Текст книги "Искусственный интеллект. Этапы. Угрозы. Стратегии"
Автор книги: Ник Бостром
Жанры:
Прочая научная литература
,сообщить о нарушении
Текущая страница: 9 (всего у книги 40 страниц) [доступный отрывок для чтения: 10 страниц]
Вспомним о двух вопросах, о которых я говорил, что их принципиально нужно различать. Насколько мы далеки от создания универсального искусственного интеллекта человеческого уровня? Насколько быстро произойдет переход от этого уровня к сверхразумному? Первый вопрос больше относится к оценке того, сколько времени потребуется на подготовку взлета. Для ответа на второй вопрос важно определить траекторию полета к сверхразуму – цели нашего исследования в этой главе. Довольно соблазнительно предположить, что шаг от создания УИИЧУ к появлению сверхразума будет очень сложным, что этот шаг, в конце концов, должен быть сделан «на большей высоте», где к уже имеющейся системе нужно будет добавить дополнительную мощность. Считать так было бы неверно. Вполне возможно, что с достижением равенства между интеллектуальными способностями человека и машины сопротивляемость упадет.
Рассмотрим в первую очередь полную эмуляцию головного мозга. Трудности, ожидающие нас на пути создания первой успешной имитационной модели, разительно отличаются от трудностей, связанных с ее дальнейшим обслуживанием. В первом случае придется решить множество технических проблем, особенно в области разработки необходимых технологий сканирования и обработки изображений. Нужно будет создавать материальные активы, возможно, целый парк из сотен высокопроизводительных сканирующих устройств. Напротив, повышение качества уже существующей имитационной модели мозга связано скорее с совершенствованием программного обеспечения – с тонкой настройкой алгоритмов и уточнением структуры данных. Эта задача может оказаться легче, чем создать технологию обработки изображений, без которой дальнейший прогресс невозможен в принципе. Программисты могут экспериментировать с разными параметрами вроде количества нейронов в различных областях коры головного мозга, чтобы посмотреть, как это влияет на производительность модели7. А также поработать над оптимизацией кода и поискать более простую вычислительную модель, способную сохранить всю основную функциональность отдельных нейронов и небольших нейронных сетей. Если последней технологической составляющей, которой будет недоставать для решения задачи, окажется сканирование или трансляция, притом что вычислительная мощность будет в избытке, тогда на первом этапе не придется уделять особое внимание вопросам эффективности, поэтому на втором этапе можно будет многое оптимизировать. (Вероятно, получится провести фундаментальную реорганизацию вычислительной архитектуры, однако это уведет нас с пути эмуляции на путь создания ИИ.)
Еще один способ улучшить код имитационной модели мозга после того, как она будет создана, это сканировать головной мозг других людей с отличающимися или более высокими навыками и талантами. Можно также добиться роста производительности в результате последовательной адаптации организационной структуры и процессов к специфике функционирования цифрового интеллекта. Поскольку в мировой экономике, созданной человеком, не было аналогов работника, которого можно в буквальном смысле слова скопировать, перезапустить, ускорить или замедлить и так далее, то у руководителей первого коллектива работников эмуляций будет множество возможностей для инноваций в области управления.
После снижения сопротивляемости в результате создания первой имитационной модели человеческого мозга ее уровень может снова начать расти. Рано или поздно будут устранены наиболее очевидные недостатки, сделаны наиболее многообещающие изменения алгоритма, использованы самые простые возможности для организационных улучшений. Библиотека исходных данных вырастет настолько, что сканирование дополнительных экземпляров мозга перестанет заметно повышать качество модели. Поскольку имитационную модель можно копировать, а каждую копию обучать, то есть загружать в нее самые разнообразные знания, возможно, для получения максимального эффекта не придется сканировать мозг множества людей. Вполне вероятно, что довольно будет всего одного.
Еще одна потенциальная причина роста сопротивляемости состоит в том, что сами имитационные модели или их защитники-люди могут организовать движение за регулирование отрасли, что повлечет за собой ряд ограничений: сокращение числа работников-эмуляций; лимит на копирование имитационных моделей; запрет на определенные виды экспериментов над моделями, – но кроме этого работники-эмуляции получат гарантированное соблюдение своих прав, установленную специально для них минимальную заработную плату, ну и так далее. Правда, вполне допустимо, что политическое развитие пойдет в прямо противоположном направлении, в результате чего сопротивляемость упадет. Это может случиться, если первоначальные ограничения в использовании работников-эмуляций уступят место их безоглядной эксплуатации – после того как вырастет конкуренция и станут очевидны высокие экономические и стратегические издержки слишком щепетильного отношения к моральным аспектам проблемы.
Что касается искусственного интеллекта (машинного интеллекта, не связанного с имитационным моделированием человеческого мозга), то степень сложности его развития от УИИЧУ до уровня сверхразума за счет совершенствования алгоритма будет зависеть от особенностей конкретной системы. Сопротивляемость разных архитектур может различаться очень сильно.
В некоторых случаях она, вероятно, окажется чрезвычайно низкой. Скажем, создание ИИЧУ задерживается из-за какого-то последнего, ускользающего от программистов штриха, но после того как он будет найден, ИИ может в одночасье преодолеть разрыв между уровнем ниже человеческого и уровнем, значительно его превосходящим. Еще одна ситуация, в которой сопротивляемость может оказаться низкой, – это когда умственные способности ИИ развиваются за счет двух различных способов обработки информации. Представим ИИ, состоящий из двух подсистем, одна из которых отвечает за методы решения узкоспециализированных задач, другая – за универсальное мышление. Вполне возможно, что если вторая подсистема недотягивает до некоторого порогового значения производительности, она ничего не добавляет в совокупную производительность системы, поскольку ее решения всегда хуже тех, которые вырабатывает подсистема работы со специализированными задачами. Теперь предположим, что к подсистеме универсального мышления приложили определенную силу оптимизации, в результате чего производительность подсистемы резко повысилась. Поначалу мы не увидим изменения в совокупной производительности системы, что говорит о ее высокой сопротивляемости. Затем, когда возможности второй подсистемы пересекут некоторое пороговое значение, ее решения станут превосходить решения подсистемы специализированных задач, и совокупная производительность ИИ начнет расти с тем же высоким темпом, как растет производительность подсистемы универсального мышления, несмотря на то что сила оптимизации остается неизменной, – тогда сопротивляемость системы резко упадет.
Возможно также, что из-за естественной для нас склонности смотреть на интеллект с антропоцентрической точки зрения мы будем недооценивать динамику улучшений в системах, недотягивающих до человеческого уровня, и, таким образом, переоценивать сопротивляемость. Элиезер Юдковский, теоретик искусственного интеллекта, много пишущий о его будущем, говорит об этом в работе «Искусственный интеллект как позитивный и негативный фактор глобального риска» (см. также рис. 8):
Рис. 8. Не слишком антропоморфная шкала? Разрыв между идиотом и гением с антропоцентрической точки зрения может показаться очень значительным, но в более широкой перспективе различий между ними почти не видно9. Наверняка гораздо сложнее будет создать машину, чей уровень общего интеллекта окажется сравнимым с уровнем интеллекта полного идиота, чем усовершенствовать эту систему, в результате чего она станет намного умнее самого гениального из людей.
ИИ может совершить кажущийся резким скачок в интеллектуальных способностях исключительно вследствие антропоморфизма, то есть присущей человеку тенденции считать, будто на интеллектуальной шкале располагается не практически бесконечное количество точек, а есть всего две крайние, причем на одной крайней точке находится «деревенский дурачок», а на другой – «Эйнштейн».
Все, что глупее глупого человека, может показаться кому-то просто «глупым». И вот мы как бы двигаемся по интеллектуальной шкале вправо, мимо мышей и шимпанзе, а ИИ все еще остается «глупым», поскольку не говорит свободно на вашем языке и не пишет научные статьи, но потом он внезапно преодолевает крошечный разрыв между недоидиотом и сверх-Эйнштейном за месяц или около того8.
Итак, все соображения приводят к следующему заключению: очень трудно предсказать, насколько сложно будет усовершенствовать алгоритм первого ИИ, который достигнет примерно общего интеллектуального уровня человека. Можно представить как минимум несколько возможных обстоятельств, при которых сопротивляемость алгоритма будет низка. Но даже если она и очень высока, это не говорит о том, что совокупная сопротивляемость ИИ также обязательно должна быть высокой. Можно легко повысить уровень интеллектуальных способностей системы и без корректировки алгоритмов. Есть еще два фактора, влияющих на него: контент и оборудование.
Прежде всего поговорим об улучшении контента. Под «контентом» мы понимаем те части кода ИИ, которые не относятся к его главной алгоритмической архитектуре. К контенту могут относиться, например, базы данных сохраненных объектов восприятия, библиотек специализированных навыков и запасы декларативных знаний. Для многих типов систем грань между алгоритмической архитектурой и контентом довольно размыта, тем не менее она может быть простым способом отметить один потенциально важный источник прироста способностей машинного интеллекта. Можно иначе выразить ту же самую идею: способности системы решать интеллектуальные задачи можно повысить не только сделав систему умнее, но и увеличив объем ее знаний.
Возьмем современные интеллектуальные системы вроде TextRunner (исследовательский проект, который реализуется в Университете Вашингтона) или суперкомпьютера Watson, созданного в IBM (обыграл двух рекордсменов телевизионной игры-викторины Jeopardy!). Они способны извлекать некоторое количество семантической информации, анализируя текст. И хотя эти системы не понимают, что читают, – в том смысле или до такой же степени, как люди, – они тем не менее могут получать значимую информацию из текста, написанного на обычном языке, и использовать ее для получения простых выводов и ответов на вопросы. Еще они могут учиться на своем опыте, усложняя представление концепции по мере того, как сталкиваются с новыми случаями ее использования. Они разработаны так, чтобы большую часть времени работать без вмешательства людей (то есть учиться находить скрытую структуру в неразмеченных данных в отсутствие сигналов, подтверждающих правильность или сообщающих об ошибочности их действий, со стороны человека), причем работать быстро и с возможностью масштабирования. Скажем, TextRunner работает с массивом из пятисот миллионов интернет-страниц10.
Теперь представим далекого потомка такой системы, способного понимать прочитанное на уровне десятилетнего ребенка, но читающего при этом со скоростью TextRunner. (Вероятно, это ИИ-полная задача.) То есть мы воображаем систему, думающую гораздо быстрее и запоминающую гораздо лучше взрослого человека, но знающую много меньше, – возможно, в результате ее способности будут примерно соответствовать человеческим способностям решать задачи на общем интеллектуальном уровне. Но ее сопротивляемость с точки зрения контента очень низка – достаточно низка, чтобы произошел взлет. За несколько недель система прочитает и обработает весь контент, содержащийся в книгах из библиотеки Конгресса США. И вот она уже и знает больше любого человеческого существа, и думает гораздо быстрее – то есть становится слабым (по меньшей мере) сверхразумом.
Таким образом, система может резко усилить свои интеллектуальные способности, впитав информацию, накопленную за многие века существования человеческой науки и цивилизации, например получая ее из интернета. Если ИИ достигает человеческого уровня, не имея доступа к этим материалам или не будучи способным их переварить, тогда его общая сопротивляемость будет низка даже в том случае, когда его алгоритмическую архитектуру улучшить довольно трудно.
Концепция сопротивляемости контента также важна с точки зрения создания эмуляционной модели мозга. Работающая с большой скоростью имитационная модель мозга имеет преимущество перед биологическим мозгом не только потому, что решает те же задачи быстрее, но и потому, что аккумулирует более подходящий контент, в том числе релевантные с точки зрения задачи навыки и опыт. Однако, чтобы раскрыть весь потенциал быстрого накопления контента, системе нужны соответствующие большие объемы памяти. Бессмысленно читать подряд энциклопедии, если к тому времени как дойдешь до статьи Abalone (африканский муравьед), забудешь все, что узнал из статьи Aardvark (моллюск). В то время как у систем ИИ, скорее всего, недостатка в памяти не будет, модели мозга могут унаследовать некоторые ограничения от своих биологических оригиналов. И, как следствие, потребуют каких-то архитектурных усовершенствований, чтобы иметь возможность обучаться без ограничений.
До сих пор мы рассматривали сопротивляемость архитектуры и контента – то есть то, насколько может быть сложно улучшить программное обеспечение машинного интеллекта, достигшего человеческого уровня интеллекта. Теперь давайте поговорим о третьем пути повышения производительности такого интеллекта, а именно об усовершенствовании его вычислительной части. Какой может быть сопротивляемость улучшению аппаратной основы?
После появления интеллектуальных программ (систем ИИ или имитационных моделей мозга) усилить коллективный интеллект можно будет просто за счет использования множества дополнительных компьютеров, на которых запущены их копии11. Скоростной интеллект можно усилить, перенеся программы на более быстрые компьютеры. В зависимости от того, насколько программы способны работать параллельно, еще один ресурс заключается в использовании большего числа процессоров. Это, скорее всего, подойдет для моделей мозга, которые изначально имеют параллельную архитектуру, но и многие системы ИИ включают в себя процедуры, эффективность выполнения которых повысится за счет параллельного выполнения. Усилить качественный интеллект за счет наращивания вычислительной мощности, возможно, также удастся, но вряд ли так же прямолинейно12.
Таким образом, сопротивляемость при усилении коллективного или скоростного (и, возможно, качественного) интеллекта в программах человеческого уровня, скорее всего, будет низкой. Единственной сложностью останется получить доступ к дополнительным вычислительным мощностям. Есть несколько путей расширения аппаратной базы системы, каждый из которых требует различных затрат времени.
В краткосрочной перспективе вычислительная мощность может масштабироваться практически линейно исключительно за счет дополнительного финансирования: увеличится оно вдвое – можно будет купить вдвое больше компьютеров, что позволит запустить вдвое больше программ одновременно. Возникновение облачных вычислительных услуг дает возможность любому проекту увеличивать использование вычислительных ресурсов, даже не теряя времени на доставку дополнительных компьютеров и установку на них ПО, хотя соображения секретности могут подталкивать к работе на собственных машинах. (Однако в некоторых сценариях дополнительные вычислительные ресурсы можно будет получить и иными способами, например рекрутируя ботнеты13.) То, насколько легко масштабировать ту или иную систему на определенную величину, будет зависеть от объемов изначально используемой ею вычислительной мощности. Систему, изначально работающую на персональном компьютере, можно масштабировать в тысячи раз меньше, чем за миллион долларов. Масштабировать программу, установленную на суперкомпьютере, гораздо дороже.
В чуть более долгосрочной перспективе, по мере того как окажется задействованной все большая часть имеющихся на планете вычислительных мощностей, затраты на приобретение дополнительного оборудования могут начать расти. Например, в сценарии создания имитационной модели мозга в условиях конкуренции затраты на запуск одной дополнительной ее копии должны расти и стать примерно равными выручке, которую эта копия генерирует, поскольку цены на вычислительную инфраструктуру будут подниматься (хотя если эта технология окажется в распоряжении всего одного проекта, он обеспечит себе монопсонию и вследствие этого сможет платить меньше.)
В более долгосрочной перспективе предложение вычислительной мощности будет расти по мере установки все новых ПО в дополнительные компьютеры. Всплеск спроса стимулирует расширение существующих и создание новых производств микропроцессоров. (Разовый всплеск производительности на один-два порядка величины может случиться в результате использования кастомизированных процессоров14.) Помимо этого, дополнительный вал вычислительной мощности хлынет на турбины мыслящих машин за счет постоянного усовершенствования технологий, темп которого будет только расти. Исторически он описывается знаменитым законом Мура, один из вариантов которого гласит, что вычислительная мощность в расчете на доллар удваивается каждые восемнадцать месяцев или около того15. И хотя никто не может поручиться, что эта скорость сохранится до момента создания ИИЧУ, пространство для совершенствования компьютерных технологий остается – фундаментальные физические пределы еще не достигнуты.
Поэтому есть все основания полагать, что сопротивляемость аппаратной среды не окажется слишком высокой. Приобретение дополнительной вычислительной мощности для системы, доказавшей право на существование тем, что она достигла человеческого интеллектуального уровня, может легко добавить мощности, имеющейся в распоряжении ее создателей, несколько дополнительных порядков величины (в зависимости от того, насколько прожорлив в этом смысле был проект изначально). Кастомизация процессоров добавит еще один-два порядка. На другие средства расширения аппаратной базы, такие как строительство новых заводов и усовершенствование вычислительных технологий, понадобится больше времени – обычно это занимает несколько лет, хотя в будущем срок может резко сократиться в результате революции, которую произведет сверхразум в области развития технологических и производственных процессов.
Подведем итоги. Мы можем говорить о вероятности образования «аппаратного навеса» – к тому моменту, когда будет создано программное обеспечение человеческого интеллектуального уровня, окажется доступно достаточно вычислительной мощности для запуска большого количества его копий на очень быстрых компьютерах. Сопротивляемость на уровне программного обеспечения, как уже было сказано выше, оценить сложнее, но, вполне вероятно, она может оказаться даже более низкой, чем сопротивляемость аппаратная. В частности, есть возможность образования «контентного навеса» в форме огромных объемов готовой к использованию информации (например, в интернете), которая станет доступна системе, как только она достигнет человеческого уровня развития. Вероятность «алгоритмического навеса» – проведенной заранее оптимизации алгоритмов – также существует, но гораздо более низкая. За счет совершенствования программного обеспечения (и алгоритмов, и контента) потенциальный рост производительности системы может составить несколько порядков величины, и добиться этого роста, после того как цифровой разум достигнет человеческого уровня, окажется довольно легко, причем он наложится на выигрыш в производительности, полученный за счет использования большего количества или более мощных аппаратных средств.
Сила оптимизации и взрывное развитие интеллекта
Изучив вопрос сопротивляемости, обратимся ко второй части нашего уравнения – силе оптимизации. Напомним:
Как видно из этой формулы, быстрый взлет не требует, чтобы сопротивляемость на фазе перехода была низкой. Быстрый взлет также может произойти на фоне неизменной или даже медленно растущей сопротивляемости, при условии, что сила оптимизации, приложенная к системе и повышающая ее производительность, растет довольно быстро. Мы увидим, что есть все основания считать: прилагаемая к системе сила оптимизации действительно будет расти на этапе перехода, по крайней мере в отсутствие явных мер, направленных против этого.
Здесь можно выделить две фазы. Первая фаза начинается с точки отрыва системы от уровня человеческого интеллекта. Поскольку ее возможности продолжают расти, она может использовать их часть или даже все возможности для самосовершенствования (или для создания системы-потомка, что неважно). Однако большая часть оптимизирующей силы будет приложена извне системы благодаря работе программистов и инженеров, как занятых в проекте, так и не имеющих к нему прямого отношения16. Если эта фаза растянется на долгое время, можно ожидать, что сила оптимизации, приложенная к системе, будет увеличиваться. Вклад в проект и команды, и участников извне станет расти, если выбранный подход покажет свою перспективность. Исследователи начнут работать усерднее, их количество вырастет, чтобы ускорить прогресс, начнут покупать больше компьютеров. Рост будет особенно быстрым, если создание ИИЧУ окажется для мира неожиданностью – в этом случае на изначально небольшом проекте будут сосредоточены усилия исследователей и разработчиков всего мира (хотя какая-то часть мировых усилий может быть направлена на реализацию конкурирующих проектов).
Вторая фаза роста начнется в тот момент, когда система аккумулирует такую мощность, что превратится в основной источник оптимизирующей силы по отношению к самой себе (на рис. 7 это отмечено как «критический рубеж, или точка перехода»). Это резко изменит динамику процесса, поскольку любые изменения возможностей системы теперь приводят к пропорциональному росту оптимизирующей силы, приложенной с целью ее дальнейшего совершенствования. Если сопротивляемость остается постоянной, начинается рост в геометрической прогрессии (см. врезку 4). Удвоение эффективности может происходить очень быстро – есть сценарии, где на это требуется всего нескольких секунд – если рост идет с электронными скоростями за счет использования алгоритмических усовершенствований или эксплуатации контентного или аппаратного навеса17. Для роста, базой которого является физическая инфраструктура, скажем, создание новых компьютеров или производственных мощностей, потребуется несколько больше времени (и все-таки оно будет совсем незначительным, если брать во внимание текущие темпы роста мировой экономики).
Таким образом, вполне вероятно, что в процессе перехода сила оптимизации будет расти – вначале потому, что люди будут стараться быстрее улучшить показатели искусственного интеллекта, демонстрирующего выдающиеся успехи, а позднее из-за того, что он и сам окажется в состоянии обеспечивать прогресс уже на цифровых скоростях. Это создаст реальные предпосылки для быстрого или умеренного взлета, даже если сопротивляемость будет постоянна или немного вырастет в зоне человеческого интеллектуального уровня18.
ВРЕЗКА 4. О ДИНАМИКЕ ВЗРЫВНОГО РАЗВИТИЯ ИНТЕЛЛЕКТА
Скорость изменения уровня интеллекта можно выразить в виде соотношения силы оптимизации, прикладываемой к системе, и ее сопротивляемости:
Совокупная сила оптимизации, действующая на систему, складывается из силы оптимизации, которую производит сама система, и приложенной извне. Например, развивать зародыш ИИ можно за счет комбинации его собственных усилий и усилий команды программистов-людей, возможно, с привлечением широкого глобального сообщества исследователей, постоянно работающих над прогрессом в отрасли производства полупроводников, компьютерных науках и связанных с ними областях19:
= система + проект + мир
Изначально зародыш ИИ обладает очень ограниченными когнитивными способностями. То есть в начальной точке величина система мала20. А как насчет проект и мир? Бывают случаи, когда возможности проекта превышают возможности всего остального мира, как было, например, с Манхэттенским проектом, когда большинство лучших физиков мира оказались в Лос-Аламосе и приняли участие в создании атомной бомбы. Но чаще на любой отдельно взятый проект приходится лишь очень небольшая доля общемировых исследовательских возможностей. Однако даже когда возможности мира намного превышают возможности проекта, проект может все-таки превышать мир, поскольку большинство исследователей за пределами проекта сосредоточены на других направлениях работы. Если проект начинает выглядеть многообещающим – что происходит, когда система достигает человеческого интеллектуального уровня или даже раньше, – он привлекает дополнительные инвестиции, что повышает проект. Если достижения проекта становятся достоянием широкой общественности, величина мир также повышается, поскольку растет интерес к искусственному интеллекту в целом и в игру включаются другие участники. Таким образом, на переходном этапе совокупная сила оптимизации, действующая на когнитивную систему, скорее всего, будет расти по мере роста возможностей системы21.
Рост возможностей системы может дойти до такой точки, где сила оптимизации, которую производит сама система, начинает доминировать над силой оптимизации, приложенной к системе извне (по всем существенным направлениям усовершенствования):
система > проект + мир
Этот рубеж очень важен, поскольку за ним дальнейшее совершенствование системы оказывает весьма сильное влияние на рост совокупной силы оптимизации, приложенной к системе с целью ее совершенствования. То есть включается режим мощного рекурсивного самосовершенствования. Это приводит к взрывному росту возможностей системы в широком диапазоне форм кривых сопротивляемости.
Чтобы проиллюстрировать это, рассмотрим первый сценарий, в котором сопротивляемость постоянна, вследствие чего возможности ИИ растут пропорционально приложенной к нему силе оптимизации. Предположим, что вся сила оптимизации генерируется самой системой и что все интеллектуальные возможности системы направлены на решение задачи совершенствования ее интеллекта, так что система = I22. Тогда мы имеем:
Решая это простое дифференциальное уравнение, получаем экспоненциальную функцию:
I = Aet/k
Но постоянство сопротивляемости – особый случай. Сопротивляемость вполне может снизиться в зоне человеческого интеллектуального уровня в силу одного или нескольких факторов, рассмотренных в предыдущем разделе, и оставаться низкой в точке перехода и некоторое время после нее (возможно, до тех пор, пока система в конечном счете не упрется в фундаментальные физические ограничения). Предположим, что приложенная к системе сила оптимизации остается примерно постоянной (то есть проект + мир ≈ с), пока система не получает возможность сама существенно менять свой дизайн, что приводит к удвоению ее возможностей через каждые 18 месяцев. (Это примерно соответствует историческим темпам совершенствования систем, если объединить закон Мура и прогресс в области создания ПО23.) Такие темпы совершенствования, достигнутые за счет действия примерно постоянной силы оптимизации, приводят к тому, что сопротивляемость снижается обратно пропорционально силе системы:
Если сопротивляемость продолжает снижаться по такой гиперболе, то когда ИИ достигнет точки перехода, совокупная сила оптимизации, действующая на систему, удвоится. То есть:
Следующее удвоение произойдет через 7,5 месяца. В течение 17,9 месяца возможности системы вырастут в тысячу раз, превратив ее в быстрый сверхразум (см. рис. 9).
Рис. 9. Одна из простых моделей взрывного развития интеллекта
Эта конкретная траектория роста имеет точку положительной сингулярности в момент t = 18 месяцев. В реальности предположение, что сопротивляемость является константой, перестанет выполняться по мере приближения системы к физическим границам обработки информации, если не раньше.
Эти два сценария приведены лишь в качестве иллюстрации: в зависимости от формы кривой сопротивляемости возможно множество других траекторий. Суть проста: мощная обратная связь, возникающая в районе точки перехода, должна привести к более быстрому взлету, чем в ее отсутствие.
В предыдущем разделе мы видели, что есть факторы, способные привести к резкому снижению сопротивляемости. К таким факторам относятся, например, возможность быстрого расширения аппаратной основы, как только будет создано работающее интеллектуальное ПО; возможность алгоритмических улучшений; возможность сканирования дополнительных экземпляров мозга (при полной эмуляции головного мозга); возможность быстрого усвоения огромного объема контента за счет тщательного обследования интернета (в случае искусственного интеллекта)24.
Впрочем, нужно сказать, что форму кривой сопротивляемости в каждой конкретной области характеризовать довольно сложно. В частности, неясно, насколько трудно будет повысить качество ПО имитационной модели человеческого мозга или ИИ. Нет также ясности и со степенью сложности расширения аппаратной базы подобных систем.
Хотя сегодня сравнительно легко увеличить вычислительную мощность, доступную небольшому проекту, – просто потратив на компьютеры в тысячу раз больше или подождав несколько лет падения цен на них, – вполне вероятно, что первый машинный интеллект, достигший человеческого уровня, будет создан в рамках крупного проекта с применением дорогих сверхмощных компьютеров, которые не слишком просто масштабировать, и что к этому времени перестанет действовать закон Мура. По этим причинам не следует исключать возможность медленного взлета, хотя вероятность быстрого или умеренного взлета представляется все-таки более высокой25.