своей жизни. Вещества эти получили название антибиотиков.

Особенно много антибиотиков вырабатывают почвенные микроорганизмы. Это и понятно – ведь в почве отдельные виды микробов образуют целые скопления. Создав вокруг такого «поселения» зону антибиотической защиты, микробы находятся за ней, как за крепостной стеной. Причем она служит им не только надежной защитой, но в какой-то степени даже средством наступления, так как по мере роста колонии «крепостные стены» раздвигаются и его обитатели расширяют свои владения. Кстати, отсюда понятно, почему не вырабатывают антибиотиков водные микроорганизмы. В воде крепости не создашь, да и соседи здесь непостоянные. Тут нужно оружие против всех, кто посмеет приблизиться, – допустим, какая-нибудь кислота.

Близкое знакомство с почвенной микрофлорой показало, что почвенных микробов-антагонистов очень много и большинство из них для решения основного вопроса борьбы за существование «жить или не жить» вырабатывает антибиотические вещества, убивающие врагов.

Многолетние систематические исследования советского ученого Николая Александровича Красильникова показали, что особенно широко распространены в почве различные виды плесневых грибов и так называемые лучистые грибы – актиномицеты. И те и другие вырабатывают антибиотики.

У них это, пожалуй, единственное средство защиты против бактерий, для которых грибы являются лакомой пищей. Кстати, сами бактерии тоже вырабатывают антибиотики, но уже против почвенных амеб и инфузорий, охотящихся за ними. Этот интересный факт был впервые установлен профессором Александром Александровичем Имшенецким.

Итак, казалось бы, все просто. Микробов, вырабатывающих антибиотики, много. Остается только отобрать у них это оружие, выделить его в чистом виде и применять как лекарство против болезнетворных бактерий. Но не тут-то было!

Действительно, антибиотиков много. Так, только из почвы Подмосковья в лаборатории профессора Георгия Францевича Гаузе было выделено в чистую культуру 556 штаммов почвенных грибов, 234 из них оказались продуцентами самых разных антибиотиков. Большая часть штаммов (56 процентов) вырабатывала противобактериальные антибиотики; 23 процента были универсалы: их антибиотики подавляли и рост бактерий и рост других грибов; остальные владели оружием лишь против своих собратьев – грибов иных видов.

Богатый набор продуцентов антибиотиков имеет и почва других мест. Однако здесь повторяется история с «магической пулей» Эрлиха: антибиотики оказываются токсичными не только для возбудителей болезней, но и для организма человека.

С одной стороны, в природе великое множество антибиотиков, но использовать в качестве лекарственных препаратов можно лишь считанные единицы. Впрочем, это стало известно уже после того, как в поиски новых средств борьбы с болезнетворными микробами вмешался случай. И хотя ученые в своей работе на случай никогда не рассчитывают, а гипотезы и пути исследований строятся, исходя из уже известных закономерностей, в истории науки можно найти немало примеров, когда дальнейшее развитие определяла счастливая случайность. Но случай не слеп. «Судьба, – как сказал Пастер, – одаривает только подготовленные умы».

Так было и на этот раз.


Новое оружие

Лондон. 1921 год. Крошечная, рядом с лестницей, лаборатория Александра Флеминга. Из единственного окна виден кабачок на Фаунтин-аллее и Пред-стрит – улица, где теснятся антикварные лавочки.

Клетушка захламлена. На столе и полках громоздятся чашки и связки пробирок с культурами микробов. Флеминг не любит выбрасывать старый материал, и уже вышедшие из опыта культуры хранятся в лаборатории по нескольку недель.

– Вы слишком аккуратны! – говорит он своему помощнику Элисону, который с английской педантичностью ликвидирует перед каждым новым опытом все старые культуры. В устах ультракорректного и сдержанного шотландца это звучит как «вы недостаточно любознательны».

Сам Флеминг, прежде чем уничтожить выращенные поселения микробов, изучает их внимательно и долго: а вдруг произошло что-нибудь интересное и неожиданное?! Впоследствии он сформулирует свое кредо так: «Никогда не пренебрегайте ни тем, что кажется внешне странным, ни каким-либо необычным явлением: зачастую то ложная тревога, но это может послужить и ключом к важной истине».


    Ваша оценка произведения:

Популярные книги за неделю