Текст книги "Динамика науки методологический дискурс"
Автор книги: Лёвин Гаврилович
сообщить о нарушении
Текущая страница: 10 (всего у книги 12 страниц)
Структура знаний в период третьей революции также преобразуется. В ней широко представлены своеобразные «посредники», которые встраиваются между познающим субъектом и объектом. В свое время Н. Бор апробировал методологический подход, в котором признаки изучаемого объекта задавались через экспликацию операциональной схемы его познания. В квантовой физике эта схема применялась на базе представления о корпускулярно-волновом дуализме проявления микрообъектов, а также учитывала принцип дополнительности – в силу макроскопической природы приборов.
Важный урок исторического развития науки в XX веке состоит в том, что содержание научной революции нельзя сводить только к когнитивным преобразованиям. Эта революция протекает в контексте главных процессов развития общества. Ее бурные проявления обнаруживаются и в системе знаний, и в системе деятельности ученых, и в системе социальных институтов, свойственных науке.
Научная революция превратилась в перманентный процесс и продолжает набирать обороты уже в новом столетии. Сегодня она характеризуется возможностями возникновения общества, основанного на знаниях, а также осуществлением процессов создания технологической базы пятого поколения. Кроме того, выявляется экологический и гуманитарный характер этой революции. Она приняла уже международные масштабы, но реализуется пока только в высокоразвитых странах, вставших на путь современной модернизации.
11. ПЕРСПЕКТИВЫ СОВРЕМЕННОЙ НАУКИ
Выше было показано, что научное познание наших дней вновь радикально преобразует свою категориальную сеть, формирует новую картину мира, использует необычные для недавнего еще прошлого методологические концепции. В общем и целом наука сталкивается с задачами нового преобразования типа рациональности, который базируется на объединении системно-организационного и историко-эволюционного подходов к объяснению сверхсложных объектов.
Сегодня философы науки правомерно говорят о рождении постнеклассической науки, исследовательский интерес которой обращен к особым объектам (Земля как общий исторический дом человечества и уникальный носитель жизни, грандиозные искусственные системы, приспособленные для освоения ближнего космоса и др.).
В последние десятилетия возникло новое научное направление, определяемое как синергетика. Синергетический подход, принципы синергетического исследования и деятельности применяются в самых различных сферах науки и практики. Предметная область этого направления связана с выявлением и исследованием исторически развивающихся систем. Их описание и объяснение базируется на теоретических принципах самоорганизации и саморегуляции, на изучении возможностей перехода сложных систем от одного уровня устойчивости к другому. Учитывается также перелом постепенности в эволюции систем, наличие «точек бифуркации» в их истории. В таких точках возможностные структуры эволюции становятся важным фактором объективной детерминации. В силу этого весь процесс эволюции приобретает нелинейный характер
Изменения подобных систем не могут быть адекватно схвачены в терминах классического однолинейного и даже неклассического вероятностного детерминизма. Теперь используются критерии и методы сценарного представления исторических изменений. Соответственно разрабатывается методология исторической реконструкции для изучения и объяснения сверхсложных эволюционных процессов. Она применяется для построения перспектив будущего человечества, для воспроизведения последствий Большого взрыва Вселенной и т.д.
На такой почве возникает обоснованное представление о новой роли субъекта в научном познании. Уже в неклассической науке было осознано, что субъект не является внешним сторонним наблюдателем протекающих процессов. Теперь же вводится более сильная установка, гласящая, что субъект участвует в ситуации выбора и своим воздействием способен влиять на поле возможных состояний системы. А в земных условиях он становится главным участником геологических, экологических и других процессов. Человеческие перспективы воздействия на суперсложные системы усиливаются в связи с появлением компьютерных технологий и созданием методов автоматической переработки громадных массивов информации.
Переход к постижению сверхсложных систем заставляет пересматривать существовавшие до недавнего времени критерии оценки истинности познания. Сегодня уже не может считаться удовлетворительной нейтрально-истинностная позиция исследователей. Трактовка науки только как некой исследовательской технологии, настроенной на объективную истину, становится недостаточной. Поскольку масштабы научной деятельности с подобными системами затрагивают интересы больших масс человечества, а подчас и судьбу всего человечества, постольку сегодня в науке пробивают себе дорогу разумно взвешенные действия. Наука начинает опираться на оценки больших сообществ людей, на выводы авторитетных экспертов и пр. Новым правилом становится обсуждение в науке и в обществе ограничений и запретов на определенные виды исследовательской работы (например, в области генной инженерии).
На фоне подобных изменений в основаниях науки приобретают остроту новые вопросы: имеет ли научное рациональное познание безусловный приоритет перед до-рациональными и внерациональными формами познания? Этот вопрос еще не получил четкого решения. Высказывается также предположение, что вхождение человечества в космическую эру потребует очередного преобразования принципов научной рациональности за счет введения в основания науки идей гармонии, целостности человеческого бытия, правильного пути жизни и др., освоенных когда-то в восточной философской традиции. К этому же подталкивают и заботы, возникшие перед нами в атомную эру существования общества.
Итак, наука в последние примерно тридцать лет переходит в некоторую ультрасовременную фазу своего развития. Одна из ведущих черт этой фазы заключается в том, что для современной науки характерен многовекторный охват предметных областей. Выбор ее проблем и тематики, формирование новых методов, разработка инструментально-технической базы осуществляются в чрезвычайно широком горизонте, что позволяет говорить о целом фронте развития науки. Ситуация такова, что уходит в прошлое классическое понятие о лидере науки (о «дисциплине-лидере»). Сегодня много лидеров, которые попеременно сменяют друг друга на передовом фронте исследований. Но они еще и объединяются в рамках комплексных, многодисциплинарных научных разработок. Налицо также каскадное развитие науки. Суть последнего состоит в том, что научная находка или открытие, сделанные в прошлом, получают многократное продолжение в более позднее время. Например, в 1902 г. американец Роберт Вуд установил изменение интенсивности пучка света, дифрагирующего на решетке. Он наблюдал поверхностные плазмоны в оптическом диапазоне. Но объяснение аномалий By да было дано только в 1941 г. итальянцем Уго Фано. А в конце 60-х гг. XX в. А. Отто сформулировал условия для возбуждения ПП-волны на гладких поверхностях, указал метод их возбуждения в оптическом диапазоне и открыл путь к экспериментальному исследованию поверхностных плазмонов в оптическом диапазоне. Каскад открытий продолжился в работах Э. Кречмана (1971 г.), а далее – в работах В. Кноля и Б. Ротен-хойслера, которые предложили использовать поверхностные плазмоны для микроскопии (1988 г). Была создана рабочая модель такого микроскопа, которая применяется теперь в физике, химии, биологии, технике. Так, микроскоп на основе ПП-резонанса используется для снятия кинетики протекания химических и биохимических реакций, для контроля размеров образующихся на поверхности комплексов.
Сегодня правомерно также говорить о глобально ориентированном развитии науки. К этому побуждают масштабы производственной деятельности человечества, объектом которой становится вся планета Земля и ее ближний космос. Поэтому в ряд самых значимых проблем становятся исследования тектонических процессов и процессов в глубине земной коры, изучение мирового океана, исследование массовых атмосферных явлений, динамика земного климата, изучение состояния биосферы, разработка проблем загрязнения околоземного космического пространства и др.
Надо отметить также био– и антропоцентрированное развитие современной науки. Проблема жизни и проблема человека занимает ведущее положение в массиве современных научных исследований. Они разрабатываются в аспекте и естественнонаучных, и социальных, и культурно-духовных задач, обострившихся в последние десятилетия.
Говоря о революции в современной науке, отметим создание и функционирование превращенных форм научных (исследовательских) сообществ, а также внедрение международного принципа работы научных структур. Примером формирования новых сообществ может служить организация «распределенных вычислений». На основе принципа «распределенных вычислений» был развернут проект поиска внеземных цивилизаций, объединивший полтора миллиона добровольцев. Находясь в связи с центром всего проекта через Интернет, громадное число частных владельцев компьютеров обеспечивают вычислительную мощность 8 Тфопс. Реализован также проект массового участия в определении новых последовательностей числа пи. И теперь математики точно знают, какая цифра стоит на квадрилионной позиции этой последовательности.
Международный принцип работы используется в современной науке широко и плодотворно. Так, Европейская организация ядерных исследований (ЦЕРН) сосредоточила объемные финансовые, технические и интеллектуальные ресурсы, что обеспечивает проведение грандиозных исследований, позволивших открыть элементарные частицы, участвующие в переносе слабого взаимодействия. В последние годы ученые этого центра существенно продвинулись в понимании процессов, происходящих во Вселенной. В частности, проведены эксперименты по детектированию «вимпсов», слабо взаимодействующих с обычным веществом. Интернационализации научных работ содействуют также Принстонский международный центр, Будапештский клуб, Римский клуб, Объединенный институт ядерных исследований (Дубна). При ООН разрабатывается программа «Новый международный экономический порядок». Проводятся мировые инновационные форумы, например, Московский международный салон промышленной собственности «Архимед». Начала свою работу российско-американская группа по космической медицине, созданная совместным решением РКА и НАСА. Свою задачу она видит в стратегическом планировании фундаментальных исследований в космосе и на Земле. В том числе предполагается развернуть исследования радиационного воздействия на человека; механизмов деструкции материалов космических станций под воздействием микроорганизмов; пути создания модифицированных растений, способных жить в условиях Марса.
Новый поворот в науке связан со сквозной разработкой в ней темы безопасности. Идет разработка концептуальной платформы безопасности для современного человечества. Вырабатываются методы прогноза, предупреждения и управления разнообразными рисками, с которыми сталкивается новейшее общество. Выявлены различные аспекты безопасности, в том числе военная, экологическая, биологическая, радиационная, информационная и др. Идет осознание того обстоятельства, что в этой области требуется зачастую разработка уникальных проектов, рассчитанных на избирательное функционирование крупных искусственных систем, обеспечивающих противодействие масштабным рискам и создающих условия для устойчивого развития человечества.
Революционным для современной науки является формирование устойчивой цепочки: исследование, расчет, наблюдение, воздействие на объект, технология. Причем технологичными становятся даже экзотические открытия. Такой путь проделало, например, открытие и применение фуллеренов, которые впервые были обнаружены в недрах космической материи.
Возникает положительная связь между звеньями научной работы. Процесс идет как эстафетный: открытие эффекта – создание аппаратуры и приборов на базе этого эффекта – использование аппаратуры в других областях науки – новые, подчас сенсационные, открытия в этих областях – появление подлинных взрывов и переворотов в соответствующих сферах науки. Сегодня в рамках подобных эстафет ожидаются взрывы в генетике, медицине, микроэлектронике.
Добавлю, что в науке сегодня осуществляется мощное технологическое сопровождение фундаментальных исследований. Показательно, например, что на коллайдере RHIC (работает на тяжелых релятивистских ионах золота) предпринята попытка в лабораторных условиях воссоздать процесс Большого взрыва нашей Вселенной. Необходимо отметить также возникновение уникальных средств изучения уникальных объектов. К ним относятся, например, некоторые средства изучения Земли: сверхглубокие скважины (9 км – в Германии, 12 км – на Кольском полуострове); появились глубоководные аппараты для исследования океана; пошли по уникальным маршрутам атомные ледокольные суда, а ледокол «Арктика» покорил Северный полюс.
Революционный потенциал современной науки воплощается в серии новейших технологических прорывов.
Прорыв в средствах связи
Традиционно в мире используются радиосвязь, телеграф, телевидение. Новый рывок оказался возможным с появлением световой (оптической) связи. Она возникла в 1960 г. В то же время начали шествие лазеры. Использование для связи микронных волн видимого света позволило многократно уплотнить передаваемую по кабелю специального назначения информацию. В качестве такого кабеля было предложено использовать длинные стеклянные волокна, а затем – двухслойные световоды и световоды из чистого кварцевого стекла. В 1988 г. была проложена первая трансатлантическая BOJ1C ТАТ-8. По ней осуществлялись одновременно 600000 тысяч телефонных разговоров вместо 36 по проводному кабелю. В течение 2000 г. проложена ЛOBC «Москва – Санкт Петербург – Стокгольм», которая обеспечивает еще и доступ в Интернет. В настоящее время число пользователей Интернет через BOJIC превышает один миллиард человек.
Еще один рывок в этой области обеспечен развитием спутниковой связи и спутниковых средств навигации. Развитие данной области тесно сопряжено с прогрессом космонавтики. Искусственные спутники Земли используются для передачи и приема различных сигналов и информации (о внутреннем состоянии космических объектов, об их местоположении на орбите, передаются телевизионные сигналы о космических съемках и т.д.). В последней четверти XX в. началось использование уникальной системы спутникового глобального позиционирования (GPS). Правительство США потратило на создание этой системы десятки миллиардов долларов. Современная GPS состоит из трех сегментов: космического, сегмента контроля и пользовательского сегмента. В нее входят 24 спутника, которые находятся на 6 орбитах. На орбиту выводятся и дублирующие спутники. На Земле расположены станции наблюдения и ведущая станция (в объединенном центре управления космическими системами военного назначения). Основной потребитель информации этой системы – Министерство обороны США. Приемники информации установлены на всех боевых и транспортных самолетах и кораблях, а также в крылатых ракетах и в системах наведения новых управляемых авиабомб.
Аналогичная система – ГЛОНАСС – была создана и в СССР. Ее космический сегмент охватывает 24 спутника, размещенных на трех разных орбитах. Однако в последние годы развитие этой системы замедлилось. Долгое время она была закрыта для гражданских пользователей. Но с 2017 года к ней подключаются все автомобили в России.
Энергетический прорыв
Во второй половине XX в. бурно развивалась наукоемкая энергетика. Известно, что в основе энергетики лежит преобразование различных видов энергии (механической, тепловой, электрической и др.). Выработка контролируемой энергии достигается с помощью сложных технических устройств, использующих разнообразные процессы, открытые наукой.
В современной техногенной цивилизации главным источником энергии служит углеводородное сырье. Однако его запасы ограничены, и потому взоры ученых обратились к использованию альтернативных источников: лучистой энергии Солнца, геотермальных вод, энергии ветра, колебаний вод морей и океанов и пр. В качестве принципиально нового источника рассматривается прирученная атомная и термоядерная энергия. В этой области первоначально была использована контролируемая реакция цепного деления урана. В 1954 г. была построена первая атомная электростанция и тем самым доказана возможность производства электрической энергии на основе расщепления ядер урана.
Для создания энергетических сооружений нового типа пришлось решать комплекс новых физических, химических, технологических проблем. Энергетическая эффективность деления урана была обоснована тем, что при распаде одного его грамма выделяется столько же тепла, сколько при сгорании трех тонн каменного угля. Но технологический эффект удалось получить, когда были сконструированы и построены специальные реакторы. Сегодня есть печальный опыт эксплуатации реактора типа РБМК (на медленных нейтронах) и достаточно успешный опыт работы реакторов ВВЭР. После чернобыльской катастрофы ученые начали сомневаться в безопасности эксплуатации АЭС. Законную тревогу проявляет и население. Однако оптимистические подходы к развитию ядерной энергетики сохраняются. В последние годы много внимания уделяется созданию реакторов на быстрых нейтронах (реакторы-размножители). В них используется уран-238, но для получения не энергии, а горючего. Этот изотоп урана хорошо поглощает быстрые нейтроны и превращается в плутоний-239. Появляется вторичное ядерное топливо, которое можно использовать в дальнейшем. Здесь нет зон высокого давления, в качестве теплоносителя применяется жидкий натрий, разработаны несколько защитных оболочек. Специалисты полагают, что реакторы на быстрых нейтронах способны обеспечить человечество теплом и электроэнергией на ближайшее тысячелетие.
Разрабатываются также энергетические программы по использованию термоядерных реакций. Дело идет о создании уникальных установок, предназначенных для получения колоссальной энергии, которая выделяется пока лишь при опустошительном взрыве водородной бомбы.
Учеными установлено, что для осуществления термоядерной реакции необходимо соблюдение нескольких условий. Например, для реакции синтеза тяжелых ядер водорода нужна температура порядка 100 миллионов градусов. Такой перегрев приводит к появлению плазмы – смеси свободно двигающихся положительных ионов и электронов. Нужна также высочайшая плотность плазмы (выше ста тысяч миллиардов частиц в кубическом сантиметре). К тому же реакцию надо сохранить во времени не менее одной секунды.
В созданных к настоящему времени уникальных установках («Токамак-10, «Токамак-15») удается соблюсти не все названные условия. К тому же эти установки пока потребляют огромную энергию для создания предварительных условий, но компенсация вновь полученной энергии еще не осуществлена. Чтобы термоядерный реактор работал, надо производить энергии в пять раз больше, чем тратится на нагревание плазмы и создание магнитных полей. Существует проект создания международного термоядерного реактора (ITER), который, возможно, решит эту грандиозную задачу. Хотя трудностей еще так много, что практическое использование термоядерной энергии можно ожидать лишь в отдаленном будущем.
Информационный прорыв
Развитие науки оказалось неразрывно связано с информационным прорывом, который принял глобальную форму и существенным образом повлиял на социально-экономические структуры мира. По мнению многих специалистов, человечество стоит на пороге формирования информационного общества. В наше время созданы мощные инфраструктуры, включающие телекоммуникационные и компьютерные сети, а также распределенные базы данных и знаний. В экономике развитых стран появляется новая отрасль производства, включающая деятельность по созданию, распространению, обработке и потребления информации. Эта отрасль вовлекает значительную часть самодеятельного населения.
Весь этот процесс получил название информатизации общества (А. Д. Еляков). Он был осуществлен благодаря использованию компьютерных технологий, которые усовершенствовали и автоматизировали переработку громадных массивов информации. Информатизация, таким образом, идет в тесной связи с компьютеризацией.
Практическая сторона дела тесно связана в данной области с серьезными концептуальными и научно-методологическими разработками, которые привели к появлению новой отрасли фундаментального знания. Здесь поработали К. Шеннон, Н. Винер, У. Росс Эшби, Дж. фон Нейман и другие корифеи науки XX столетия. Вместе с тем, создана база для новейших технологий, которые революционным образом влияют на прогресс общества. Стартовым моментом явилось построение электронных вычислительных машин (типа ENIAC и др.). Общие принципы их создания разработал Дж. фон Нейман.
Он предложил необходимый набор структурных элементов для ЭВМ и технологическую последовательность автоматической обработки информации, предполагающей выполнение инструкций специальной программы.
Современные компьютеры обрабатывают информацию, представленную в цифровой форме. Универсальный двоичный цифровой код позволяет представить на компьютере любую качественную информацию (тексты, графику, звук, изображение).
За несколько десятилетий XX столетия сменили друг друга пять поколений ЭВМ. В последние годы взят курс на создание сверх-ЭВМ (проект "Компьютерная инициатива"). Амбициозная цель этого проекта – разработка ЭВМ с быстродействием и объемом памяти на несколько порядков большими, чем у ныне существующих. В 2001 г. корпорация IBM создала для Министерства обороны США суперкомпьютер вычислительной мощностью 478 миллиардов операций в секунду. Кроме Пентагона им намерены пользоваться другие ведомства и научные учреждения. С помощью мощных компьютеров американские иммунологи, например, создали препарат, способный бороться со 160 вирусами. К 2016 году индустрия суперкомпьютеров существенно продвинулась вперед. На сегодня рейтинг самых производительных суперкомпьютеров планеты ТОР500 возглавляет Tianhe-2 китайского национального оборонного университета с мощностью 33,86 Пфлопс. А число суперкомпьютеров в ТОР500 с производительностью более 1 Пфлопс сейчас и три года назад показывает огромный прирост: 82 системы против 26. За три года создание вычислительного комплекса такой мощности стало более доступным благодаря появлению нового поколения более производительных и экономичных процессоров, ускорителей, коммуникационных и других компонентов.
Специалисты высказываются, что к технологиям, способствующим резкому увеличению вычислительной мощности компьютеров, относятся молекулярные или атомные технологии; различные биологические материалы и ДНК; трехмерные технологии; технологии, основанные на фотонах вместо электронов; квантовые технологии, в которых используются элементарные частицы. Делается прогноз, что в XXI в. вычислительная техника будет сопряжена не только со средствами связи и машиностроением, но и с биологическими процессами. Тогда возникнет перспектива создания разумных машин, «живых компьютеров» и человеко-машинных гибридов.
Сегодня одно из новейших направлений – попытки создания нейрокомпьютеров. Их устройство (микросхемы) близки по строению нейронным сетям человеческого мозга. Благодаря этому нейрокомпьютер способен к обучению. Он может использоваться в решении задач без четкого алгоритма и справляется с огромными потоками информации. Уже сегодня подобные компьютеры применяются на финансовых биржах, предсказывая колебания курсов валют и акций. Через десять лет, по словам Билла Гейтса, доля таких компьютеров на рынке вырастет до девяноста процентов. Интересно отметить, что в создание подобных компьютеров включились российские разработчики (фирма НТЦ «Модуль» создала нейропроцессор NM 6403. В печати сообщается, что этот процессор удостоен золотой медали на Всемирном салоне изобретений «Брюссель-Эврика».
Предпосылки новой научной революции в России
Новейшая научная революция – это событие мировой науки. В российской науке она свершается в той мере, в какой происходит включение российских ученых в этот всемирный процесс. При этом необходимо учитывать своеобразное разделение научного труда, которое существует в мировом сообществе ученых. Российская наука не охватывала и не может охватить все сегменты бурно развивающейся мировой науки; она может участвовать лишь в разработке определенных векторов научного прогресса на этапе научных революций. Выше было установлено, что научная революция идет в глубоких пластах познания и сопряжена с фундаментальными сдвигами в научной идеологии и в способах воплощения науки в социальную, экономическую, технологическую действительность. Потенциал российской науки позволяет ей реально участвовать в разработке принципиальных проблем современного развития мировой науки. Для этого есть множество предпосылок, но существуют, конечно, и серьезные трудности, о чем стоит говорить особо.
В России сложилась многовековая собственная история науки, которая вплотную приблизила ее к передовому фронту мировой науки и подготовила научное сознание к тому, что главные повороты научной мысли вполне осваивались русскими учеными.
Еще в XVIII в. великий реформатор Петр I, стремясь догнать европейскую цивилизацию, решил использовать силу науки для достижения этой цели. Была создана Российская (Петербургская) академия наук, в которой начали работать иностранные ученые. Но достаточно скоро появились русские ученые умы. Для истории представляет интерес, что в России впервые заявило о себе международное, по сути, сообщество ученых. Это был новый субъект науки, который дал множество плодотворных научных результатов мирового значения. Россия также вышла на высокий уровень в международный век научного Просвещения. Этому способствовало уникальное строение первого российского научного учреждения, которое совмещалось с учебным учреждением. Российские научные гении этой эпохи участвовали в разработке главных направлений науки, содействуя внедрению фундаментальных научных парадигм, связанных с механистическим мировоззрением. Выдающиеся результаты такого уровня принадлежат JI. Эйлеру, Д. Бернулли, М. Ломоносову.
Л. Эйлер заложил основы механики твердых тел, аналитически исследовал ньютоновскую динамику материальной точки, разработал новую концепцию движения Луны. С его именем связан подлинный математический прорыв в механистической методологии. Д. Бернулли заложил основы математического решения задач гидравлики, разрабатывал кинетическую теорию газов. Это был прорыв на более высокий уровень математического описания природы, нежели использование математики Г. Галилеем и И. Ньютоном. Отмечая мощный вклад М. Ломоносова в достижения первой научной революции, укажем только, что он принимал живейшее участие в создании молекулярно-кинетической теории. Здесь механика поворачивалась от теории небесных и земных тел к атомно-молекулярным явлениям. Она осваивала идею уровневого строения природы. Ломоносов стал также новатором в разработке учения о планетной составляющей Солнечной системы. Он, в частности, описал строение Земли, открыл атмосферу Венеры.
XIX в., который обеспечил простор новому витку в революционном развитии науки, вместил в себя фундаментальные идеи и принципы, разработанные русскими учеными. Начало этому дал Н.И. Лобачевский, совершив переворот в представлениях о природе пространства, создав неэвклидову геометрию. Его идеи пересеклись с идеями, наработанными К. Гауссом.
В XIX в. началось шествие немеханических идей. Платформу для этого создала термодинамика и статистическая физика. Российская наука активно вошла в полосу термодинамического мышления. Среди ярких ее представителей стоит назвать академика Германа Ивановича Гесса. Он распространил изучение тепловых явлений на область химии, открыл основной закон термохимии, обосновал закон сохранения энергии в применении и к физическим, и к химическим процессам. Из его трудов вытекало новое направление в исследовании самопроизвольных процессов в сложных системах. Впоследствии оно получило мощную поддержку в трудах американского ученого Дж. Гиббса.
Революция в химии во многом оказалась связана с работами русских ученых. A.M. Бутлеров заложил основы органической химии, обосновал новые принципы молекулярного строения и структуры химических веществ, первым объяснил явление изомерии. Н.Н. Зинин разработал фундаментальные методы химического синтеза, впервые синтезировал анилин, проложил пути промышленного производства, красителей, душистых веществ, лекарств. Д.И. Менделеев открыл и обосновал закон периодической зависимости свойств химических элементов от их атомных весов, составил периодическую систему химических элементов. Он продемонстрировал существование новых типов законов природы, отличных от законов механической физики. Он же осуществил важный поворот науки к технологическим разработкам, предложив промышленный способ фракционного разделения нефти.
Русские ученые XIX в. оказались на острие прорыва в разработке вероятностных идей. Мировой авторитет приобрели труды П.Л. Чебышева, который доказал в общей форме закон больших чисел. Всеобщее признание и широкое применение получила теория вероятностных процессов, разработанная математиком А.А. Марковым.
В большой степени русские ученые содействовали разработке новых идей и принципов познания в области биологических наук. И.М. Сеченов обосновал рефлекторную теорию сознательной и бессознательной деятельности, ввел объективные методы в изучение психических явлений. Он открыл механизмы центрального торможения в мозговых процессах, создал объективную психологию поведения. И.И. Мечников обосновал фундаментальные идеи в области эволюционной эмбриологии, создал фагоцитарную теорию в иммунологии, стал основателем современной геронтологии и танатологии, разработал учение об ортобиозе – оптимистическом стиле жизни. Он наметил поворот науки к проблемам, которые становятся чрезвычайно актуальными в наше время. И.П. Павлов создал учение о высшей нервной деятельности, исследовал механизмы второй сигнальной системы. Он ввел в науку так называемый хронический эксперимент, позволяющий изучать здоровый организм. Его идеи и разработки оказали огромное влияние на развитие медицины, психологии, педагогики.
Удивительные революционные скачки и метаморфозы продемонстрировала отечественная наука в XX столетии. Ее революционный подъем оказался связанным с развитием советского государства, с чрезвычайными методами управления, с тоталитарным контролем государства над всеми ресурсами общества. Огосударствленной науке был задан импульс на встраивание в крупномасштабные проекты индустриализации страны и в решение проблем военно-промышленного комплекса. Параллельно разрабатывались механизмы взаимодействия науки и системы образования.