355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Ник Бостром » Искусственный интеллект. Этапы. Угрозы. Стратегии » Текст книги (страница 3)
Искусственный интеллект. Этапы. Угрозы. Стратегии
  • Текст добавлен: 26 сентября 2016, 16:26

Текст книги "Искусственный интеллект. Этапы. Угрозы. Стратегии"


Автор книги: Ник Бостром



сообщить о нарушении

Текущая страница: 3 (всего у книги 40 страниц) [доступный отрывок для чтения: 10 страниц]

В других случаях изучения и применения искусственного интеллекта выявились проблемы более сложногопорядка, чем ожидалось, поэтому и развитие шло значительно медленнее. Профессор Дональд Кнут, крупнейший специалист в области программирования и вычислительной математики, с удивлением заметил: «Искусственный интеллект, преуспев сегодня во всем, где требуется “разум”, неспособен на те действия, которые люди и животные совершают “бездумно”, – эта задача оказалась гораздо труднее!»60 Затруднения вызывала, например, разработка системы управления поведением роботов, а также такие их функции, как распознавание зрительных образов и анализ объектов при взаимодействии с окружающей средой. Тем не менее и сделано было немало, и продолжает поныне делаться, причем работа идет не только над развитием программного обеспечения – постоянно совершенствуются аппаратные средства.

В один ряд с исследованием инстинктивного поведения можно поставить логику здравого смысла и понимание естественных языков – явления, которые тоже оказались не самыми легкими для систем искусственного интеллекта. Сейчас принято считать, что решение подобных проблем на уровне, сопоставимом с человеческим, является AI-полной задачей[5] – то есть их сложность эквивалентна трудности разработки машин, таких же умных и развитых, как люди61. Иными словами, если кто-то добьется успеха в создании ИИ, способного понимать естественный язык так же, как понимает его взрослый человек, то, скорее всего, он или уже создал ИИ, который может делать все, на что способен человеческий разум, или будет находиться в шаге от его создания62.

Высокий уровень игры в шахматы, как оказалось, достижим с помощью исключительно простого алгоритма. Возникает соблазн считать, будто и другие способности, например общее умение осмысливать или некоторые основные навыки программирования, можно также обеспечить за счет некоего удивительно несложного алгоритма. То обстоятельство, что в определенный момент оптимальная продуктивность достигается в результате применения сложного механизма, вовсе не означает, что ни один простой механизм не способен делать ту же работу так же хорошо и даже лучше. Птолемеева система мира (в центре Вселенной находится неподвижная Земля, а вокруг нее вращаются Солнце, Луна, планеты и звезды) выражала представление науки об устройстве мироздания на протяжении тысячи лет. Чтобы лучше объяснять характер движения небесных тел, ученые от века к веку усложняли модель системы, добавляя все новые и новые эпициклы, за счет чего повышалась точность ее прогнозов. Пришло время, и на смену геоцентрической пришла гелиоцентрическая система мира; теория Коперника была намного проще, а после доработки ее Кеплером стала и прогностически более точной63.

В современном мире методы искусственного интеллекта используют столь широко, что вряд ли целесообразно рассматривать здесь все области их применения, но некоторые стоит упомянуть, чтобы дать общее представление о масштабе распространения самой идеи. Помимо представленных в табл. 1 логических игровых программ, сегодня разрабатывают: слуховые аппараты на базе алгоритмов, отфильтровывающих фоновый шум; навигационные системы, отображающие карты и подсказывающие маршрут водителям; рекомендательные системы, предлагающие книги и музыкальные альбомы пользователям на основе анализа их предыдущих покупок и оценок; системы поддержки принятия медицинских решений, помогающие врачам, например, диагностировать рак молочной железы, подбирать варианты лечения и расшифровывать электрокардиограммы. В настоящее время, кроме промышленных роботов, которых уже больше миллиона, появились самые разные роботы-помощники: домашние питомцы; пылесосы; газонокосильщики; спасатели; хирурги64. Общая численность роботов в мире превысила десять миллионов65.

Современные системы распознавания речи, основанные на статистических методах вроде скрытых марковских моделей, являются довольно точными для практического использования (с их помощью были созданы некоторые начальные фрагменты этой книги). Персональные цифровые помощники (например, Siri – приложение Apple) реагируют на голосовые команды, могут отвечать на простые вопросы и выполнять распоряжения. Повсеместно распространено оптическое распознавание рукописного и машинописного текста – на нем основаны, в частности, приложения для сортировки почты и оцифровки исторических документов66.

До сих пор остаются несовершенными системы машинного перевода, тем не менее для определенных целей они вполне пригодны. На стадии ранних версий, в которых использовался метод КИИ и которые основывались на правилах, был создан принцип кодировки в ручном режиме для грамматик всех естественных языков – причем работа проводилась силами самых высококвалифицированных лингвистов. Новые системы основаны на статистических методах машинного обучения, которые автоматически выстраивают статистические модели на основе наблюдаемых ими закономерностей использования слов и фраз. Программы выводят параметры этих моделей, анализируя корпус текстов на двух языках. Такой подход позволяет не привлекать лингвистов, а программисты, разрабатывающие эти системы, могут даже не владеть языками, с которыми им приходится иметь дело67.

Системы распознавания лиц за последнее время были настолько усовершенствованы, что сейчас ими успешно пользуются пограничные службы в Европе и Австралии. Автоматическая идентификационная система работает в Госдепартаменте США, с ее помощью в процессе выдачи виз обрабатывается более семидесяти пяти миллионов фотографий в год. В системах наблюдения применяются все более совершенные методы ИИ и новейшие технологии по извлечению информации, с помощью которых проводят интеллектуальный анализ речевых, текстовых и видеоматериалов – основная часть их привлекается из общемировых коммуникационных сетей и гигантских центров сбора и обработки данных.

Автоматическое доказательство теорем и решение уравнений стало настолько общим местом, что уже не воспринимается как разработка искусственного интеллекта. Устройства для решения уравнений встроены в научные компьютерные программы, например систему Mathematica. Формальные методы проверки, в том числе системы автоматического доказательства теорем, повсеместно используются производителями микропроцессоров для проверки поведения схемы перед запуском в производство.

Американскими военными и разведывательными ведомствами широко и успешно внедряются так называемые боевые роботы – саперы для нахождения и обезвреживания бомб и мин; беспилотные летательные аппараты, предназначенные как для разведки, так и для боевых действий; другие автоматические виды вооружений. Сегодня эти устройства в основном управляются дистанционно операторами-специалистами, однако неустанно ведется работа над расширением их автономной деятельности.

Большой успех достигнут в области интеллектуального планирования и снабжения. В ходе операции «Буря в пустыне» в 1991 году была развернута система DART для обеспечения автоматизированного планирования поставок и составления графиков перевозок. Программа оказалась исключительно эффективной: по сводкам Агентства по перспективным оборонным научно-исследовательским разработкам США (Defense Advanced Research Projects Agency in the United States, DARPA), она одна окупила тридцатилетнее финансирование Министерством обороны работ в области ИИ68. Сложные программы календарного планирования и тарификации используются для систем бронирования авиабилетов. Компании активно применяют самые разные методы ИИ для контроля складских запасов. Автоматические системы телефонного бронирования и линии поддержки, соединенные с программами распознавания речи, способны провести несчастного потребителя через лабиринт взаимосвязанных вариантов выбора.

Технологии искусственного интеллекта лежат в основе многих интернет-сервисов. Общемировой трафик электронной почты проверяется специальным программным обеспечением – причем байесовская фильтрация спама, несмотря на постоянные усилия спамеров приспособиться и обойти защиту, в основном справляется с задачей и держит оборону. Электронные программы, используя компоненты ИИ, обеспечивают безопасность операций по банковским картам: отвечают за их автоматическое одобрение или отклонение и постоянно отслеживают действия по счету с целью обнаружить малейшие признаки мошенничества. Системы поиска информации также активно используют машинное обучение. А поисковая система Google, без сомнения, представляет собой величайшую из когда-либо созданных систем искусственного интеллекта.

Здесь стоит подчеркнуть, что граница между искусственным интеллектом и обычным программным обеспечением определена не очень четко. Некоторые из перечисленных выше программ могли бы скорее считаться приложениями многофункциональных программных обеспечений, нежели интеллектуальными системами, – тут невольно снова вспомнишь слова Маккарти, что «стоит системе нормально начать работать, как ее сразу перестают называть искусственным интеллектом». Для наших целей важнее обратить внимание на другое различие: есть системы, у которых имеется ограниченный набор когнитивных способностей (неважно, относятся они к ИИ или нет), и есть системы, обладающие широкоприменимыми инструментами для решения общих задач. В основном все используемые сейчас системы относятся к первому типу – узкодиапазонному. Однако многие из них содержат компоненты, способные либо сыграть роль в создании будущего искусственного интеллекта, который будет отличаться развитым общим уровнем развития, либо стать его частью, – это такие компоненты, как классификаторы, алгоритмы поиска, модули планирования, решатели задач и схемы представлений.

Системы искусственного интеллекта качественно работают еще в одной области, где ставки очень высоки, а конкуренция слишком жестока, – это мировой финансовый рынок. Автоматизированные системы торговли акциями широко используются крупными инвестиционными банками. И хотя некоторые из них всего лишь дают возможность автоматизировать исполнение заказов на покупку и продажу, выставленных управляющей компанией, другие реализуют сложные торговые стратегии, способные приспосабливаться к меняющимся условиям рынка. Чтобы изучать закономерности и тенденции фондового рынка, определять зависимость динамики котировок от внешних переменных, таких как, например, ключевые позиции в сводках финансовых новостей, – для всего этого в аналитических системах используется большой набор методик интеллектуального анализа данных и временных последовательностей. Новые потоковые котировки, выпускаемые агентствами финансовой информации, специально отформатированы под интеллектуальные автоматизированные системы. Другие системы специализируются на поиске возможностей совершать арбитражные операции либо на определенном рынке ценных бумаг, либо одновременно на нескольких рынках, либо с помощью алгоритмического высокочастотного трейдинга[6], целью которого является получение прибыли на незначительных колебаниях цен в пределах нескольких милисекунд (на таких временных интервалах начинают играть роль задержки в поступлении информации даже в оптоволоконных сетях, где она распространяется со скоростью света, и преимущество получают те, чьи компьютеры находятся в непосредственной близости от биржи). На долю алгоритмических высокочастотных трейдингов приходится более половины оборота фондового рынка США69. Существует мнение, что ответственность за так называемый мгновенный обвал фондовых индексов 6 мая 2010 года лежит именно на алгоритмической торговле (см. врезку 2).


ВРЕЗКА 2. «МГНОВЕННЫЙ ОБВАЛ» 2010 ГОДА

К полудню 6 мая 2010 года американский фондовый рынок уже упал на 4% на беспокойстве по поводу европейского долгового кризиса. Крупный игрок (группа взаимных фондов) инициировал в 14:32 алгоритм продажи для реализации большого количества фьючерсных контрактов E-Mini S&P 500 по цене, привязанной к показателю изменения ликвидности биржевых торгов. Эти контракты, приобретенные с помощью алгоритмических высокочастотных трейдингов, были запрограммированы быстро закрывать свои временные длинные позиции путем продажи контрактов другим игрокам. Поскольку спрос со стороны инвесторов, ориентирующихся на фундаментальные показатели, снизился, игроки алгоритмического трейдинга начали продавать фьючерсы E-Mini другим игрокам алгоритмического трейдинга, которые, в свою очередь, продавали их третьим таким же игрокам, создавая, таким образом, эффект «горячей картошки», которую пытаются «скинуть» как можно быстрее, – этот эффект раздувал объемы торгов, что было интерпретировано алгоритмом продажи как показатель высокой ликвидности. Поскольку игроки начали еще быстрее сбрасывать друг другу E-Mini, на фондовом рынке возник настоящий порочный круг. В какой-то момент игроки начали просто выводить средства, еще больше повышая ликвидность на фоне продолжающегося падения цен. Сделки по E-Mini были приостановлены в 14:45 автоматическим прерывателем – специальной программой, контролирующей неожиданное и чрезмерное движение цен акций на бирже. Буквально через пять секунд торги возобновились, при этом цены стабилизировались и вскоре отыграли большую часть падения. Но в течение этих критических минут с рынка был «смыт» триллион долларов, поскольку значительное число сделок прошло по абсурдным ценам: акция могла продаваться и за один цент, и за 100 тысяч долларов. После того как торги закончились, состоялась встреча представителей бирж и регулирующих органов, на которой было принято решение отменить все сделки, исполненные по ценам, отличающимся от докризисного уровня на 60% и более. Договаривающиеся стороны сочли эти цены «явно ошибочными», а потому – в соответствии с существующими биржевыми правилами – подлежащими отмене задним числом)70.

Изложенный сюжет представляет собой безусловное отступление от темы нашей книги, поскольку компьютерные программы, якобы ответственные за те минуты финансового кризиса, получившего название «мгновенный обвал», не были ни особенно интеллектуальными, ни слишком изощренными. Специфика созданной ими опасности принципиально отличается от характера угрозы, которую несет в себе появление искусственного сверхразума. Тем не менее из описанных событий можно вынести несколько полезных уроков.

Первое предупреждение. Взаимодействие нескольких простых компонентов (например, алгоритмы продаж и алгоритмическая высокочастотная торговля) может приводить к сложным и непредсказуемым последствиям. Если добавлять в налаженную систему новые элементы, возникают системные риски, не слишком очевидные до момента, когда что-то пойдет не так (да и то не всегда)71.

Второе предупреждение. Несмотря на то что специалисты в области искусственного интеллекта обучают программу на основании предположений, кажущихся здравыми и логичными (например, объем торгов является верным показателем ликвидности рынка), это может приводить к катастрофическим результатам. В непредвиденных обстоятельствах, когда исходные допущения оказываются неверными, программа с железобетонной логической стойкостью продолжает поступать в соответствии с полученными инструкциями. Алгоритм «тупо» делает свою обычную работу, которую делал всегда, и его совсем не беспокоит – если он, конечно, не принадлежит к редчайшей разновидности алгоритмов, – что мы хватаемся за голову в ужасе от абсурдности его действий. К этой теме мы еще вернемся.

Третье предупреждение. Несомненно, автоматизация процесса внесла свой вклад в возникновение инцидента, однако, без всяких сомнений, она также способствовала и разрешению проблемы. Программа контроля, отвечавшая за приостановку торгов в случае слишком большого отклонения цен от нормального уровня, сработала автоматически, поскольку ее создатели справедливо предполагали, что события, которые приводят к такому отклонению, могут происходить на временных интервалах, слишком коротких, чтобы на них успели отреагировать люди. Налицо потребность не полагаться во всем на контроль со стороны человека, а иметь в качестве подстраховки заранее разработанные и автоматически исполняемые алгоритмы безопасности. Кстати, это наблюдение предваряет тему, крайне важную в нашем последующем обсуждении машинного сверхразума72.

Будущее искусственного интеллекта – мнение специалистов

Успех, достигнутый на двух магистральных направлениях: во-первых, создание более прочного статистического и информационно-теоретического основания для машинного обучения; во-вторых, практическая и коммерческая эффективность различных конкретных приложений, узкоспециальных с точки зрения решаемых проблем и областей применения, – привел к тому, что пошатнувшийся было престиж исследований искусственного интеллекта удалось несколько восстановить. Но, похоже, у научного сообщества, имеющего отношение к этой теме, от прошлых неудач остался довольно горький опыт, вынуждающий многих ведущих исследователей отказываться от собственных устремлений и больших задач. Поэтому один из основателей направления Нильс Нильсон укоряет своих нынешних коллег в отсутствии той творческой дерзости, которая отличала поколение первопроходцев:


Соображение «благопристойности», на мой взгляд, оказывает дурное влияние на некоторых исследователей, выхолащивая саму идею искусственного интеллекта. Я будто слышу, как они говорят: «ИИ критиковали за отсутствие результатов. Теперь, добившись видимого успеха, мы не хотим рисковать собственной репутацией». Подобная осмотрительность приведет к тому, что все интересы ученых будут ограничены созданием программ, предназначенных предоставлять помощь человеку в его в интеллектуальной деятельности, то есть уровнем, который мы называем «слабый ИИ». Это неизбежно отвлечет их от усилий реализовать машинный аналог человеческого разума – то есть то, что мы называем «сильный ИИ»73.

Нильсону вторят такие патриархи, как Марвин Мински, Джон Маккарти и Патрик Уинстон74.

В последние годы наблюдается возрождение интереса к искусственному интеллекту, который вполне может обернуться новыми попытками создать универсальный ИИ (по Нильсону – сильный ИИ). Эти проекты будут поддерживаться, с одной стороны, производством новейших аппаратных средств, с другой – научным прогрессом в информатике и программировании в целом, во многих специализированных предметных сферах в частности, а также в смежных областях, например нейроинформатике. Себастиан Трун и Питер Норвиг подготовили в Стэнфордском университете на осень 2011 года бесплатный онлайновый вводный курс по искусственному интеллекту. Реакцию на объявление о нем можно рассматривать как самый убедительный показатель неудовлетворенного спроса на качественную информацию и образование – на курс записались около 160 тысяч человек со всего мира (окончили его 23 тысячи)75.

Существует множество вариантов экспертных оценок относительно будущего, уготованного искусственному интеллекту. Разногласия касаются и времени его появления, и того вида, в каком он когда-нибудь предстанет перед миром. Как заметили авторы одного недавнего исследования, прогнозы перспектив развития ИИ «различны настолько, насколько они категоричны»76.

Мы не в состоянии охватить полную картину всех современных положений об интересующей нас теме, однако некоторое, пусть даже поверхностное, представление дают скупые опросы специалистов и высказанные ими частные мнения. Например, не так давно мы попросили представителей нескольких экспертных сообществ ответить на вопрос, когда они ожидают появления искусственного интеллекта человеческого уровня (ИИЧУ) – причем уровень определялся как «способность освоить большинство профессий, по крайней мере тех, которыми мог бы владеть среднестатистический человек». Респондентов просили строить свои предположения на основании того, что «научная деятельность в этом направлении будет продолжаться без серьезных сбоев»77. Ответы специалистов показаны в табл. 2. По данным выборки получились следующие средние оценки:

2022 год – средний прогноз с 10-процентной вероятностью;

2040 год – средний прогноз с 50-процентной вероятностью;

2075 год – средний прогноз с 90-процентной вероятностью.

Поскольку размер выборки слишком мал, а с точки зрения генеральной совокупности опрошенных ее нельзя считать репрезентативной, то результаты стоит рассматривать с некоторой долей скептицизма. Однако они согласуются с результатами других опросов78.

Данные упомянутого опроса также соответствуют мнению примерно двух десятков исследователей, интервью с которыми появились за последние несколько лет. Назову только Нильса Нильсона. Ученый, многие десятилетия плодотворно трудившийся над фундаментальными вопросами ИИ (методы поиска, автоматическое планирование, системы представления знаний, робототехника), написавший несколько учебников, недавно завершивший самую подробную историю исследований ИИ79, – когда его спросили о сроках появления ИИЧУ, Нильсон дал следующее заключение80:

2030 год – средний прогноз с 10-процентной вероятностью;

2050 год – средний прогноз с 50-процентной вероятностью;

2100 год – средний прогноз с 90-процентной вероятностью.


Таблица 2. Когда будет создан искусственный интеллект человеческого уровня?81

10%

50%

90%

PT-AI

2023

2048

2080

AGI

2022

2040

2065

EETN

2020

2050

2093

Топ-100

2024

2050

2070

В среднем

2022

2040

2075

Судя по опубликованным интервью, названное профессором Нильсоном распределение вероятности вполне репрезентативно – многие эксперты думали так же. Однако еще раз хочу подчеркнуть: мнения расходились очень сильно, поскольку некоторые специалисты-практики горячо верили, что ИИЧУ будет создан за период 2020–2040 годов, а некоторые ученые были убеждены, что либо этого не случится никогда, либо это произойдет, но в неопределенно далеком будущем82. Кроме того, одни интервьюируемые считали, что определение «человеческого уровня» по отношению к искусственному интеллекту сформулировано некорректно и может вводить в заблуждение, а другие – по каким-то своим соображениям – просто воздержались от прогнозов.

На мой взгляд, прогнозы, отодвигающие создание ИИЧУ на более поздние сроки (по средним цифрам, полученным в результате опросов), определенно пессимистичны. 10-процентная вероятность появления ИИЧУ в 2075, и тем более в 2100 году (даже при условии, что «научная деятельность в этом направлении будет продолжаться без серьезных сбоев») представляется слишком низкой.

История показывает, что исследователи не могут похвастаться способностью предсказывать ни успехи в разработках искусственного интеллекта, ни формы его воплощения. С одной стороны, выяснилось, что некоторые задачи, скажем, игра в шахматы, могут быть решены при помощи удивительно простых программ, и скептики, заявлявшие, будто машины «никогда» не смогут делать те или иные вещи, раз за разом оказываются посрамлены. С другой – наиболее типичной ошибкой специалистов является недооценка трудностей, связанных с разработкой устойчивой интеллектуальной системы, способной справляться с задачами реальной жизни, и переоценка возможностей их собственных проектов или методов.

В ходе одного из опросов были заданы еще два вопроса, актуальные для нашего исследования. Респондентов спросили, сколько, по их мнению, потребуется времени после создания ИИЧУ, чтобы машина смогла развить сверхразум. Ответы приведены в табл. 3. Второй вопрос касался темы долговременного воздействия на человечество, которое будет оказывать ИИЧУ. Ответы суммированы на рис. 2.


Таблица 3. Сколько времени пройдет между созданием искусственного интеллекта человеческого уровня и появлением сверхразума?

Меньше двух лет

Меньше 30 лет

Топ-100

5%

50%

В среднем

10%

75%


Рис. 2. Долговременное воздействие искусственного интеллекта человеческого уровня83

Мое мнение снова расходится с теми, которые были высказаны в ходе опроса. Я считаю гораздо более вероятным, что сверхразум появится сравнительно быстро после создания ИИЧУ. Кроме того, мой взгляд на последствия этого события также принципиально другой: вероятность чрезвычайно сильного воздействия – позитивного или негативного – на человечество гораздо более высока, чем вероятность нейтрального влияния. Причины этого вскоре станут ясны.

Не стоит полагаться всерьез ни на экспертные опросы, ни на интервью – в силу больших погрешностей данных методов. Небольшая выборка, ее возможные ошибки, а самое главное, ненадежность, изначально присущая субъективным мнениям, – все это не позволяет нам прийти к строгим умозаключениям. Однако пусть поверхностные – за неимением более достоверных аналитических данных, – но какие-то выводы мы в состоянии сделать. Во-первых, искусственный интеллект человеческого уровня имеет довольно высокую вероятность быть созданным к середине нынешнего столетия и имеет ненулевую вероятность быть созданным немного ранее или много позже. Во-вторых, после его создания, скорее всего, довольно быстро появится сверхразум. В-третьих, появление сверхразума может привести к огромным последствиям – как чрезвычайно позитивным, так и чрезвычайно негативным, вплоть до гибели человечества84.

Полученные выводы по меньшей мере говорят нам, что тема заслуживает тщательного рассмотрения.


    Ваша оценка произведения:

Популярные книги за неделю