Текст книги "Детерминизм и системность"
Автор книги: Лёвин Гаврилович
Жанр:
Философия
сообщить о нарушении
Текущая страница: 6 (всего у книги 10 страниц)
На наш взгляд, опора на категории «устойчивость», «сохранение», «целостность» является необходимой предпосылкой определения целесообразности. Но содержание этих категорий само по себе не дает оснований для выявления специфических характеристик целесообразности как объективного свойства систем. Например, под признак устойчивости, взаимного согласования элементов можно подвести как их целенаправленное единство, так и соответствие друг другу на основе избирательного взаимодействия, что не одно и то же70.
Не всякие устойчивые процессы и изменения, даже когда они закрепляются на определенное время, следует характеризовать как целесообразные. Попытки определить целесообразность как свойство, тождественное любой упорядоченности и устойчивости, приводят к схематизации и натяжкам, мало оправданным существом дела. Они не являются эффективными в отношении областей знания, которые традиционно ставят и обсуждают проблему целесообразности. Вместе с тем они ведут зачастую к удвоению терминов – понятий там, где достаточно использовать для описания систем обычные понятия причинного мышления.
Вопрос о специфическом различии между содержанием понятия «целесообразность» и родственными с ним понятиями «организация», «целостность», «единство», «устойчивость» нередко связывают с выявлением узкого значения целесообразности, которая рассматривается в этом случае как существенное свойство биологических и кибернетических систем, определяемое через широкий набор конкретных признаков. Так, в современной биологии целесообразность признается в особом строении организмов, в соответствии органов и их функций. Хорошо известна целесообразность онтогенетического развития организмов, согласованность процессов морфогенеза и регенерации.
В физиологии целесообразность рассматривается в связи со способностью функциональной системы к упорядочению, которая определяется результатом ее деятельности. Только он может через обратную связь (афферентацию) воздействовать на систему, перебирая все степени свободы и оставляя только те, которые содействуют получению данного результата. Опираясь на это понимание функциональной системы, П. К. Анохин подчеркивал, что целое есть нечто, запрограммированное в конкретных афферентных параметрах будущего результата71.
Здесь целесообразность характеризуется как особая сторона опережающего отражения действительности – активное поддержание цели в форме закодированного в ведущих параметрах системы результата.
Сложные формы целесообразности раскрывает эволюционная биология, которая изучает устойчивые приспособления живых организмов к среде, возникающие в результате естественного отбора.
На уровне генетики и молекулярной биологии целесообразность рассматривается как отношение индивидуального развития организмов к их генетической программе, которая трактуется в качестве материальной цели, кодирующей некоторое конечное состояние организма.
В более общем плане целесообразность пытаются характеризовать как один из основных атрибутов жизни (Э. Бауэр и др.). По этому поводу В. Ф. Сержантов пишет, что понятия «целесообразность», «целенаправленность», «цель» имеют не только отношение к самой биологической структуре, но являются адекватной феноменологической характеристикой органической жизни вообще, а также выражают основной способ связи между главными субстанциональными (структурными) особенностями жизни и ее основными атрибутами72.
Если рассматривать условия непрерывности жизни, охватываемые биосферой Земли как целостной системой, то выявляется циклическая природа жизни. Она поддерживается последовательной реализацией таких свойств, как размножение, адаптация и эволюция, благодаря которым и сохраняется постоянство жизни на Земле. Каждый из атрибутов жизни правомерно рассматривать как функцию по поддержанию универсального круговорота жизни. Здесь есть объективная целесообразность, телеономность.
Итак, отношения целесообразности включаются в биологическую детерминацию, и потому биология учитывает их при разработке основных подходов к познанию жизни.
В дополнение к сказанному отметим, что современная биология использует категориальный аппарат, который дает рациональное истолкование сложным явлениям адаптации, отбора устойчивых состояний живых систем, предетерминация их активного поведения, основанного на опережающем отражении внешних условий. Применительно к таким явлениям вводится термин «органическая целесообразность». Он характеризует комплекс процессов жизнедеятельности, фиксирует диалектическое единство устойчивости и изменчивости, отражает механизм, поддерживающий целостность материальной системы в данных условиях73.
Соответствующий механизм полностью укладывается в рамки тех связей, которые описываются понятиями диалектико-материалистической концепции детерминизма. Однако сеть этих понятий существенно обогащается в сравнении с той, которая используется для механического, физического или химического описания процессов и явлений. Органический детерминизм учитывает активное преломление внешних воздействий внутренними факторами, цикличность обратных причинных связей, приспособительную направленность (предетерминированность результатов действия). По поводу последней говорят как об условной и относительной целесообразности74.
Разработка принципа телеономной организации систем получила новый импульс в свете достижений кибернетики. Метод изучения целесообразных отношений, развиваемый в кибернетике, весьма общий. Он строится на предположении, что существуют внутренние причины направленного поведения функциональных систем, которые определяют достижение некоторого конкретного результата.
Важной стороной телеономной детерминации сложных функциональных систем является наличие программы и кода целей, конечных результатов их функционирования. Они включают также механизмы сопоставления достигнутого состояния с программируемым и средства корректировки функционирования системы в направлении, определяемом исходной программой.
Функционирование телеономных кибернетических систем свидетельствует о том, что целесообразные отношения формируются на причинной материальной основе. Они складываются не в любых случаях регуляции явлений, не тождественны простой упорядоченности и законосообразности процессов.
С кибернетической точки зрения целеосуществление возникает в рамках системы, которая разделена на управляющую и управляемую подсистемы. Причем их взаимодействие может быть целесообразным, если управляющая система обладает достаточным разнообразием для переработки информации об управляемой системе. В сложных случаях возникает также необходимость в решении задач самопрограммирования, самонастройки управляющих систем. Здесь требуется учитывать существование механизмов перестройки алгоритмов и программ, которые определяют основные особенности поведения управляемой системы.
Научный аппарат кибернетики обеспечивает разработку формальных математических моделей описания телеономного поведения сложных систем. Этим достигается переход современной науки к количественным методам изучения целесообразности, благодаря чему расширяются практические приложения принципа телеономности. Он становится достоянием инженерно-технической и социально-инженерной деятельности.
Кибернетика содействует укреплению детерминистских оснований телеономного способа мышления, обогащая категориальный аппарат, расширяя предметную и методологическую сферу исследования проблемы целесообразности. Она отражает существование класса систем, обладающих активностью особого рода, для которых характерны процессы самоорганизации и самосохранения, а также процессы выбора собственного поведения в результате переработки разнообразной информации.
Обобщая результаты исследования проблемы целесообразности в биологии и кибернетике, следует отметить соотнесенность целесообразности со способностью функциональных систем обеспечивать решение стоящих перед ними задач. Одна из существенных задач связана с сохранением устойчивости по отношению к отклонениям и возмущениям, порождаемым внутренней и внешней средой ее существования. С этой точки зрения целесообразность организации совпадает с реализацией приспособительного, адаптивного поведения системы.
Адаптация предполагает установление определенного равновесия данной системы со своими условиями. Вместе с тем она включает реакции на те или иные влияния, а также воспроизводство в известных пределах основных качественных характеристик системы.
В рамках адаптационного процесса способность к целесообразному поведению выступает особой стороной отражения. Следует подчеркнуть, что неправомерно говорить о целесообразности всей отражающей материи, но для раскрытия адаптивных форм существования материальных объектов категория «целесообразность» имеет важное значение.
Адаптация на любом уровне предполагает самоактивность, наличие внутренней регуляции системы. Даже неживые системы, сохраняющие ту или иную внешнюю функцию и обеспечивающие тем самым свое единство со средой, активно поддерживают неравновесное состояние относительно внешнего окружения за счет сложных сетей преобразования внутренней энергии, согласования внутренних реакций различных частей и т. д. Эта их способность сознательно используется при строительстве различных сооружений, при разработке конструкций машин, приборов и т. д.
Активность адаптивного поведения существенно усложняется, когда единство со средой обеспечивается деятельностью биологических систем, например в процессе жизнедеятельности организма. В общем случае можно сказать, что более глубокая и разносторонняя адаптация организма обеспечивается более глубокой дифференциацией его организации, поддержанием высокого уровня негэнтропии по сравнению с окружающей средой. Например, приспособительное поведение высших животных основано на сложной дифференциации нервной системы, закреплении приобретенного опыта, выработке опережающих моделей будущего и т. д.
По существу, адаптация имеет противоречивую природу, обнаруживая колебания вокруг некоторого устойчивого состояния системы: выход за пределы этого состояния и повторяющийся возврат к нему. Принцип телеономности применим к изучению именно этого аспекта функционирования систем. Его применение связано с выделением такой структуры, которая совпадает с циклическим механизмом действия.
Подобный механизм не всегда реализуется через обратную связь, опосредованную переработкой информации, как это имеет место в кибернетических устройствах. В природе встречаются более общие механизмы циклической регуляции процессов и более общие формы адаптивного поведения систем, нежели те, которые изучает кибернетика. В этих случаях телеономная регуляция не может быть подведена под условие телеономного управления кибернетического типа. В неживой природе, например, можно обнаружить своеобразные «задатки» телеономности. Эту способность удается выделить из организации неживых материальных систем только логическим путем, поскольку она «закодирована» в структуре взаимодействия. Показательно в этом плане движение электрона по равновесной орбите, реализуемое в бетатронах, синхротронах. Здесь поддержание равновесия обеспечивается взаимодействием центростремительной силы и силы Лоренца. Если частица отклоняется к центру, то сила Лоренца будет меньше, чем необходимая центростремительная сила, и частица получит ускорение по радиусу от центра, вследствие чего она вернется на стационарную орбиту. При отклонении от центра сила Лоренца уменьшается медленнее, чем центростремительная сила, и, следовательно, сообщает частице некоторое радикальное ускорение, возвращая ее на орбиту. Здесь нет специального механизма управления, однако существует автоматический процесс сохранения устойчивой орбиты, имеющей форму затухающих колебаний (бетатронные колебания)75.
Напротив, на уровне живой и социальной материи телеономность систем проявляется через ярко выраженное адаптивное поведение. В этих системах возникают особые структуры отражения, представляющие собой материальную форму реализации целесообразного поведения. Так, живые организмы содержат механизмы, обеспечивающие кодирование1 и переработку разнообразной информации. Они обладают структурами, основная функция которых – фиксация цели и контроль за ее реализацией. В такие структуры как правило включаются петли обратной связи, с помощью которых реализуются принципы управления поведением систем, имеющих неопределенностную, вероятностную природу.
Социальная материя порождает системы, в которых над материальными механизмами поддержания цели надстраивается «идеальное целеполагание» и «сознательное целеосуществление». Функционирование таких систем не сводится к обычному для живых систем адаптивному поведению. Различие заключается здесь в том, что живые системы подчиняются законам так называемой программной детерминации. Тогда как в системах с идеальным целеполаганием доминируют законы планирующей детерминации. Уточняя это различие, отметим, что в системах первого типа будущие состояния определяются настоящими в соответствии со структурными кодами, материальными программами, контролирующими их адаптивное поведение. Что касается систем второго типа, они обладают способностью использовать идеальное отражение будущих состояний в качестве фактора, определяющего возможности этих систем в настоящем.
Планирующая детерминация выступает основой деятельности людей, направленной на эффективное решение тех или иных социально значимых задач. Такая деятельность имеет системно организованный характер, предполагает разнородные результаты, управляется иерархией целей, включает множество контролируемых ограничений. Она представляет собой особую форму системного подхода, вооруженного средствами изучения отдаленных перспектив экономического, культурного, технического развития, средствами формирования оптимального воздействия людей на эту перспективу. В рамках такой деятельности обеспечивается достижение некоторого конечного результата через реализацию промежуточных этапов, каждый из которых необходим для стабилизации всей системы в направлении ее генеральной цели. В общем случае можно говорить о единстве трех этапов планирования целевой деятельности: 1) выработка целей; 2) обоснование плана достижения генеральной цели системы; 3) реализация плана.
Выбор цели всегда связан с учетом внутренних и внешних условий функционирования системы. Он предполагает также возможности субъектов системы принимать решения разного ранга, реализовывать специфические управляющие воздействия.
Постановка целей связана с прогнозом, с оценкой альтернативных путей достижения намеченных целей. Итогом этого этапа является составление сценариев развития системы. Главное звено этапа обоснования плана составляют директивные указания основных деталей деятельности и распределение средств, которые необходимы и достаточны для деятельности всех органов системы.
Для реализации плана формируются контрольные центры за изменением состояния системы. Они наделяются целесообразными функциями, устанавливается надежная связь между ними и исполнительными органами системы76.
Применение принципа системности обеспечивает здесь развитие и усиление интегративных оснований для разнородных видов деятельности, подчиненной генеральной цели. При этом весь процесс подчиняется задаче максимизации эффективности по четко определенным параметрам. Сегодня так решаются задачи в области управления производством, планирования технического прогресса.
Методологическая специфика системно-целесообразной деятельности заключается в том, что она имеет основной детерминантой активную установку субъекта, его способность предвосхищать ситуации, а также практически соединять реальные вещи в рамках организационных отношений, отвечающих социальной, технологической, экологической и т. д. потребностям и свойствам. В этом контексте важен момент определения исследовательских ценностей. Они берутся в единстве с общекультурными ценностями человечества, с судьбами и развитием передовой человеческой цивилизации. Сегодня остро стоит вопрос о рационально-системном развитии всего человечества, когда рычагами и критериями этого развития становятся прогрессивные социальные детерминанты: избавление человечества от угрозы мировой войны, решение продовольственной проблемы, всеобщее образование и культура и др.
Итак, телеономный принцип характеризует существенный аспект детерминации функциональных систем и выполняет важную методологическую роль в обосновании средств научного исследования и преобразования таких систем. Он применяется в различных модификациях. Руководствуясь телеономным принципом, научное познание и практика ориентируются на выявление инвариантов функционирования систем в отношении определенного результата. С другой стороны, телеономные методы познания ориентированы на изучении циклических, круто-оборотных изменений целого. При таком подходе охватываются разнородные группы объектов и их состояние как стороны взаимодействия, выступающие и целью, и средством существования друг друга. Наконец, применение телеономного принципа связано с обеспечением оптимальных условий функционирования подсистем и системы в целом по отношению к планомерной деятельности, решающей социально-значимые задачи.
Глава 3 МЕТОДОЛОГИЧЕСКИЕ ОСНОВЫ МОДЕЛИРОВАНИЯ ДЕТЕРМИНАЦИОННЫХ ОТНОШЕНИИ В ЗАДАЧАХ УПРАВЛЕНИЯ СЛОЖНЫМИ СИСТЕМАМИ
1. Теоретико-методологические принципы моделирования сложных систем
Особое направление системных исследований характеризуется установкой на разработку теоретического аппарата системного знания.
Формирование теоретических системных представлений тесно связано е появлением нового класса дисциплин, таких как кибернетика, теория игр, теория решений, исследование операций и т. д. В центр данного направления ставится обобщенное понятие «система», которое в рамках теории получает то или иное модельное изображение. Широкую известность, например, приобрели модели «черного ящика» и «открытой системы», которые служат теперь исходными ступенями для выработки более общих моделей в различных вариантах общей теории систем (ОТС). Сегодня идет много споров по поводу статуса ОТС, ее познавательной ценности, вокруг средств и методов ее построения. В литературе отмечаются сложности определения предметной области ОТС. Применяются различные подходы к формированию конструктивных элементов ОТС77.
Нередко ОТС рассматривается в качестве теории в широком смысле слова. В нее включают совокупность общих идей, принципов и понятий, а также инвариантные формы, абстрактные модели, позволяющие использовать методы формального и математического исследования (Л. Берталанфи).
Другие варианты построения ОТС связаны с учетом специальных требований методологии науки в отношении формирования теорий. В этом случае ее основными компонентами являются: определение идеализированного объекта, правила логического вывода и доказательства, а также совокупность выводимых утверждений о системных объектах (А. И. Уемов).
Ряд вариантов ОТС опирается на фиксированную эмпирическую базу. Здесь общая теория систем выступает как абстрактное отражение свойств эмпирически наблюдаемых и изучаемых систем. Предлагается также путь построения ОТС, который связан с движением от представления о том, что допустимо считать системой. Конструктивная и методологическая функция такого варианта ОТС выдвигается на первый план (У. Росс Эшби).
Дискуссии вокруг проблемы формирования общей теории систем не завершены. Многие вопросы остаются открытыми. Например, вопрос о соотношении ОТС с теорией диалектики, с кибернетикой, математикой. Приходится также вести борьбу за строгость общеметодологических принципов, на которые опираются создатели тех или иных вариантов ОТС, за повышение философской культуры в применении таких принципов.
На фоне трудностей, с которыми сталкивается развитие ОТС, хотелось бы подчеркнуть, что следует соблюдать определенную осторожность в оценке ее перспектив, не преувеличивая ее претензий, но и не умаляя ее связи с общим прогрессом научного познания. А такая связь, безусловно, имеется.
Мы будем исходить из того, что ОТС формируется в рамках широкой тенденции междисциплинарных исследований, ориентированных не на субстратно-субстанциональный аспект действительности, а на отношения между вещами и явлениями. По мысли авторов большинства общесистемных концепций, ОТС призвана теоретически оформить данную тенденцию, с тем чтобы обобщить имеющиеся опыты приложения системных идей и дать в руки исследователей надежный метод познания.
Руководствуясь междисциплинарной трактовкой статуса общей теории систем, ее задачи формулируют па уровне общенаучных требований. Среди этих требований выделяют разработку принципов и методов унификации теоретического описания объектов. В данной связи указывают на возможность применения ее базовых понятий, абстрактных логико-математических моделей описания систем к решению задач интеграции научного знания. Кроме того, многие авторы считают, что общая теория систем содействует научному объяснению и становлению теоретического знания в тех областях науки, где прежде их не было. Подчеркивается также, что средства ОТС ведут к более высокой степени обобщения знаний, чем это позволяют сделать специальные науки78.
Заметим, что многие попытки построения общей теории систем тяготеют к истолкованию ее в качестве одной из форм фундаментального знания. В то же время ставится задача разработки в рамках ОТС специализированных средств, приспособленных для получения выводов о конкретных системах.
Мы полагаем, что стремление к синтезу указанных установок в рамках единой теории систем содержит определенное противоречие, которое свидетельствует о недостаточной развитости теоретического системного знания. Думается, что такие задачи одновременно может и должна решать не отдельная, хотя и общего порядка, теория, но целое научное направление, в состав которого могут входить теории разного уровня. Применительно к системным исследованиям это означает, что теоретико-системные разработки абстрактно всеобщего уровня должны дополняться теориями «среднего уровня», а также прикладными вариантами теории систем, наподобие того, как теоретическая механика дополняется технической, строительной механикой и т. д.
Специфика теоретико-системных разработок связана с исследованием концептуальных средств, предназначенных для определения системы как основного предмета научного познания. Вместе с тем здесь учитывается сводимость широкого круга явлений к тому или иному классу моделей систем, вырабатывается общая точка зрения на существенные свойства системности, изучаются средства упрощения реальных связей и взаимодействий, обеспечивающие переход к системному описанию объектов.
Существуют два основных способа определения предметной области ОТС. Академик Д. М. Гвишиани по этому поводу говорит, что в настоящее время под общей теорией систем понимают в той или иной степени обобщенные варианты теории систем, т. е. охватывающие некоторые классы или типы систем, или же общую теорию систем трактуют в логико-методологическом смысле как метатеорию системных теорий79. В первом случае ОТС характеризуется ориентацией на изучение законов-аналогов. С их помощью выделяется новая область качественного определения явлений. Изучение этого типа законов опирается на представление об объектах научного познания как специфических носителях униформных отношений и способов функционирования. В основу описания таких законов кладутся модели структурного и организационного типов. С их помощью изучаются упорядоченные взаимодействия гомогенных и гетерогенных элементов систем, организация свойств, функций и т. д.
Указанная трактовка общей теории систем опирается на традиционные формы научной абстракции в ходе разработки унифицированного языка описания больших классов объектов. В этом случае переход к общим понятиям обеспечивается фиксацией весьма ограниченного круга свойств, определяемых в качестве признаков системности. Берталанфи, например, характеризует систему как комплекс взаимодействующих элементов. Некоторые авторы считают возможным использовать универсальные абстрактные определения системы, разрабатываемые на уровне моделей чистой математики. Так, М. Месарович полагает, что общая теория систем по необходимости должна изучать общие абстрактные системы. «...Нам достаточно будет понимать абстрактную систему как некоторую абстрактную аналогию или модель определенного класса реально существующих систем. Тогда общую теорию систем можно рассматривать как теорию абстрактных моделей»80.
Неоднократно высказывалась мысль, что применение традиционных абстракций для построения ОТС ведет к серьезным логическим и гносеологическим трудностям. В частности, отмечается невозможность конструирования универсального абстрактного языка описания свойств, существенных для любых системных объектов. Тем не менее в специальных моделях, разрабатываемых теориями среднего уровня, достигается допустимая мера сводимости разнородных явлений и процессов к общим аналогам – информационным, гомеостатическим, эквифинальным и т. д. Их применение дает реальный рост емкости каналов междисциплинарного общения внутри научного знания.
Для преодоления указанных трудностей используется мета-теоретический путь построения общей теории систем. Он во многом противоположен построению ОТС как научно-технической теории обычного типа. В рамках метатеоретического подхода анализируются структура, средства выражения и методы специализированных системных теорий. При этом учитываются два уровня анализа: синтаксический и семантический.
В. Н. Садовский относит к сугубо метатеоретическим такие задачи ОТС: разработку средств представления исследуемых объектов как систем; построение обобщенных моделей систем (например, их динамики, роста, поведения); исследование концептуальной структуры системных теорий81.
Достоинство такого подхода в том, что он ведет к формированию весьма общих моделей системности. Вместе с тем здесь учитывается, что их применение должно приводить к нетривиальной постановке проблем, к построению нового предмета исследования.
Метатеоретическая концепция теории систем дает некоторую надстройку к известному массиву специализированных системных теорий. Ее средства позволяют расширить и уточнить логический базис теоретико-системных исследований. Но они не дают ответа на вопрос о месте теоретических системных концепций в формировании современной общенаучной картины мира. Тогда как без этого ответа нельзя правильно оценить воздействие системных теоретических понятий на развитие предметных областей научного знания. А такое воздействие, безусловно, имеется. В качестве примера можно указать на концепцию «системы видов», на идею биоценоза и др., которые акцентируют внимание биологов на многоуровневом характере организации объектов жизни, на определенной упорядоченности их элементов, на сложном типе взаимодействий этих элементов.
Содержательные средства системного знания все чаще становятся регулятивами построения специальных научных теорий. Эту роль выполняют представления о структурах, организации, сложности, функциях и т. д., которые составляют базовый концептуальный аппарат различных вариантов общей теории систем.
Их обобщенное значение выявляется не в области формально-логического анализа, а в соотнесении с реальными потребностями научного знания в целом. Что здесь имеется в виду? Прежде всего тот факт, что широкий круг научных дисциплин вплотную подошел к изучению объектов принципиально нового уровня сложности, в отношении которых традиционные теоретические средства оказываются недостаточными. Новое состояние науки отражается в различных формах внутринаучной рефлексии, в том числе в попытках построения общей теории систем.
Особенности теоретико-системного подхода к проблеме сложности заслуживают самостоятельного исследования. Единую методологическую базу для этого предоставляет диалектическая концепция детерминизма, категориальный аппарат которой способен отражать сложные детерминационные отношения.
Рассмотрим более подробно с этих позиций содержательный потенциал теоретико-системных обобщений. В качестве конкретных образцов анализа мы выбираем три варианта ОТС, получивших широкую известность в современной науке:
1) теорию систем Л. Берталанфи, которая исследует изоморфизм законов систем;
2) концепцию кибернетики У. Росс Эшби, связанную с теорией индуктивного обобщения;
3) ОТС в трактовке А. И. Уемова, опирающуюся на метод общесистемных параметрических размерностей.
2. Общая теория систем и проблема изоморфизма законов науки
Теоретические методы абстрактного моделирования систем активно разрабатывал Л. Берталанфи. Мы не будем давать подробного изложения его взглядов по этому вопросу. Они освещены в литературе с разных сторон82. Здесь имеет смысл остановиться только на некоторых аспектах отражения системной детерминации в теоретической конструкции, развиваемой Л. Берталанфи.
В качестве основных средств реализации этой конструкции можно назвать два:
1) представление о системе как определенной целостности;
2) выработка обобщений высокого уровня, позволяющих синтезировать теоретические модели специальных наук.
Л. Берталанфи отдавал отчет в том, что в науке работают теоретические модели систем лишь уровня некоторой особенности (например, модель эквифинальных систем). Однако он высказывал уверенность, что возможна разработка синтетической модели систем, которая оказалась бы способной выполнить функцию теоретического языка всей современной науки.
В своих поздних работах Л. Берталанфи принимает смягченную версию системного универсализма, отмечая способность ОТС к охвату ряда новых проблем и их решению, причем таких, которые отвергались ранее как «метафизические». Одновременно он оценивает ОТС лишь как одну из теорий, реализующих новую парадигму, концептуальную схему, совершающую сдвиг в исследуемых проблемах и правилах научной деятельности83.
В своих статьях 60-х годов Берталанфи ведет речь об ОТС в двух смыслах. В широком смысле ОТС выступает как некая совокупность идей и проблем исследования и конструирования систем, в теоретическую часть которой он включает кибернетику, теорию информации, теорию игр, теорию решений, топологию, факториальный анализ.
В этот перечень системных научных дисциплин Берталанфи включает также общую теорию систем в узком смысле слова. Ее центральное звено, по мнению Берталанфи, составляет универсальное определение системы, выработанное с учетом характеристик эмпирически обнаруживаемых систем. Общая теория разрабатывает средства для перехода от универсального определения системы к системам, так сказать, низших разрядов, с которыми имеет дело эмпирическое исследование. Берталанфи ведет речь не о прямом переносе общего знания о «системе» на фактически наблюдаемые натуральные объекты. Он принимает во внимание промежуточные звенья, так сказать, средний разряд классификации систем – целую группу научных дисциплин, изучающих системы. Одновременно он отмечает, что общесистемное знание способно оказывать воздействие на уровень эмпирического описания систем только в виде изоморфных структур, гомологий и аналогий.