Текст книги "Крылья Родины"
Автор книги: Лев Гумилевский
Жанр:
Транспорт и авиация
сообщить о нарушении
Текущая страница: 11 (всего у книги 24 страниц)
«Весовой прибор» В. П. Ветчинкина.
С такой аппаратурой В. П. Ветчинкину удалось установить, что, скажем, на вираже весы с гирями в 3,5 фунта показывали вес в 6–8 фунтов, а на петлях – до 14 фунтов.
В результате опытов экспериментатор нашел, что при всех положениях самолета в полете перегрузка никогда не бывает больше четырехкратной.
В 1926 году общетеоретический отдел под руководством Ветчинкина создал у себя экспериментальную группу и взялся за организацию лётных испытаний в больших размерах.
Экспериментальная группа начала действовать 1 декабря 1927 года. В этот день был доставлен на аэродром первый самолет для исследования в натуре. Это был «АНТ-3». Затем началась постройка ангаров, конструирование различных приборов для исследований и поверочной лаборатории для них.
Сначала при выработке методики испытаний пользовались самыми простыми приборами. Большой точностью они не отличались, а показания их записывались от руки экспериментатором, помещавшимся в самолете.
С таким положением дела мирились недолго. Постепенно начали создавать новые, очень точные приборы, а когда выяснилась необходимость одновременной записи показаний всех приборов, решили воспользоваться киносъемкой. Это была большая находка. На самолете позади летчика на специальной арматурной доске монтировались все приборы, показания которых одновременно и фиксировались киноаппаратом на обыкновенной киноленте. При просмотре ленты можно было видеть показания приборов и по ним судить о том, что происходило с самолетом в воздухе.
Приборы показывали не только время, высоту, скорость, положение самолета, но и температуру воздуха и барометрическое давление. Расшифровывая снимки, опытный исследователь по заснятым кадрам восстанавливал полную и верную картину того, как вел себя самолет в воздухе при тех или иных условиях.
Киноаппарат для данной цели был особенно оценен, когда начались работы по исследованию штопора на одноместном истребителе, где экспериментатору не было места. Киноаппарат автоматизировали, и приводил его в действие пилот. Он нажимал гашетку, и киноаппарат делал нужное количество снимков.
Исследования в натуре внесли ясность во многие вопросы аэродинамики и динамики самолета, доселе остававшиеся без ответа.
Пожалуй, эти работы представляют для нас наибольший интерес, и стоит по ним проследить это постоянное, хотя и не сразу видимое воздействие авиационной науки на конструкторскую мысль.
В те годы весь мир занимался проблемой безопасности самолета в штопоре: так было названо снижение самолета по спирали при наличии быстрого вращения около его вертикальной оси. В опасное положение штопора самолет может войти сам по себе, при наличии некоторых обстоятельств, без всякого желания со стороны летчика. Если самолет не выйдет из опасной фигуры, несмотря на все принятые летчиком меры, гибель машины неизбежна, причем гибель катастрофическая, ибо самолет врезается в землю с большой силой. Долгое время практики лётного дела не знали средств, как предотвратить катастрофу в результате невыхода самолета из штопора. А катастроф такого рода было очень много, и чем дальше, тем они становились все более и более необъяснимыми.
Некоторое время считалось даже, что самолет, попавший в положение штопора, вообще не может выйти из него. В авиационных школах всего мира учили, что летчик должен всеми силами избегать срыва самолета в штопор, указывая, что все случаи такого рода оканчивались неизбежными катастрофами. Особенно много таких катастроф происходило в годы первой мировой войны, когда военным летчикам приходилось выполнять резкие маневры при встречах с противником.
Жертвами таких катастроф чаще всего становились самолеты-истребители. Однако для тонких и глубоких мастеров пилотажа становилось все более и более ясным, что положение штопора для самолета и летчика вовсе не является роковым, а зависит, с одной стороны, от конструкции машины, а с другой – от понимания дела пилотом. Надо было теоретически разобраться в сложном явлении штопора и выхода из него.
Эту трудную задачу взял на себя и самым блестящим образом выполнил молодой советский аэродинамик Владимир Сергеевич Пышнов.
В. С. Пышнов.
Владимир Сергеевич вошел в авиационную науку ее виднейшим деятелем несколько иным путем, чем большинство из уже представленных нами учеников Жуковского. Он родился 6 марта 1901 года, окончил московскую 3-ю гимназию и по окончании ее сразу же поступил в только что организовавшийся из Теоретических курсов авиации МВТУ Авиационный техникум, вскоре преобразованный в Институт Красного Воздушного Флота, а затем в Воздушную академию имени Н. Е. Жуковского.
Первый выпуск академии состоялся в 1925 году. В числе первых в этом выпуске был Владимир Сергеевич, начавший публиковать свои научные работы еще будучи студентом академии. К этим работам относится напечатанная в 1923 году в журнале «Вестник Воздушного Флота» статья «Выбор дужки крыла для планера» – результат участия Пышнова в деятельности планерного кружка академии.
Уже в это время определяется своеобразный характер научной деятельности Пышнова: она направляется, вольно или невольно, но строго последовательно и неуклонно к тому, чтобы помогать авиационным конструкторам избегать ошибок и недостатков при конструировании самолетов, выбирать элементы конструкций, основываясь на глубоких научных исследованиях и теоретических построениях.
Владимир Сергеевич начал свою исследовательскую деятельность аэродинамика под руководством В. П. Ветчинкина в те годы, когда с развитием самолетостроения, естественно, увеличилось и число катастроф, происходивших от невыхода машин из штопора. Не раз сам Пышнов был свидетелем таких катастроф, и под впечатлением от них он начал размышлять о том, как обезопасить самолет, находящийся в штопоре, и в каких условиях возникает это загадочное явление.
Глубокий и тонкий исследователь, проникновенно и точно угадывающий самые сложные явления, происходящие в воздухе при движении в нем самолета, Владимир Сергеевич пришел к своим выводам чисто умозрительным путем, не прибегая к специальным экспериментам. Прежде всего он увидел, что одна из основных причин невыхода самолета из штопора кроется в интерференции – взаимном влиянии при полете одних частей самолета на другие, в данном случае – во влиянии крыла на хвостовое оперение. Влияние это заключается в том, что при штопоре хвостовое оперение попадает в область аэродинамической тени, отбрасываемой крылом, и руль самолета, оказываясь в аэродинамической тени, становится бездейственным.
В опубликованной в 1927 году в «Технике Воздушного Флота» работе «Штопор самолета» Пышнов показал особую важность вертикального оперения и его активной части – руля поворота – для вывода машины из штопора и указал, каким, по его мнению, должно быть наиболее эффективное размещение оперения, чтобы предохранить руль поворота от затенения при штопоре.
Схема плоского (слева) и крутого (справа) штопора самолета.
Вместе с тем он разработал методику расчета штопора с подробным раскрытием влияния весовых, аэродинамических и инерционных характеристик всех элементов самолета.
Эта первая в мире основательная работа по теории штопора, вышедшая отдельным изданием в 1928 году, произвела огромное впечатление и на аэродинамиков и на конструкторов. Строители самолетов немедленно последовали рекомендациям Пышнова при конструировании хвостового оперения и воспользовались методами расчета, предложенными им.
Вряд ли меньшее значение имеют и последующие труды Пышнова для развития советской аэродинамики, посвященные теории авиации, динамике полета и аэродинамике самолета.
Характерной чертой всех трудов Пышнова является стремление довести результаты своих исследований до широких авиационных кругов. Достигает этой цели Владимир Сергеевич благодаря своему уменью просто и понятно представить слушателю или читателю самые сложные явления аэродинамики. Однако эта доступность изложения достигается не упрощением и грубым схематизированием явления, а глубоким проникновением в самую сущность его. Вот почему лекции и доклады Пышнова привлекают в аудиторию не только молодых ученых, но и старых учеников Жуковского, заслуженных и выдающихся деятелей авиационной науки и техники.
О глубоком и тонком понимании исследуемого вопроса, об уменье ясно и в самой основной сущности представить его мы можем судить по небольшой работе В. С. Пышнова: «Развитие советской авиационной технической мысли», представляющей собой конспективную историю советской авиации.
Будущему историку невозможно не принять того четкого разделения истории развития нашей авиационной технической мысли на два периода, которое делает автор. Первый период Владимир Сергеевич характеризует так:
«В этот период складываются основные дисциплины авиационных наук: аэродинамика теоретическая и экспериментальная, теория винтов, аэродинамический расчет самолета, динамика полета, строительная механика самолета, авиационное материаловедение, теория и конструкция авиационных двигателей и др. Для этого периода развития авиационных наук характерен особый интерес к основам наук, их систематизация и приближение к практическим задачам авиации».
Этот первый период в истории развития нашей авиационной технической мысли хронологически охватывает время с окончания гражданской войны и до появления истребителя Н. Н. Поликарпова «И-16» и бомбардировщика А. Н. Туполева «СБ», выведших советскую авиацию на одно из первых мест в мире.
Самолет-истребитель «И-16».
Характеризуя этот первый период, В. С. Пышнов говорит:
«Самолеты выпуска 1925–1930 гг. теперь нам кажутся грубоватыми с точки зрения аэродинамики. Но отсюда не следует делать вывод, что конструкторы того времени не уделяли должного внимания аэродинамике. На каждом этапе своего развития самолетостроение испытывает характерные для данного периода трудности в разрешении ближайших задач. Определенные конструктивные мероприятия становятся целесообразными только после разрешения многих других вопросов. Если мы посмотрим тематику научных исследований в период 1925–1930 гг., то увидим, что над конструктором в то время довлели вопросы техники пилотирования и обеспечения надежности полета. Возможности увеличения прочности самолета ограничивались материалами и применявшейся технологией производства. В центре внимания были вопросы устойчивости, выбора рациональной центровки, борьбы с потерей скорости и невыходом из штопора, вопросы управляемости…, простоты посадки, обеспечения охлаждения двигателя и пр. Кроме того, значительное время требовалось для отработки вопросов боевого применения самолетов. Для разрешения всех этих проблем нужны были не только теоретические исследования, накопление большого экспериментального материала, но и многочисленные изобретения».
Только после разрешения всех этих вопросов могло вступить советское самолетостроение в новый период своего развития, которому предшествовало создание в годы пятилеток нашей авиационной промышленности.
В этот второй период, начало которого ознаменовалось появлением самолетов «И-16» и «РД», «выпуская в полет новый самолет, конструктор уже не сомневался в его устойчивости и управляемости, так как профиль крыла был выбран наивыгоднейшим, принимались все меры, облегчающие выход самолета из штопора, проверялась прочность конструкции, а шасси располагалось наилучшим образом. Теперь уже можно было употребить все силы на улучшение лётных характеристик и боевых качеств самолета».
«С самолета как бы спала шелуха, – говорит В. С. Пышнов дальше, – исчезли подкосы и растяжки, округлился фюзеляж, убралось шасси, прикрылся вырез для кабины летчика, спрятались внутрь бомбы и пулеметы, не видно больше снаружи ни мотора, ни радиатора, гладкими стали крылья. Это был скачок в развитии самолетостроения, подготовленный всей предшествующей работой».
В свете этих проникновенных характеристик обоих периодов в истории развития советского самолетостроения значение собственных работ Пышнова выясняется само собою.
Если до работ Пышнова все попытки расчета штопора не приводили к успеху, то с опубликованием его труда дальнейшее изучение сложнейшего явления пошло с таким успехом, что ныне оно может считаться вполне изученным и ясным.
Скоростной самолет-бомбардировщик «СБ», конструкции А. Н. Туполева.
В 1928 году исследование штопора было поручено работнику нашего аэродинамического центра, профессору Александру Николаевичу Журавченко.
Он начал заниматься динамической устойчивостью самолета еще по указанию и под руководством Жуковского, но он не является его прямым учеником, хотя и принадлежит по стилю и характеру своему всецело к его школе.
А. Н. Журавченко.
Полная неясность в силовой обстановке полета с быстрым вращением заставила А. Н. Журавченко прежде всего подумать над созданием специального прибора для изучения штопора. Дело было трудное, необычное, но талантливым инженерам, взявшимся за это дело, удалось создать такой прибор. Прибор помещался в аэродинамической трубе и воспроизводил все движения модели самолета, подобно натуральному, находящемуся в штопоре. Прибор давал возможность измерять все силы, действующие на штопорящую модель, так что исследователи нашли даже способ определять по модели, будет ли выходить самолет данной конструкции из штопора или нет.
На этом приборе Журавченко впервые в истории авиации исследовал влияние важнейшего в штопоре фактора – скольжения – и показал исключительную роль вертикального оперения.
В ряде опубликованных затем работ Журавченко раскрыл и объяснил физико-механическую сущность явления штопора.
Школа Жуковского никогда не уклонялась от разрешения вопросов, возникающих перед самолетостроителями, и среди наших аэродинамиков нет ни одного, кто считал бы свое дело сделанным полностью, если разгадана только физическая сущность явления и создана его теория. Наши аэродинамики не считают свою работу законченной до тех пор, пока конструктор самолета практически не использует научного достижения.
Вот почему так естественно сливается история русской аэродинамической школы с историей русской авиации.
Но, разумеется, совсем необязательно ждать, чтобы практическое приложение теории исходило от исследователя. Это скорее должно появляться в результате сотрудничества и интереса ко взаимной работе людей с творческим воображением, работающих в самых разнообразных областях жизни.
Примером такого сотрудничества в творческом деле и может служить работа экспериментально-аэродинамического отдела и отдела опытного самолетостроения ЦАГИ.
Испытание модели самолета на штопорном приборе в аэродинамической трубе.
После того как закончилось строительство экспериментального хозяйства, С. А. Чаплыгин отошел от руководства разнообразной деятельностью института в качестве председателя его коллегии и посвятил свой труд и время теоретической науке.
Трудно перечислить, да и вряд ли возможно сделать доступными общему пониманию теоретические работы экспериментально-аэродинамического отдела, сделанные в аэродинамической лаборатории учениками Жуковского, первым и старейшим из которых был С. А. Чаплыгин.
Он в полной мере использовал созданные советской властью условия для неограниченного развития науки. Подобно своему великому учителю, с щедростью гения бросал он семена в благодатную почву, и сеятели были достойны своей земли: мы знаем теперь и мировое значение и мощь русской авиации.
Ученый теоретик и мыслитель, Сергей Алексеевич обладал в то же время неизменным даром каждого организатора – угадывать людей, и он собирал их вокруг себя, руководствуясь своим умом и опытом.
Однако в основном руководящей группой работников нашего аэродинамического центра оставалась группа учеников Жуковского. Его школе и обязаны мы расцветом у нас авиационной науки. Исключительное развитие теории гребных винтов у нас произошло не потому, что тут со стороны промышленности предъявлялось больше требований, чем в других странах. Скорее это произошло потому, что моментальные фотографии работающего корабельного винта попали в руки Жуковскому, что необходимость рассчитать винт для геликоптера встала перед его учениками.
Первоначально вопрос об осевых или винтовых вентиляторах встал в связи с проектированием и постройкой аэродинамических труб. Это побудило к тому, чтобы спроектировать винт с большим коэффициентом полезного действия, дешевый и прочный. Но для этого понадобилось исследовать влияние зазора, влияние поворота лопастей, изучить работу направляющих аппаратов, разработать аппаратуру и модели для исследования.
Исследования велись на основе той же вихревой теории Жуковского, а в результате их была разработана теория осевых вентиляторов и, наконец, выработан промышленный их тип.
К. А. Ушаков шел даже впереди запросов промышленности, так что когда московскому метрополитену понадобился вентилятор больших размеров и мощности, вентиляторная секция под его руководством дала еще один новый тип вентилятора, как она давала их для электровозов, тепловозов, для шахт, для горелок доменных печей.
Вентилятор конструкции К. А. Ушакова для московского метрополитена.
В руках у Жуковского и его учеников все обращалось в науку, будь то фотография корабельного винта или вентилятор для аэродинамической трубы. Вот этой-то характерной чертой школы Жуковского и объясняется, что наш аэродинамический центр никак не мог ограничиться авиационной аэродинамикой, что он беспрерывно создавал и новые секции, и новые лаборатории, и новые области науки одну за другой.
Бурный рост первоначальных отделов ЦАГИ повлек за собой создание из них отдельных научно-исследовательских институтов. Это обстоятельство характерно столь же для истории ЦАГИ, как и для истории советской науки вообще: социалистическое народное хозяйство предъявило науке не только огромные требования, но и поставило ее в исключительно благоприятные условия для роста и развития.
За двадцать пять лет своего существования аэродинамический центр, созданный учениками Жуковского, в свою очередь вызвал к жизни и положил начало развитию целого ряда научно-исследовательских центров: моторная лаборатория выросла в Центральный институт авиационного моторостроения, ветросиловая – в Ветроэнергетический институт, гидросиловая – в Гидроэнергетический институт.
Подобный же процесс развития прошла и еще одна замечательная лаборатория ЦАГИ, из которой вырос Всесоюзный институт авиационных материалов.
Борьба за прочность
В годы первой мировой войны русские летчики вели разведывательные и боевые операции на самолетах разных типов, главным образом поставлявшихся иностранными фирмами. Сбывались в Россию при этом машины не лучшего качества, и военное ведомство должно было наконец обратить внимание на повышение лётно-технических качеств самолетов, в особенности на прочность машин.
Дело в том, что военная авиация несла наибольшие потери у себя на аэродромах. Несмотря на малые посадочные скорости самолетов того времени, редкая посадка проходила без всяких происшествий. Поломка самолетов при посадке была делом обычным, однако не столь трагическим еще, как поломка в воздухе. Вопросы прочности и нагрузки в полете, работа шасси, динамика посадки – вот что в первую очередь занимало умы летчиков, конструкторов и военного начальства.
Как это ни странно, но военное ведомство не имело понятия о том, каким образом организовать изучение этих вопросов, кто должен был ими заниматься.
Помог делу случай. Как-то по пути из Москвы в Петербург Владимир Петрович Ветчинкин разговорился в вагоне железной дороги с видным представителем военного ведомства, который, коснувшись интересовавшего всех вопроса о повышении лётных и технических качеств военных самолетов, признался в совершенной беспомощности военного ведомства.
Владимир Петрович указал на аэродинамическую лабораторию МВТУ, возглавляемую Жуковским. Обрадованный генерал взял с Ветчинкина слово, что он представит докладную записку военному ведомству по этому вопросу. Записка была составлена и послана за подписью Жуковского. Так возникло «Расчетно-испытательное бюро» при аэродинамической лаборатории МВТУ, во главе с Н. Е. Жуковским и В. П. Ветчинкиным, явившимися основоположниками русской школы в области динамики полета и прочности конструкции.
Испытание лонжерона на прочность.
Прочность в природе сочетается с тяжестью.
Поиски естественных, создание искусственных материалов, уклоняющихся от этого правила, испытание и исследование их – вот в чем заключалась первоначальная задача лаборатории испытания авиационных материалов. Поиски производились не только по памяти и литературным данным. Снаряжались специальные экспедиции для обследования на месте богатейших лесных массивов.
Бригада работников лаборатории, руководимая профессором Н. П. Акимовым, отправилась в Днепропетровск на заводы имени В. И. Ленина и Г. И. Петровского, чтобы организовать производство хромомолибденовой стали в мартеновских печах.
Работникам лаборатории удалось получить затем и нержавеющую сталь такой прочности, что квадратный сантиметр ее выдерживал нагрузку до 18 тонн.
Работы по изучению легких сплавов привели к высокому качеству кольчугалюминия. Исследовался сплав, исследовались изготовляемые из него полуфабрикаты – листы, трубы. Испытывались на разрыв, на утомляемость, на сжатие, на кручение, на подверженность коррозии.
Зал механической лаборатории был наполнен самыми разнообразными машинами. Тут и разрывные машины, и прессы для испытаний на сжатие, на твердость, на изгиб, и машины для испытаний на кручение, на изнашиваемость, на утомляемость. Приборы металлографической лаборатории позволяли рассматривать и фотографировать внутреннюю структуру металлов. Набор газовых печей обеспечивал исследование процессов термической обработки металлов и сплавов.
Словом, оборудование лаборатории позволяло производить полные и всесторонние испытания авиационных материалов и не очень крупных деталей авиационных конструкций. Статические испытания крупных деталей – крыльев, фюзеляжа и целых аппаратов – производились в отдельной лаборатории статических испытаний.
В опытном самолете испытывается каждая деталь. Испытываются крылья, фюзеляж для определения крепости и упругости конструкции. В светлом зале статических испытаний не было машин. Для нагрузки употреблялись просто мешочки с дробью определенного веса. Крыло прикреплялось к деревянному постаменту, представляющему фюзеляж. Перед испытанием оно подготовлялось как бы к полету: натягивались тросы, ленты, затягивались болты. Крыло ставилось под таким углом, который является самым опасным в полете. Так как воздействие воздуха на крыло зачастую направлено снизу, то при испытании на такую нагрузку оно ставилось в обратное положение, чем в действительном полете. При нагрузке на такое перевернутое крыло мешки с дробью клались так, что давили на него по тем же самым законам, по каким давят воздушные силы в полете.
Напряжение каждой части конструкции, происходящее под влиянием постепенно увеличиваемой нагрузки, измерялось особыми приборами – тензометрами. Они прикреплялись повсюду: к лентам, к стойкам, к лонжеронам.
Дело не ограничивается испытанием крыльев. На подмоторной раме укрепляется мотор. Мотор изгибает, трясет, закручивает, расшатывает раму. Чтобы проверить прочность рамы, ее нагружают в нужном направлении тросами, перекинутыми через блоки, и опять-таки до тех пор, пока она не разрушится.
Давление воздуха на хвост самолета сгибает и скручивает фюзеляж. На конец фюзеляжа по одну сторону его хвоста постепенно кладут те же мешки с дробью, под тяжестью которых длинный фюзеляж начинает прогибаться или закручиваться. При испытании постепенно начинают вылетать заклепки, трещат шпангоуты, деформируется обшивка, прогибаются лонжероны, и наконец разрушается фюзеляж.
Испытание крыла на прочность.
В настоящее время ни один опытный самолет не поднимается в воздух без предварительных статических испытаний всего аппарата в целом. Для этого каждый опытный самолет строится в двух совершенно одинаковых экземплярах. Один из них обречен на гибель при статических испытаниях; и если на опытном самолетостроительном заводе встречаются иногда обломки самолета, то это вовсе не значит, что тут произошла катастрофа. Наоборот, это значит, что тут приняты все меры к тому, чтобы при испытании самолета новой конструкции в воздухе не произошло никакой неожиданности, ведущей к катастрофе.
Статические испытания не освобождают авиаконструктора от необходимости самым тщательным образом вести предварительный расчет всей машины в целом и ее отдельных частей. Но он делает это, руководствуясь установленными нормами прочности, выработанными экспериментаторами и теоретиками, людьми особого строя ума и мышления.
Прочность материала и прочность конструкции не одно и то же.
На ранней поре авиации вопросам прочности уделялось мало внимания. В. П. Ветчинкин рассказывает, что в истории технической авиации имелись и такие случаи, что крыло биплана разрушалось вследствие чрезмерной затяжки расчалок при сборке аппарата. Такого рода курьезные происшествия в практике первоначального самолетостроения побудили В. П. Ветчинкина поставить в годы первой мировой войны вопрос об организации авиационного расчетно-испытательного бюро.
Расчетно-испытательное бюро произвело немало отдельных расчетов на прочность тогдашних самолетов.
Основные вопросы прочности, таким образом, очень рано – вероятно, раньше, чем где-либо – начали систематически у нас исследоваться. Вопросы прочности с развитием авиации приобретали все большее и большее значение не только в смысле долговечности самолета, но и в деле развития конструкций.
Дело в том, что конструктивное развитие летательных аппаратов, вся история технической авиации проходят в борьбе противоречий между требованиями прочности и требованиями аэродинамики. Любопытно, например, что схема моноплана, имеющая явные преимущества перед бипланом в отношении аэродинамических свойств, победила окончательно только тогда, когда найдены были прочные материалы, надежные методы расчета на прочность. В истории технической авиации легко проследить, как строитель моноплана неумолимо возвращался к бипланной схеме потому лишь, что не мог построить прочный лонжерон; по тем же причинам в самолетостроении долго господствовало верхнерасположенное крыло с подкосами, в свою очередь происходившее от схемы полутораплана; и, наоборот, постепенно развитие учения о прочности вело самолетостроение к так называемому «свободнонесущему» монопланному крылу и к современному типу моноплана.
Отдельные вопросы прочности начали разрешаться у нас, как об этом свидетельствует Расчетно-испытательное бюро, очень рано.
Лаборатория статических испытаний.
Быстрый рост скоростной авиации заставлял теоретиков копить материал, для того чтобы во-время отвечать на запросы скоростного самолетостроения. До тех пор нормы прочности покоились главным образом на инженерном опыте. Теперь требовалось теоретическое обоснование.
И вот в те самые годы, когда опытное самолетостроение у нас решало проблему скорости, специальная группа в ЦАГИ под руководством С. Н. Шишкина взялась за решение проблемы прочности.
С. Н. Шишкин.
Деятель, одинаково популярный среди теоретиков и практиков самолетостроения, Сергей Николаевич Шишкин поступил в Московское высшее техническое училище в 1920 году, когда Жуковский уже расставался с ним. Но на механическом факультете, который выбрал для себя юноша, все продолжало жить великой преданностью ученому, его традициям.
Шишкин окончил курс в 1926 году по специальности самолетостроения. На Первом авиационном заводе он начал работать конструктором в опытном отделе, руководимом Н. Н. Поликарповым, еще в 1925 году. Но в те годы, когда он выбирал свою специальность, мало кто завидовал будущности авиационного инженера. Считалось серьезным делом строить паровые котлы и машины, железные дороги, мосты, корабли, но не эти летающие мотоциклетки. Для того чтобы избрать специальностью самолетостроение, в то время нужны были мужество и приверженность к делу.
С первых же шагов своей деятельности Шишкин стал работать инженером по расчетам прочности самолетов на авиационных заводах. С большой практической подготовкой, полученной таким образом, в 1931 году он переходит для научной работы в ЦАГИ и руководит здесь отделом прочности. Этот отдел и создает в 1934 году наши собственные нормы прочности самолетов, основанные на опыте советского самолетостроения.
Основной вопрос при определении прочности самолета – это вопрос о возможных величинах нагрузок, действующих на самолет в полете и при посадке, а также вопрос о запасах прочности в конструкции. Шишкин последовательно публикует ряд работ по вопросу внешних нагрузок, действующих на самолет, и создает теоретические основы норм прочности.
Шишкин ввел в практику исследование вопросов прочности непосредственно во время полета, на самолетах.
Полетные эксперименты дали огромный материал. Наши представления о силах, действующих на самолет в полете, приобрели ясность и точность.
В результате еще в 1937 году появились нормы прочности, коренным образом отличающиеся от прежних. Требования скоростных самолетов нашли здесь полное отражение, и, несомненно, это обстоятельство весьма способствовало развитию нашей авиации в деле повышения скорости.
В те же годы начато было и исследование прочности конструкций из дерева. Эти исследования в значительной мере способствовали появлению у нас деревянных самолетов. Массовое, серийное производство истребителей, почти сплошь выстроенных из дерева, есть явление замечательное. До сих пор еще ни одна страна в мире не создала массовой авиации, тем более истребительной, пользуясь деревом как основным самолетостроительным материалом.
Нет нужды говорить о том, какое колоссальное значение для нашей страны, лесные богатства которой неисчерпаемы, имеет переход в самолетостроении к деревянным конструкциям, особенно во время войны.
Это не значит, конечно, что проблема прочности у нас решалась, имея в виду деревянные конструкции. Металлические самолеты достигли у нас высокого развития, а металлическое самолетостроение поставило перед исследователями множество проблем прочности. Опыт строительства гражданских сооружений тут совершенно не годился. Металлическое самолетостроение потребовало новых методов расчета, соединяющих простоту обычных инженерных расчетов с точными решениями, основанными на математической теории упругости.