355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Новомир Лысогоров » Когда отступает фантастика » Текст книги (страница 14)
Когда отступает фантастика
  • Текст добавлен: 8 сентября 2016, 21:58

Текст книги "Когда отступает фантастика"


Автор книги: Новомир Лысогоров


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 14 (всего у книги 15 страниц)

– Подожди, – останавливаю я Димку. – Кажется, я понял твою идею. Ты считаешь, что раз витамины вырабатываются в почве, но не попадают на завод, значит, их потребляют какие-то микробы, которых не улавливают наши комбайны. Но поскольку все живое состоит из белков, то суммарное количество белка в почве будет больше, чем у наших грибов и бактерий. Правильно?

– Правильно, – подтверждает Димка.

– Так. А разность в этих цифрах должна пасть на долю неизвестных похитителей витаминов, верно?

– Абсолютно, – кивает Димка.

– А похитители витаминов – это те самые «они», которые «крестики», точно?

– Да, ты прав, – соглашается Димка.

– Хорошо, – отвечаю я, – давай проделаем анализы, но ты мне обещай, что если и на этот раз твои предположения не подтвердятся, то ты на всех этих «крестиках» поставишь крест.

– Попробую, – безразлично соглашается Димка. – А сейчас давай работать.

Из оставшихся 12 проб мы решаем исследовать сразу 10.

Димка ведет выделение микробов и определение их белкового баланса, а я выясняю суммарный белок вторых половин образцов. «Гений» участвует как арбитр, получая наши результаты. Работаем молча. Слышно лишь щелканье кнопок, легкое позвякивание пробирок в комбайнах и шелест листков с результатами анализов.

Кончив работу, мы подходим к «Гению». В правом и левом анализах результаты почти одинаковые. «Разница в пределах ошибки», – бодро произносит «Гений».

На Димку жалко смотреть.

Таким расстроенным я его не видел никогда. Он сидит, подперев голову руками, уставившись на «Гения», пустыми глазами.

Чтобы его отвлечь, я достаю из холодильника несколько бутылок кефира, мясные консервы и банку томатного сока.

– Надо поесть, – говорю я, – а там что-нибудь придумаем.

Димка вяло кивает. Едим молча: каждый занят своими мыслями.

Я думаю о том, куда же могут деваться витамины из почвы, раз они не попадают на завод. Может быть, Димка прав и их кто-то пожирает. Но тогда почему не получился наш опыт? Если в почве действительно появились какие-то посторонние микробы, то суммарное количество белка в моих анализах должно было быть больше. А может быть, мы где-нибудь ошиблись? И тут меня озаряет: «Да, мы неверно поставили опыт!»


Я кидаюсь к приборам.

– Ты что задумал? – подозрительно косится на меня Димка.

– Сиди спокойно, – отвечаю я. – Сейчас поймешь.

Я беру две оставшиеся пробы почвы и на аналитических весах развешиваю каждую строго пополам. Схема опыта прежняя, но… Быстро и привычно получаю на микробиологических комбайнах живую массу находящихся в почве микробов. Дальше в ход идут химанализаторы. Но на этот раз задание у них уже другое. Они должны определить не суммарный белок, а количество аминокислот, этих «кирпичиков»-мономеров, из которых построены полимерные белковые молекулы. Проходит несколько томительных минут. Димка уже понял, в чем дело, и стоит рядом. Результаты на обоих анализаторах появляются почти одновременно: аминокислот в почве втрое больше, чем в наших микроорганизмах!

Мы обалдело смотрим на эти цифры.

Сейчас мы убедились, что на наших плантациях живут какие-то неизвестные нам микроорганизмы. В первом опыте мы определяли суммарный белок, но белки бывают разные. Молекулы одних стойки, других нет. Видимо, у открытых нами микробов белки сразу же, на первых фазах анализа распадаются до аминокислот и поэтому автоматы их не уловили. Теперь же, когда анализ был проведен уже на уровне аминокислот, результат получился иной. Суммарно в почве их в три раза больше, чем в микроорганизмах, выделяемых оттуда нашими микробиологическими комбайнами. Правда, в почве всегда есть какое-то количество свободных аминокислот. Но очень небольшое. То же, что показали анализы, можно отнести за счет тел каких-то микроорганизмов, нам неизвестных.

– Вот они-то и пожирают наши витамины, – говорит Димка, будто подслушав мои мысли. – А главное – они возникли здесь. Не образовались из других видов, а именно возникли заново. Потому-то наши микробиологические комбайны, отрегулированные и отлаженные на все виды земной микрофлоры, и не улавливали этих микробов. Ведь их раньше на Земле не существовало. Да, они зародились, новообразовались здесь, на наших плантациях.

– Опять ты за свое, – устало говорю я. – Это просто какой-то новый, дотоле неизвестный вид.

– Новый вид! – подхватывает Димка. – Новый вид! Но другие новые виды наши комбайны выделяли? Выделяли, потому что они обязательно имели что-то общее с теми, из которых произошли. А эти новые приборам не знакомы совсем. Значит, на наших плантациях зародилась совершенно новая форма жизни. И понятно, почему это произошло именно здесь. Мало того, – что тут почти нет почвенных хищников, всегда уничтожающих первичный белок. Здесь еще исключительная по своему химизму, насыщенная витаминами и энергией солнца среда.

– Подожди, – перебиваю я, – чтобы стать микробом, потребляющим витамины, твой белок должен был пройти целую эволюцию.

– Правильно, – подхватывает Димка. – Он ее и прошел. Прошел быстрее, чем считала возможным наука. Когда мы поселили здесь первых витаминособирателей? Пять лет назад. Условия все время были постоянными, и отбор мутаций шел в одном направлении. Ты представляешь, если так пойдет дальше, то мы увидим, в какие высшие формы превратятся и сами эти микробы. Эволюция на нашей планете, на глазах науки. Вот так-то!

Из этих неведомых микробов со временем возникнут новые невероятные растения, а затем и животные. Человечество увидит всю историю развития жизни на Земле. Мало того, люди не только проследят за новой эволюцией, но и смогут ее направить по своему желанию.

– Сначала надо увидеть этих микробов, а потом фантазировать, – говорю я.

– Полжизни за работающего «Кирлиана»! – обещает Димка. – Почини «Кирлиана», а я буду не я, если не выделю этих пожирателей витаминов в чистую культуру. Я им составлю такой набор сред, которого не имел ни один микроб в мире.

– Я не знаю, зародились эти микробы на Земле или на Марсе, но посмотреть их нужно, завод-то стоит, – соглашаюсь я.

И начался аврал.

Димка послал «Кибера» за пробами и как одержимый заметался между микробиологическими комбайнами. Я принялся за «Кирлиана». Трубку я решил не менять. Проще было пожертвовать вакуумными насосами и попытаться откачать из старой трубки пыльный воздух. Первый насос засорился быстро, и я, подключив запасной, начал его разбирать. Детали сразу же промывал и высушивал. Насос я успел собрать как раз к тому моменту, когда работающий начал давать перебои. Его тоже пришлось разбирать и промывать детали. И так снова и снова…

За окнами легла густая южная ночь, а «Кирлиан» еще не работал. Не получалось что-то и у Димки. Я слышал, как он то пел, то вдруг начинал ругаться. Чаще же до меня доходило его бормотание: наверное, он разговаривал с микробами.

В два часа ночи я решил попробовать включить «Кирлиана».

Экран светился ровным матовым светом, и лишь в двух местах виднелись мутные пятна. Две какие-то микропылинки остались у входного отверстия высокочастотного пучка. Но это мелочь. Слабая проекция пылинок не будет мешать.

Ко мне подходит Димка. В руке у него пробирки, заткнутые обгорелыми ватными пробками. Значит, он не поверил комбайнам и проводил пересевы сам над пламенем спиртовки.

– Кажется, я их поймал, – говорит Димка радостно.

Мы усаживаемся перед «Кирлианом».

– Давай сначала посмотрим, что происходит в почве. Сделай препарат и заряди, – предлагаю я Димке.

Он быстро готовит препарат, а я включаю основной генератор. Мягко опускаются экранирующие шторы. Я даю большое увеличение и налаживаю фокусировку.

На экране среди редко переплетенных бледно-белых гифов грибов овальные розовые клетки дрожжей, в них хорошо видны вишневые гранулы витаминов. Наши витаминособиратели выглядят пурпурно-красными, с темными ядрами. На фоне ядер вспыхивают ярко-желтые цепочки хроматина.

– Вот это наши, но где же ты? – говорю я Димке. Я ловлю себя на том, что ищу «крестик».

– Дай больше увеличение.

Прибавляю увеличение, но теперь мы видим лишь малую часть препарата.

Я начинаю осторожно работать ручками препаратоводителя, хочу методично, параллельными рядами просмотреть весь препарат. Проходит 20 томительных минут. Нового ничего нет. Везде лежат наши витаминособиратели вперемежку с различными видами дрожжей и грибов-сапрофитов. «Дружба народов», как называет Димка такое сообщество.

– Крути быстрее, – умоляюще просит, он.

Но я его не слушаю. Мы просмотрели лишь четверть квадратного миллиметра препарата, и еще все впереди.

– Стой! – вдруг подскакивает Димка. – Он?!

С верхнего правого угла экрана в поле зрения медленно вползает маленький синий, с желтыми жилками «крестик». Он кажется совсем крохотным рядом с клеткой дрожжевого грибка из вида Мегри.

Я останавливаю препаратоводитель, и теперь «крестик» мягко дрожит в центре экрана. Как зачарованные, мы смотрим на этот неведомый науке микроорганизм столь непривычной для нас формы.


– Как ты думаешь, каковы его размеры? – спрашивает Димка.

Я смотрю на шкалу увеличения «Кирлиана» и сопоставляю размеры «крестика» на экране.

– Примерно пару сотен ангстрем в поперечнике. Пожалуй, это чистый нуклеопротеид.

– Так, – думает вслух Димка. – Значит, земная жизнь и здесь верна себе. Прикинь: жизнь – форма существования нуклеопротеидов, соединений белка с нуклеиновой кислотой. Самое мелкое живое существо в природе, бактериофаг, состоит только из этих двух химических веществ. Однако все бактериофаги имеют форму колбочки, а этот почему-то крестик. Почему?

Но Димка не успевает договорить. На наших глазах «крестик» начинает округляться, превращаясь в шарик. Только сейчас я вспоминаю о киноустановке и включаю ее.

– По-моему, «крестик» – это спора, а сейчас она превратилась в бактерию. Давай поищем еще «крестик». Этот от нас не уйдет, – говорит Димка.

Снова начинаю плавно двигать препарат. Через несколько минут я нападаю на целую россыпь бактерий и «крестиков». Все бактерии окрашены в мягко-фиолетовый цвет и очень малы. Пожалуй, это самые маленькие бактерии, известные мне. Но сейчас это неважно, потом можно будет справиться у «Гения». Я вывожу одну бактерию в центр экрана и даю предельное увеличение: в 400 тысяч раз. Сейчас бактерия кажется размером с маленькую тарелку. Мы видим, как по фиолетовому фону рассыпаны желтые точки. Это хроматин – точнее, нуклеиновые кислоты. Стало быть, бактерия обособленного ядра не имеет. Оно диффузно разбросано по всему телу клетки.

Но вот желтые точки начинают перемещаться, собираясь группами. Края бактерии блекнут и меркнут, потом в какие-то неуловимые мгновения она исчезает. На ее месте лежит густая россыпь мелких «крестиков», таких, как и первый, встреченный нами. Да, это споры. Все ясно.

– Ну как, будем смотреть теперь «твоих» в чистом виде или нет? – спрашиваю я Димку.

– Жалко, – отвечает он. – Для анализов и так мало. Но ничего не поделаешь. Нужно. Чтобы убедиться, что я выделил именно таких, одним мазком пожертвую.

Мы быстро меняем препарат. Все ясно: это они!

Я выключаю «Кирлиана», а Димка лезет в холодильник. Слышно, как слегка загремел штатив с пробирками и звякнули какие-то банки. Потом Димка подходит ко мне и жестом фокусника достает из-за спины бутылку шампанского.

Мы наливаем шампанское в лабораторные стаканы и молча пьем.

– Интересно, а что думает о самозарождении «Гений»? – спрашиваю я.

– Давай выясним.

«Гений» долго роется в своей электронной памяти, сопоставляет все «за» и «против», мигает лампочками и, наконец, произносит: «Да, самозарождение в настоящее время теоретически возможно, но только в строго определенных, пока неизвестных науке условиях. Но и это надо доказать».

– Докажем! – твердо обещает Димка.

Когда мы с Дмитрием Владимировичем вышли из института, было уже за полночь. Я посмотрел на усыпанное яркими звездами почти черное небо и подумал, что над пустыней Каракумы сейчас эти же самые звезды. Такими же они будут и через 50 и через 100 лет. Такая же ночь придет «тогда» на смену обычного трудового дня на каком-нибудь ОВЗ.


Год 1964-й

Уже на следующий день только что рассказанную историю я вспомнил с улыбкой. Ну куда не залетишь в пылу спора! Можно даже оказаться на ОВЗ. Хотя в общем-то, если во всем разобраться серьезно, особой фантастики и не было.

Сейчас твердо доказано, что воздух не только смесь газов кислорода, азота, водорода и так далее, но он насыщен еще и многими сложными по своему химическому строению веществами, в том числе витаминами, вырабатываемыми почвенной микрофлорой.

Еще в 1950 году академик Николай Григорьевич Холодный показал экспериментально, что переносимые воздухом витамины усваиваются микроорганизмами, которые в них нуждаются. Несколько позже на примере витамина В12, используя метод меченых атомов, это подтвердил и другой советский ученый, Максим Николаевич Мейсель. Так что витаминособиратели в природе существуют.

Не выдуман и краснодарский механик Кирлиан, открывший новый способ фотографирования при помощи токов высокой частоты. Семен Давыдович выпустил книгу, где рассказано о взаимодействии токов высокой частоты с биологическими объектами и удивительных энергетических картинах, возникающих при этом.

Фотографии листов с «факелами» излучения лежат у меня на столе. Но вот высокочастотный полувакуумный стереоскопический микроскоп еще не создан, хотя принципиальная схема такого прибора существует и желающие могут познакомиться с ней в Патентной библиотеке.

Давно созданы гистологические комбайны и информационные машины типа «Гения», а биохимические и микробиологические автоматы, несомненно, со временем будут построены.

Если же говорить о самом ОВЗ, то, как бы невероятно это сейчас ни выглядело, я верю, что в будущем человечество научится использовать огромные питательные ресурсы воздушного океана, которые постоянно пополняют почвенные микробы.

Что касается возможности зарождения новых организмов в наше время, то проблема эта очень сложна, и здесь взгляды исследователей расходятся.

Однако среди различных точек зрения есть и такая, по которой зарождение первичного белка предполагается возможным, но считается, что он уничтожается уже существующими микроорганизмами.

Некоторые же ученые, например профессор Анатолий Александрович Смородинцев, полагают, «что и сейчас в природе существуют древние формы свободно живущих неклеточных организмов – предки современных вирусов и клеточных микробов».

Вот, собственно, и все. Как говорится, осталось только поставить точку. Так бы я, наверно, и сделал, если бы очерк писался каких-нибудь полгода назад. Но жизнь идет вперед, а наука в своем развитии иногда делает такие повороты, которые не в силах предугадать не только писатели-фантасты, но и даже специалисты.

Чаще всего это случается тогда, когда ученые в результате технических открытий получают в свои руки новые методы исследования. Так, Левенгук, применив микроскоп для изучения живой природы, открыл мир микробов, о существовании которого никто в те времена и не подозревал.

Однако на этот раз все произошло несколько по-иному.

Двое московских ученых – микробиолог-почвовед Денис Иванович Никитин и специалист по электронной микроскопии вирусолог Стефан Борисович Стефанов в отличие от Левенгука пользовались в своей работе инструментом, теперь уже довольно распространенным и сравнительно хорошо освоенным биологами, – обычным электронным микроскопом, и тем не менее… Но сначала все-таки несколько слов о самом электронном микроскопе.


Как известно, самые малые предметы, различаемые человеческим глазом, имеют размер около 0,2 миллиметра. Для наблюдения более мелких частиц обычно прибегают к оптическим системам, позволяющим получить увеличенные изображения. Наиболее совершенные из них – световые микроскопы – дают возможность наблюдать структуры, которые в 2 тысячи раз меньше предметов, различимых невооруженным глазом. Спрашивается: можно ли при световой микроскопии добиться больших увеличений? Оказывается, можно. Но бесполезно. Бесполезно потому, что при этом не становятся видимыми какие-либо новые, более мелкие детали рассматриваемых объектов, а изменяется лишь масштаб изображения. Другими словами, разрешающая способность остается такой же, что и у системы с увеличением в 2 тысячи раз. Никакие технические усовершенствования тут не помогут, так как разрешающая способность микроскопов ограничивается самой природой света, длиной световой волны. При идеальных условиях самые лучшие оптические микроскопы позволяют наблюдать частицы размером около одной трети световой волны.

Для видимого света с длинами волн от 0,4 до 0,7 микрона это соответствует объектам размером не менее 0,2 микрона; для более коротких невидимых ультрафиолетовых лучей – объектам в 0,1 микрона.

Отсюда ясно, почему дальнейшее проникновение в мир малых объектов недоступно самым совершенным световым микроскопам. Ясно и другое, что в приборах, которые могут позволить рассмотреть более мелкие объекты, недоступные для обычного микроскопа, следует использовать лучи не световые, а какой-то иной природы, имеющие меньшую длину волны.

Таким прибором и является электронный микроскоп. В нем изображение исследуемых объектов получается с помощью электронных лучей. Длина волны пучка электронов в условиях безвоздушного пространства – вакуума – оказывается в 100 тысяч фаз более короткой, чем длина волн видимого света. В остальном же принципиальная схема электронного микроскопа не отличается от схемы микроскопа светового. Но здесь вместо оптических линз установлены особые, так называемые магнитные и электромагнитные линзы. Кроме того, электроны в этом микроскопе движутся в пустоте (вакууме), а изображение исследуемых объектов получается на специальном экране, почти таком же, как экран телевизора. Современные электронные микроскопы дают полезное увеличение более 100 тысяч раз, и с их помощью можно увидеть даже отдельные крупные молекулы.


Первый электронный микроскоп был сконструирован в 1932 году. Сделали это немецкие ученые Кнолл и Руски. Прошло всего семь лет, и в печати появились работы, в которых рассказывалось об исследованиях, проведенных при помощи электронного микроскопа. Освоение чудесного и загадочного мира ультрамалых объектов началось. Человеческий гений проник еще в одну область неизвестного. Однако впереди ученых ждали не только новые замечательные открытия и разгадки тайн природы, но и новые трудности, разочарования и поражения.

Особенно тяжело пришлось биологам. Прошло довольно много времени, прежде чем электронный микроскоп вошел в их лаборатории. Можно сказать, что только теперь биологи начинают со всей полнотой использовать этот прибор. В сотнях лабораторий, с необыкновенным упорством преодолевая бесконечные методические трудности и неудачи, под стук вакуумных насосов ученые создают новую главу биологии, главу, которая уже имеет свое название – электронная микроскопия биологических объектов.

Непосвященному человеку может показаться, что дело это не особо сложное, – ведь на помощь биологам пришел электронный микроскоп. Возьмите теперь любой микроорганизм, поместите в микроскоп и рассматривайте его строение вплоть до отдельных молекул. Тем более что лучшие марки электронных микроскопов дают возможность не только видеть отдельные крупные молекулы, но позволяют различать даже некоторые детали их строения. Так или примерно так может рассуждать человек, мало знакомый с электронной микроскопией. Но в действительности все обстоит значительно сложнее.

Допустим, мы взяли амеб. Обработали их специальными веществами (фиксаторами), которые убили клетки, но сохранили при этом их прижизненное строение.

Дальше следует длинный ряд всяческих манипуляций и ухищрений, в результате которых клетки, наконец, оказываются нанесенными на специальную сеточку с очень маленькими (100 микрон) ячейками.

Приготовленный таким путем препарат помещаем в электронный микроскоп.

Включаем вакуумные насосы и следим за приборами. Движение стрелки показывает, как создается в колонне микроскопа вакуум. Частички воздуха убираются с пути следования электронов. Но вот вакуум есть. Включаем электронную пушку (так называется та часть микроскопа, где помещается вольфрамовая нить, дающая под действием сильного тока пучок электронов).

Микроскоп работает, его экран светится, и на нем хорошо видно мутно-черное расплывшееся пятно неправильной формы, закрывающее почти все поле зрения. Что же это за пятно?

Как это ни печально, но мы видим клетку, ту самую амебу, детали строения которой так хотелось рассмотреть. Но о каких деталях строения здесь можно говорить, когда нельзя даже различить ядра клетки? Темное пятно! Мрак! Вот все, что мы видим. Клетка оказывается непроницаемой для электронного пучка. Она для этого слишком толста. «Позвольте, – скажете вы, – ведь ее толщина всего несколько микрон». Да, действительно, несколько микрон, всего несколько тысячных долей миллиметра, но для электронов это непреодолимая стена. Стена, поглощающая все электроны и, значит, не прозрачная для электронного пучка. Рассмотреть строение целой клетки в электронный микроскоп не удается. Нужно сделать отдельные срезы, разрезать амебу на тоненькие, прозрачные ломтики, причем толщина таких срезов должна быть 3000–4000 ангстрем, то есть составлять сотые доли микрона. Только в этом случае можно надеяться рассмотреть клеточные структуры и детали их строения.

Но когда мы имеем дело с такими мелкими существами, как вирусы, размеры которых обычно лежат за гранью разрешающей способности светового микроскопа, то их резать нет никакой необходимости: электронный микроскоп позволяет изучать вирусы в целом виде.


Стефан Борисович Стефанов работал с вирусами. Однако его не совсем удовлетворяла общепринятая методика электронно-микроскопического изучения этих объектов. Вирусы приходилось выделять из их среды обитания, очищать, фильтровать, и только в таком рафинированном виде они попадали в электронный микроскоп. Ученому же хотелось изучить вирусы в их естественной обстановке, как выражаются, биологи, в нативном состоянии. Оригинальная методика, дающая такую возможность, и была разработана Стефановым несколько лет назад. Работа с вирусами двинулась вперед, и увлеченный исследователь меньше всего думал о почвенной микрофлоре. Уж слишком далеко в стороне от сферы его научных интересов находилась эта область микробиологии.

Но в то же время в той же Москве другой исследователь горел страстным желанием изучить под электронным микроскопом микробное население почвы. Не устраивали Дениса Ивановича Никитина и общепринятые подходы.

Выделить из почвы или воды отдельные виды микроорганизмов и изучить их строение под электронным микроскопом – дело в конце концов не такое уж сложное.

Но не это было нужно Никитину.

Его интересовала почва в ее естественном состоянии, со всем, что там есть. Вот взять из природы кусочек микромира и рассмотреть с увеличением в десятки тысяч раз. Разве это не заманчиво?!

Но тут на пути встали многие технические трудности.

Приготовить препарат для электронной микроскопии, как известно, вообще не легко, даже когда имеешь дело с простыми и заранее очищенными объектами. Здесь же речь шла о таком сложном конгломерате, как почва. В общем преодолеть методические затруднения Никитину не удавалось, несмотря на многие попытки.

Попробовать же искать решение поставленной задачи среди методов, применяемых в вирусологии, ему просто не приходило в голову. Слишком далек был Денис Иванович от этой науки.

Дело решил случай. Как-то Стефанов и Никитин встретились в одном из коридоров биоотделения Академии наук и разговорились. Один поделился своими неудачами, другой посоветовал, что предпринять.

Решили попробовать вместе.

Так родился творческий дуэт, в котором голоса столь удачно дополняли друг друга, а каждый исполнитель так хорошо знал свою партию, что результаты не замедлили сказаться. И результаты поразительные.

…С напряженным вниманием гляжу в боковое смотровое окошко электронного микроскопа. Центральное, как его называют, операторское, окно в распоряжении Стефана Борисовича. Он сидит за пультом микроскопа и, работая штангами препаратоводителя, медленно перемещает в поле зрения сеточку с препаратом. Мы просматриваем ячейку за ячейкой, однако пока ничего интересного нет. Но вот, наконец…


Перед нашими глазами на экране располагается целая россыпь каких-то странных существ. Представьте себе очень нежные и тонкие диски совершенно правильной круглой формы. Строго к центру каждого диска прикреплена довольна длинная, постепенно заостряющаяся к концу трубочка. Хорошо видны ее стенки и внутренняя полость, местами забитая чем-то темным.

Размеры этого ажурного существа меньше микрона, и, конечно, рассмотреть его строение в обычный световой микроскоп едва ли возможно.

– Кто это? – спрашиваю я Стефана Борисовича.

– У нас их называют «зонтики», – отвечает он с улыбкой. – Тут такое многообразие форм, что у нас в лаборатории за каждое удачное название выдается премия – шоколадка.

Вскоре недалеко от «зонтиков» нам попалось целое поселение «гитар»: это тоже что-то вроде «зонтиков», только их диски по форме действительно похожи на гитары, а ножки-трубочки длиннее и немного толще.

Видели мы и уже совсем странные «граммофончики» – трубочки с обязательной, четко выраженной тарелкой-присоской на одном конце и широким раструбом из пяти правильных лепестков на другом. Здесь же присутствовали и «гвоздики», напоминавшие при большом увеличении пионерский горн без ручки.

Внутри их просматривалось зернистое содержимое. И весь этот богатый улов нам дал один препарат, на котором была зафиксирована всего лишь микроскопическая капелька воды из Москвы-реки.

– Интересно, сколько еще таких же существ, которых в обычный микроскоп не могли, а в электронный еще не успели рассмотреть, обитает в водоемах? – подумал я вслух.

Но Стефан Борисович очень осторожен в выводах.

– Почему именно существ? – возразил он. – Еще надо доказать, что они живые. Конечно, ясно, что это не скопление каких-то кристаллов и не растворы неорганических коллоидов. Но почему бы не допустить, что это не самостоятельные организмы, а останки, так сказать, осколки обычных живущих в воде микроорганизмов? Ну, например, «зонтики» – это реснички погибших инфузорий, а «гитары» – жгутики каких-то жгутиконосцев?

Конечно, допустить можно все. Но уж слишком натянутым представляется такое допущение. Уж больно хорошо приспособлены «зонтики» и «гитары» к тому, чтобы находиться в воде во взвешенном состоянии. К чему это мертвым ресничкам и жгутикам? А вот на одной фотографии хорошо видна пара «зонтиков», наполовину слившихся своими шляпками и концами ножек. А может, это не слияние, а, наоборот, деление – способ размножения, широко распространенный в микромире? К тому же замечено, что количество «зонтиков» в воде иногда вдруг значительно возрастает!

А как быть с «гвоздиками», «граммофончиками»?

Трудно как-то поверить, что всегда одинаково устроенные ультрамикроскопические стебельки с присоской на одном конце и нежными лепестками на другом не самостоятельные целостные организмы, а части микробных трупов.

А почему бы не представить, что, прикрепившись своей подошвой-присоской к чему-то крупному (может быть, к какому-нибудь другому микроорганизму), и существует удивительный «граммофончик», нагнетая внутрь стебелька воду, которая в естественных водоемах всегда насыщена органическими веществами?

Кстати, «граммофончики» на препаратах встречаются довольно часто. И хотя все они имеют одинаковое строение, стебельки у них разных размеров. А не растут ли они? Впрочем, на эти вопросы ответы даст будущее.

Изучение субмикроскопической водной микрофлоры лишь только начато.

И я уверен, что пройдет какое-то время, и многие из этих «граммофончиков», «зонтиков», «гвоздиков», «гитар» и т. д. займут место в ряду живых существ, сменив свои прозаические названия на мудреную и звучную латынь.

Не менее удивительные вещи ожидали исследователей и при изучении препаратов микрофлоры почвы. Вот фотографии. В электронной микроскопии это хотя и единственные, но неопровержимые документы – ведь фотографирует сам электронный микроскоп. Здесь вы не можете изменить ракурс, убрать задний план, снять с насадочными кольцами или сделать какой-нибудь другой фотофокус. Тут просто экран отводится в сторону, и все, что вы видели в нем секунду назад, оказывается запечатленным на расположенной внизу фотопластинке.

Фотографий микроскопических препаратов почвы у Никитина и Стефанова многие сотни. Существа, найденные исследователями в почве, зачастую во много раз мельче тех, что наблюдались в воде. Рассмотреть их можно лишь с увеличением в 60 или даже в 100 тысяч раз. Это так называемые «халы», «четки» и «спирали». Кстати, в одном случае удалось видеть существо размерами немногим больше вируса, а формой напоминающее крестик.

И опять тот же вопрос: существа ли это? Авторы предпочитают сомневаться. Но вот другая группа организмов, назовем их пока субмикроскопическими инфузориями, едва ли может вызвать сомнение в своей принадлежности к живой природе даже у самого строгого критика.

Попробуем их описать.

Увеличение в 32 тысячи раз.

Хорошо видно овальное студенистое тело с расходящимися во все стороны выростами – трубочками. На конце трубочек четко выражены валики – утолщения. Это присоски.


Спросите любого протистолога (специалиста по простейшим), и он, взглянув на фотографию, не задумываясь, скажет, что это суктория.

По-видимому, так оно и есть.

Подкласс суктория (сосущие инфузории) характеризуется именно наличием у его представителей вот таких трубочек с присосками.

Однако эту сукторию никто из протистологов никогда раньше не видал, да и не мог увидеть. Ее размеры – десятые доли микрона, и в световом микроскопе она в лучшем случае будет выглядеть в виде едва заметной точки. Но в коллекции Стефанова и Никитина такие экземпляры, наоборот, считаются крупными, поскольку другие – карлики даже среди существ микромира.

Вот один из них. Его более короткие и толстые, по сравнению с предыдущим видом, трубочки-присоски прильнули к телу бактерии, которая при таком огромном увеличении (в 100 тысяч раз) выглядит великаном. У субмикроскопической инфузории отлично видно строение тела. Четко обозначенная оболочка охватывает выросты-присоски и, загибаясь внутрь, выстилает их внутренний канал. Смотришь – и не веришь глазам!

Неужели в природе существуют инфузории, уступающие во много раз по своим размерам бактериям! Но электронномикроскопическая фотография – документ неоспоримый.


    Ваша оценка произведения:

Популярные книги за неделю