355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Лев Гумилевский » Крылья Родины » Текст книги (страница 2)
Крылья Родины
  • Текст добавлен: 10 апреля 2017, 22:00

Текст книги "Крылья Родины"


Автор книги: Лев Гумилевский



сообщить о нарушении

Текущая страница: 2 (всего у книги 24 страниц)

Первые русские аэродинамики

В последний год XIX века открылась грандиозная Всемирная выставка в Париже. Здесь же впервые был созван Первый всемирный воздухоплавательный конгресс. На конгрессе присутствовал русский ученый, профессор Н. Е. Жуковский. В его письме к матери есть очень краткая и в то же время исчерпывающая характеристика научного значения конгресса. Человек большой скромности, предпочитавший всегда преувеличить чужие заслуги, нежели их умалить, он все-таки пишет:

«Два дня провел я уже на заседаниях и демонстрациях Воздухоплавательного конгресса. Открылся он в Медоне 15 сентября по новому стилю, а 16-го были заседания в Академии наук. С теоретической стороны конгресс представляет не особенно важную силу».

Русскому ученому можно поверить в этой оценке.

Между тем в России в это время имелся не только целый ряд ученых, занимавшихся решением основных проблем авиации, – создавалась русская аэродинамическая школа, устанавливавшая основные законы сопротивления воздуха и подъемной силы.

Мы привыкли, что история русской науки, о какой бы из областей ни шла речь, начинается с Ломоносова, и счастливы отметить, что аэродинамика не является исключением из этого правила.

Воздушный змей, как известно, служил Ломоносову в опытах с электричеством. В 1751 году Ломоносов построил анемометр – прибор для определения силы ветра, а в 1754 году он устраивал самопишущую метеорологическую обсерваторию и тогда же в Академии наук сделал заявление об изобретенной им машине. При помощи крыльев машина эта должна была поднимать самопишущие приборы для исследования верхних слоев атмосферы. Крылья приводились в движение часовым механизмом.

Аэродромическая машина Ломоносова, по собственноручному его чертежу.

По сути дела это был первый в мире геликоптер. В протоколе конференции он описан так:

«Высокопочтенный советник Ломоносов показал изобретенную им машину, называемую им аэродромической, которая должна употребляться для того, чтобы с помощью крыльев, движимых горизонтально в различных направлениях силой пружины, какой обычно снабжаются часы, нажимать воздух, отчего машина будет подниматься в верхние слои атмосферы с той целью, чтобы можно было исследовать условия верхнего воздуха посредством метеорологических машин, присоединенных к этой аэродромической машине. Машина подвешивалась на шнуре, протянутом по двум блокам, и удерживалась в равновесии грузиками, подвешенными с противоположного конца. Как только пружина заводилась, машина поднималась на высоту и потому обещала достижение желаемого действия. Но это действие, по суждению изобретателя, еще более увеличится, если будет увеличена сила пружины и если увеличить расстояние между той и другой парой крыльев, а коробка, в которой заложена пружина, будет сделана для уменьшения веса из дерева. Об этом изобретатель обещал позаботиться».

М. В. Ломоносов.

В декабре того же года Ломоносов сообщал в своем отчете о том, что облегчение машины еще не «привело к желаемому концу», но дальнейшей работе над изобретенной им машиной Ломоносову помешали другие неотложные занятия.

К современной экспериментальной аэродинамике ближе подходят опыты другого нашего академика, метеоролога Михаила Алексеевича Рыкачева.

Рыкачев учился в Морском кадетском корпусе и затем окончил Морскую академию. По окончании ее он получил командировку за границу и работал в Гринвичской обсерватории. Заинтересовавшись изучением верхних слоев атмосферы, Рыкачев, еще будучи лейтенантом русского флота, в 1870 году организовал впервые в России полеты на воздушных шарах с научной целью и неоднократно поднимался на них сам.

В 1871 году Рыкачев провел целый ряд опытов над подъемной силой винта, вращаемого в воздухе, имея в виду постройку самолета. Он сконструировал специальный прибор с четырьмя деревянными крыльями. Их приводила в движение огромная пружина, весом в 5,5 килограмма. С помощью этого прибора исследователь хотел определить зависимость между поднимаемым грузом и мощностью машины, найти наиболее выгодный «уклон» плоскостей для поднятия наибольшего груза, рассчитать размеры крыльев.

Многое ему удалось и найти и понять.

Однако Рыкачев принадлежал к тому типу работников науки, которые, ограничиваясь собиранием фактов и наблюдений, производством экспериментов, не решаются на смелые обобщения и теоретические построения. В свое время существовала даже целая научная школа с таким чисто опытным направлением деятельности. Характеризуя Рыкачева как представителя этой школы в России, Менделеев писал о ней:

«Школа эта до крайности почтенна и достойна удивления по тому смирению, с которым она принимает факты, по той готовности, с которою она их отчасти обрабатывает, собирает необходимый строительный запас для возведения здания… Некоторым ученым этой школы должны казаться чуть ли не посягательством обобщения факта: они привыкли их собирать и много-много что выводить из них среднее число; они желают находить опытные законы и пробуют даже иногда выводить теоретические обобщения, но видели не раз падение своих сооружений, сложенных из кирпича без цемента, и – изверились в возможность охватить целое».

Без глубокого и ясного обобщения, без стройного теоретического объяснения опыты Рыкачева не получили в свое время широкой огласки, как не получили они и должной оценки. Однако другой русский аэродинамик, В. Н. Спицын, в докладе на собрании Русского технического общества признавал, что Рыкачев «путем весьма точных и изящных опытов доказал, что с помощью винта даже при существующей тяжести паровых машин подъем в воздух не невозможен».

М. А. Рыкачев.

Большой вклад в аэродинамическую науку сделал Д. И. Менделеев.

«Меня так заняла гордая мысль, – писал Дмитрий Иванович, – постичь законы наслоения воздуха при нормальном состоянии атмосферы, что я временно оставил все другие занятия и стал изучать аэростатику».

Свою мысль Менделеев, как известно, осуществил. Он поднялся на высоту свыше трех тысяч метров во время солнечного затмения в 1887 году. В отчете об этом полете Менделеев и высказывает свое убеждение в том, что «главную подготовку для овладения воздушным океаном, первое орудие борьбы составляет знание сопротивления среды…»

Основным вопросом аэродинамики – вопросом сопротивления среды движущемуся телу – Менделеев занимался много лет. Свои теоретические выводы он изложил в книге «О сопротивлении жидкостей и о воздухоплавании». Книга была задумана им как пособие для осуществления практических задач, при разрешении которых вопросы сопротивления воздуха имеют величайшее значение.

В то время не только о сопротивлении воздуха никто ничего толком не знал, но очень мало знали даже о законах сопротивления жидкой среды. «Оказалось, – писал Менделеев, – что корабли строят и до сих пор ощупью, пользуясь многоразличною практикой, а не расчетом, основанным на теории или опытах сопротивления».

Менделеев первый пришел к замечательному выводу, что «опыты с водою дополняют и дополняются опытами с воздухом», а данные для сопротивления воды, учитывая различную плотность воды и воздуха, можно применить и к воздушной среде.

Для зоркого ума Менделеева характерно, что уже в свое время он указывал на те трудности, которые станут перед практиками летания по мере увеличения скорости и высоты полета. Он предвидел, что с достижением некоторой большой скорости «сопротивление всякой жидкости будет возрастать быстрее, чем до этого». С этим явлением и столкнулись самолетостроители, когда скорости стали приближаться к звуковым, то-есть к скоростям распространения звука, а скорость звука – около тысячи двухсот километров в час.

Глубоко проникая в сущность воздушной стихии, Менделеев непоколебимо был убежден в конечном успехе авиации.

«Но как, идя на войну, надо предварительно узнать и приготовить многое, чтобы успех был возможен, потому что одного порыва, доброй воли и храбрости для успеха мало, хотя без них вся внешняя подготовка может быть напрасною, так и в каждом научном завоевании, – писал Дмитрий Иванович, – успех возможен только при надлежащей подготовке, соединенной с твердой уверенностью в необходимости, пользе и благе от предпринимаемой борьбы с природными силами – слабыми внешними силами, сильными лишь этой уверенностью. Главную подготовку для овладения воздушным океаном, первое орудие борьбы составляет знание сопротивления среды, или изучение той силы, против которой придется бороться, побеждая ее соответствующими средствами, в том же сопротивлении берущими свое начало».

Первые русские аэродинамики, как теперь, после многолетнего практического опыта, мы можем судить, были совершенно правы в своих умозаключениях. Но верить приходилось им на слово, а такого доверия в делах науки вообще не бывает. Научно установленной и доказанной закономерность явления мы считаем только тогда, когда, создавая нужные условия искусственным путем, в лабораторном порядке, мы можем по нашему желанию вызвать и изучить это явление или когда наши теоретические выводы подтверждаются исследованием природных явлений.

Несомненно, что теоретические основы авиации, столь рано созданные у нас, представляли собой очень важную силу, но ей не хватало экспериментальной базы, лабораторий, научного опыта.

Тем удивительнее для нас теперь та настойчивость и то вдохновенное чутье, с которым продолжали экспериментировать русские люди, отыскивая законы воздушных стихий.

О некоторых из них дошли до нас сообщения почти случайным путем. Счастливому случаю обязаны мы и знакомством с первым русским авиамоделистом, прекрасный рассказ о котором оставил нам все тот же неутомимый русский человек – Дмитрий Иванович Менделеев.

Д. И. Менделеев.

Рассказ этот предназначался Дмитрием Ивановичем в качестве предисловия к небольшой книжечке В. В. Котова «Самолеты-аэропланы, парящие в воздухе».

Приводим его целиком.


Авиамодели и их значение

«В конце истекшего февраля 1895 года, – рассказывает Менделеев, – однажды вечером ко мне вошел седой господин невысокого роста с приемами и речами самыми скромными, явно уже поломанный жизнью. Рекомендовался он помощником столоначальника в департаменте министерства финансов Виктором Викторовичем Котовым и просил уделить ему немного времени, чтобы просмотреть принесенные им „самолеты-аэропланы“ и посоветовать, что ему дальше с ними делать. Отказать не было поводов, и Виктор Викторович стал вынимать друг за другом десятки легких, плоских бумажных фигур, закрепленных с передней стороны на тонких (какие употребляются для плетеных сидений стульев) и упругих полосках камыша.

Разложив их в порядке на столе, Виктор Викторович взял первую попавшуюся, встал посередине комнаты, расположил, держа за края, плоскость фигуры горизонтально и, опустив пальцы, предоставил фигуру падению… Она полетела вперед жестким ребром, но ровно и спокойно, слабо понижаясь, и села на диван, как сделала бы это стрекоза или летучая мышь.

Так он перебрал все принесенные „самолеты“, и все летели – одни скорее, другие тише, одни почти прямо горизонтально, другие то немного поднимаясь, то опускаясь, третьи видимо по нисходящей кривой, четвертые по заметно восходящей траектории, переходящей в нисходящую.

Все они были делом его собственных рук и слушались их. Немного погнет он или крылья, т. е. боковые края фигур, или особые в хвосте приделанные рули и этим заставляет лететь вправо или влево, а то волнообразно порхать или стремиться прямо вперед. Взял и я одну, у которой приделан был сзади небольшой мягкий бумажный хвост, взял за этот хвост, чтобы висела жестким камышовым ребром вниз, плоскостью вертикально, и опустил над столом, от которого фигура отстояла вершков на пять. И она, отпущенная, повернула горизонтально и, не задев стола, полетела вдоль его так же плавно, как и прежде. Пускал я ее и спинкой вниз и в разных кривых положениях – всякий раз сам собой самолет выпрямится и, если надо, повернется, чтобы встать в нормальное положение, выровняется почти параллельно с горизонтом и полетит, как и в том случае, когда отпущен в горизонтальном положении вогнутой спиной вверх.

Простота прибора, его замечательная устойчивость на ходу, великое подобие полета с парением птиц, летучих мышей и некоторых насекомых и то обстоятельство, что все виденное мною и мне более или менее известное в отношении аэропланов гораздо сложней и запутанней, чем показанное г. Котовым, заставили меня не только все это высказать ему, отнестись к его труду с должным вниманием и одобрением, но и разговориться с ним о том, чем он руководствовался, какие делал первые и дальнейшие попытки, как думает об увеличении размеров, каким путем предполагает достичь получения иной движущей силы, кроме падения, и т. п.

Ответы г. Котова показались мне очень достойными внимания, и я не распространяюсь о них только потому, что большая часть их изложена самим Виктором Викторовичем в предлагаемой брошюре, которую он писал по моей просьбе и охотнейшим образом предоставил напечатать.

Будучи далек от мысли о том, что найденное Котовым решает совокупность трудных задач, представляемых столь давним стремлением людей летать в воздухе, т. е. вовсе не думая, что после г. Котова вот завтра полетят люди, тем не менее я вижу в том, что сделано г. Котовым, ручательство в возможности твердых дальнейших опытов и попыток, направленных к желаемой цели, особенно ввиду устойчивости его приборов в воздухе. Поэтому, со своей стороны, я посоветовал ему решить прежде всего вопросы: желает ли он только вложить свое имя, свои труды и успехи в общий запас сведений, касающихся воздухоплавания, или же хочет по возможности эксплуатировать найденное. В первом случае – все это дело следует изложить и опубликовать, а самому продолжить развитие опытов по накопившимся у него взглядам и намекам, т. е. встать в число многих, уже ищущих решение задач воздухоплавания при помощи аэропланов. Для такого способа действия нет никаких внешних преград, а самое издание брошюры г. Котова не могло представить задержки; время не будет при этом потеряно.

Во втором случае, т. е. при стремлении прямо эксплуатировать уже найденное, следует взять привилегии и позаботиться сделать на основании их что-либо такое, продажа чего окупила бы расходы, и тогда надо немало времени, денег, затраты сил и особой находчивости практического свойства.

В ответ на вышепоставленный вопрос сказался человек, потому что г. Котов прямо и сразу признал второй путь ему несимпатичным, а первый, если можно его осуществить, совершенно для него удовлетворительным. Эта брошюра и является плодом такого решения.

Так как в предлагаемой брошюре г. Котова не говорится ни о весе, ни о размерах, ни о скоростях его самолетов, то я считаю не излишним прибавить, что я вымерил в этом отношении два из них, оба из числа малых.

Оба эти экземпляра самолетов летают очень плавно и очень легко, сами уравновешиваются в воздухе, т. е. опрокинутые и отпущенные, перевертываются и летят далее прямо, повернувшись вогнутой спинкой кверху. У одного из таких самолетов при общей поверхности около 80 см2 вес равен 6 дцг, а скорость полета около 1,2 м/сек. У другого поверхность около 285 см2, вес около 1,9 г и скорость полета около 2 м/сек.

В заключение замечу, что для практического применения аэропланов Максима и подобных ему недостает поныне опытных данных со столь устойчивыми в воздухе, каковыми являются самолеты г. Котова, а потому я полагаю, что возможно точное изучение нарочито устроенных моделей самолетов г. Котова (с переменными центрами тяжести и сопротивления и с изменчивым весом) может содействовать успешному применению аэропланов к искусственному воздухоплаванию. Та настойчивость, усидчивость, с которой г. Котов достиг своими личными попытками относительного успеха, дает повод думать, что он, если бы у него была возможность производить сложные, точно выполненные модели самолетов, мог бы внести много новых и полезнейших данных».

При своей глубокой отзывчивости и огромном интересе к вопросам авиации и воздухоплавания великий русский ученый взял на себя труд издать книгу Котова.

Книга на собственный счет Менделеева начала было печататься в том же, 1895 году, но затем Котов вдруг переменил свое мнение и решил взять патенты на свои модели, так что печатание брошюры Менделеев прекратил.

На сохранившихся в архиве Менделеева листках этой книги рукой Дмитрия Ивановича сделана коротенькая надпись, в конце которой говорится о судьбе Котова:

«В 1898 г. он помер, а перед смертью приходил извиняться, что поступил неладно. Хороший был старик, и мне хотелось его выдвинуть, но не удалось».

В свете того огромного значения, какое приобрело изучение летающих моделей для развития аэродинамической науки и всего лётного дела, нельзя не пожалеть о том, что опубликование книги Котова не состоялось и его парящие аэропланы не сослужили авиации той службы, которую могли бы сослужить.

Огромное значение авиамоделизма не уменьшилось и до наших дней, несмотря на все достижения авиационной науки и техники.

«Авиамодельное дело является не забавой, а серьезным научным методом усовершенствования самолетов, – говорил академик Б. Н. Юрьев, выступая однажды перед группой пионеров-авиамоделистов. – Я начал работать с моделями очень давно, еще на заре авиации. С тех пор прошло уже тридцать лет, а я еще продолжаю испытывать модели; правда, мои теперешние модели обычно сами летать не могут, потому что это модели строящихся самолетов. Их приходится испытывать в подвешенном положении в аэродинамических трубах, где на них набегает мощный поток воздуха.

Вы все знаете, что в настоящее время перед постройкой новых самолетов делают подробные испытания их моделей в аэродинамических трубах. Эта методика сейчас весьма хорошо разработана, и во многих государствах имеется по нескольку десятков таких труб со сложным оборудованием. Все успехи самолетостроения связаны в настоящее время с опытами в аэродинамических трубах.

Однако в последние годы конструкторам приходится сильно интересоваться вопросами устойчивости и управляемости самолетов. Эти вопросы очень трудно решить в аэродинамической трубе. И вот теперь ученые начинают делать точные летающие модели самолетов и тщательно изучают их полет. Этим способом можно решить вопросы управляемости, устойчивости, маневренности и многие другие. Для изучения штопора, например, заставляют модель штопорить в большой вертикальной трубе; тогда она лишь вертится, а не опускается вниз. Модель можно фотографировать с помощью кино, в нее можно вмонтировать маленький автомат, перекладывающий через несколько минут ее рули, и таким образом можно изучить вопрос, как надо управлять самолетом для вывода его из штопора.

Таким образом, научные работники начали сейчас строить летающие модельки самолетов, то-есть делать то, чем занимаетесь и вы. Здесь ученые многому могут научиться у вас, добившихся в этом деле мировых рекордов».

Насколько все это справедливо, мы увидим дальше, сейчас же мы только заметим, что и аэродинамическая труба была построена в России очень давно, в 1887 году.

Построил эту трубу Константин Эдуардович Циолковский.


К. Э. Циолковский

Константин Эдуардович Циолковский родился 5 сентября 1857 года в селе Ижевском, Рязанской губернии, под тем самым небом, где когда-то Островков и Крякутной совершали свое воздушное путешествие.

Циолковский вспоминает, что воображение его впервые было потрясено, когда он, восьмилетний, здоровый, веселый мальчик, взял за ниточку из рук матери воздушный шар; такие шары, выдутые из коллодиума и наполненные водородом, часто потом делала для него мать. Шар плавал в воздухе, вырываясь из рук, шар тянулся в небо, шар пробуждал мысль о полете над землей. В воображении мальчика родилась необыкновенная мечта.

В девять лет мальчик перенес жестокую скарлатину и стал глухим на всю жизнь, которая сложилась так, что мыслей ребенка никто не укладывал в привычные рамки, общепринятому взгляду на вещи его никто не учил.

Хотя все братья и сестры Циолковского учились, его, маленького инвалида, посылать в школу считали бесполезным. До тринадцати лет он учился дома, с матерью, но она скоро умерла, и глухой мальчик был предоставлен самому себе. Отцу заниматься с ним не хватало времени, и вот юноше предстояло пройти тяжелый, трудный, оставляющий на всю жизнь след, скорбный путь самоучки.

После смерти матери никто уже не руководил его чтением. Он начал с арифметики и кончил высшей математикой, придумав для себя собственный метод самообучения. В основе его лежала немедленная проверка на опыте полученных из книг сведений.

Познакомившись с геометрией, мальчик сам построил себе астролябию и с ее помощью измерил расстояние до пожарной каланчи. После этого он прошел с саженью в руке до каланчи и убедился, что теоретический расчет соответствует действительному расстоянию.

Проверяя законы физики, Циолковский строил повозки, движимые струей пара, как это предлагал Ньютон. Он сделал модель паровой машины из дерева. Повозка с ветряным двигателем ходила у него и против ветра. Токарный станок собственного изготовления помогал ему во всех этих предприятиях. Отец Циолковского наконец убедился, что сын его вовсе уж не такой инвалид и калека, каким его считали. Он предложил ему ехать учиться в Москву, хотя ни сам юноша, ни отец его не имели никакого понятия о том, как, где и чему, собственно, глухой человек будет учиться.

В Москве Циолковский жил, по его признанию, на девяносто копеек в месяц: остальные деньги из пятнадцати рублей, присылавшихся ему из дому, он тратил на покупку приборов и материалов для разных опытов.

Так прожил он здесь три года, никуда не поступив и продолжая свой курс самообучения по собственной системе. Он действительно был очень далек от практической жизни и расходился с окружающими не только во взгляде на возможность летать по воздуху в металлическом воздушном корабле, но и в тысяче других вещей. Он учился дома и в библиотеках, где читал книги.

За годы пребывания в Москве Циолковский приобрел очень серьезные познания в математике. Эти занятия высшей математикой чрезвычайно расширили его творческий кругозор, и, по своему обыкновению, юноша и их начал тотчас же применять для решения различных вопросов.

«Вот, например, вопросы, которые меня занимали, – говорит Циолковский в своей автобиографии. – Нельзя ли практически воспользоваться энергией движения Земли? Тогда же я нашел ответ: нельзя.

Нельзя ли устроить поезд вокруг экватора, в котором не было бы тяжести от центробежной силы? Ответил сам себе: нельзя. Этому помешает сопротивление воздуха и многое другое.

Нельзя ли строить металлические аэростаты, не пропускающие газы и вечно носящиеся в воздухе? Ответил: можно.

Нельзя ли эксплуатировать в паровых машинах высокого давления мятый пар? Ответил так же, что можно.

Но особенно меня мучил такой вопрос: нельзя ли применить центробежную силу, для того чтобы подняться за атмосферу, в небесные пространства? И я придумал такую машину. Она состояла из закрытой камеры или ящика, в котором вибрировали вверх ногами два твердых эластических маятника с шарами на верхних вибрирующих концах. Они должны были описывать дуги, и центробежная сила шаров должна была поднимать кабину и нести ее в небесное пространство. Придумав такую машину, я был в восторге от своего изобретения, не мог усидеть на месте и пошел развеять душившую меня радость на улицу. Бродил ночью часа два по Москве, размышляя и проверяя свое открытие. Увы, уже дорóгой я понял, что заблуждаюсь: от работы маятников будет сотрясение и только. Ни на один грамм вес ее не уменьшится. Однако недолгий восторг был так силен, что я всю жизнь видел во сне этот прибор, я поднимался на нем с великим очарованием…»

К. Э. Циолковский.

Это бесстрашие самобытной мысли, рвущейся в небесное пространство, составляет характернейшую черту Циолковского в творческом деле, в конце концов и приведшую его к полному практическому разрешению задачи, казавшейся фантастической всем окружающим.

Полагая, что образование сына закончено, отец вызвал его домой. Юноша возвратился в семью действительно образованным человеком, но что он мог делать, не имея диплома, при своем, как у всякого самоучки, одностороннем образовании?

Циолковский знал высшую математику, дифференциальное исчисление, умел интегрировать, но в то же время не знал гораздо более простых вещей, о которых ему не случилось прочитать, и заново открывал то, что до него было уже открыто и решено. У молодого ученого установилось навсегда собственное, отличное от других, миропонимание, собственный, хотя и предвзятый, взгляд на вещи.

Циолковский стал давать уроки. Неожиданно у него обнаружились чрезвычайные педагогические способности. Он выучивал самых отсталых детей, может быть, потому, что сам прошел тяжелую школу выучки, без помощи других, и очень хорошо разбирался во всех затруднениях детского ума. Тогда отец посоветовал ему стать учителем, сдав экстерном экзамен на это звание. Сам он, неуживчивый лесовод, перебрался в это время с семьей в Рязань, и здесь, при местной гимназии, Циолковский держал экзамен. Это было в 1879 году, и в этом же году он получает место учителя физики и математики в реальном училище в Боровске – маленьком городке Калужской губернии.

В Боровске он не вызывает к себе приязни. Наоборот, нового учителя, как белую ворону, без всякого повода с его стороны, за один только не похожий на общий образ жизни, начинают презирать и ненавидеть товарищи и их жены. Он нарушал своими поступками привычный уклад жизни, и этого было достаточно, чтобы стать в тягость окружающему миру.

Но ученики его обожали. В физическом кабинете Циолковского «сверкали электрические молнии, гремели громы, звонили колокольчики, плясали бумажные куколки, пробивались молнией дыры, загорались огни, блистали иллюминации и светились вензеля».

Свернув со своего тяжелого и трудного пути самообучения сразу на путь самостоятельных научных исследований, Циолковский обнаруживает огромное дарование, но труды его оказываются совершенно бесполезными. Не зная ничего о кинетической теории газов, Циолковский самостоятельно разрабатывает ее и тут же узнает, что теория эта гораздо полнее разработана другими. Не зная ничего о теориях, объясняющих происхождение солнечной энергии сжатием солнца, Циолковский приходит самостоятельно к той же «контракционной теории» и узнает, что теория эта не только давно разработана, но уже и взята под сомнение новейшими исследователями.

Тем не менее «Русское физико-химическое общество», которому Циолковский представил свои работы, избрало его своим членом, отметив, что автор их обладает блестящими способностями и от него можно ожидать в будущем весьма ценных исследований и открытий.

Горечь разочарования действовала сильнее, чем радость первого признания. Циолковский даже не ответил ничего на избрание его членом научного и в те времена очень значительного и влиятельного общества. О практических возможностях, открывавшихся ему в качестве деятельного члена общества, Циолковский не думал.

В 1885 году Циолковский обращается к разработке своей первой идеи воздушного корабля с металлической оболочкой, идеи, наверно, еще никем не разработанной.

Модель дирижабля Циолковского.

В чем, прежде всего, новизна идеи русского конструктора, казавшейся такой неосуществимой, почти фантастической его современникам?

Мысль, которую он неутомимо развивал, состоит в том, что дирижабли вообще являются самым дешевым видом транспорта и что настанет время, когда воздушные корабли заменят все иные средства сообщения. В этом отношении он заходил так далеко, что считал выгодным строить их хотя бы даже из золота, не говоря уже о серебре.

Что касается самого дирижабля, то основная идея Циолковского в том, что дирижабль должен иметь обязательно металлическую оболочку. Циолковский доказывает, что это и выгодно, и возможно, и неизбежно – перейти в дирижаблестроении от матерчатой оболочки к металлической.

Затем он настаивает на введении температурного управления воздушным судном. Дело в том, что все дирижабли, которые строились и строятся, должны брать с собой балласт. Сбрасывая его, они поднимаются в воздух. При спуске же они должны выпускать тот дорогой газ, на котором они летают. Циолковский решительно восстает против этих грубых и примитивных способов подъема и спуска корабля. Он предлагает другое: подниматься в воздух посредством нагревания газа и соответствующего увеличения объема газовместилища, а спускаться на землю посредством понижения температуры газа и происходящего отсюда уменьшения плавательной способности дирижабля.

Проектировал Циолковский воздушные суда колоссальных размеров. Одно из таких судов рассчитано им для перевозки ста тридцати тысяч пассажиров; длина его почти два километра, а высота около трехсот метров.

На первый взгляд конструкция дирижабля Циолковского как будто и не представляет ничего особенного: это, как обычно для управляемого воздушного судна, продолговатое, сигарообразное тело, к которому подвешена, в данном случае очень длинная, гондола. Затем видны некоторые соединительные части и подвеска, на которой гондола прикреплена. Поперечное сечение судна не круглое, оно имеет желобок наверху. Так как дирижабль Циолковского является судном переменного объема и не имеет постоянного очертания, то по мере изменения объема газа в корпусе судна происходит увеличение или уменьшение этого жолоба наверху. Если газ сжимается, жолоб получает большую глубину; если газ расширяется, жолоб выпрямляется. При этом, разумеется, и вся металлическая оболочка испытывает различного рода изменения, деформации, изгибы не только в поперечном, но и в продольном направлении. Корабль Циолковского, так сказать, дышит, и если построить его оболочку из обыкновенного листового металла, то на удлинения и сокращения она, конечно, не будет способна.

Циолковский выходит из затруднения таким образом: оболочка у него делается гофрированной, так что получается металлический мешок, способный испытывать значительные изменения объема.

В металлической оболочке, так своеобразно устроенной, заключается основа проекта Циолковского. Конечно, существует и еще целый ряд сравнительно второстепенных вещей, отличающих его дирижабль от существующих и тем более от существовавших в то время, как он разрабатывал свой проект. Например, гондола прикреплена не к нижней части судна, как это обычно бывает, а посредством специальной подвески связана с его верхней частью.

Подвеска служит одновременно и для того, чтобы управлять увеличением или уменьшением объема оболочки.


    Ваша оценка произведения:

Популярные книги за неделю