355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Кудрявцев Степанович » Курс истории физики » Текст книги (страница 21)
Курс истории физики
  • Текст добавлен: 7 октября 2016, 12:05

Текст книги "Курс истории физики"


Автор книги: Кудрявцев Степанович


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 21 (всего у книги 48 страниц)

В 1846 г. франц Нейман (1798-1895) нашел выражение закона индукции в следующем виде:

V=-δA/dt где знак минус показывает, что на создание индукционного тока надо затратить энергию.

Фарадей продолжал изучение электромагнитной индукции во второй серии своих «Экспериментальных исследований» (январь 1832 г.).

В третьей серии (январь 1833 г.) фарадей кладет конец спору о различных видах электричества: обыкновенном, гальваническом, животном, индукционном. Рядом опытов он показывает, что все виды электричества тождественны между собой, различаясь только знаком. Исследуя действия, производимые обыкновенным, гальваническим, магнитным, термическим и животным электричеством, фарадей приходит к фундаментальному заключению: «Отдельные виды электричества тождественны по своей природе, каков бы ни был их источник».

В июне 1833 г. появилась пятая серия «Экспериментальных исследований», посвященная явлениям электролиза. В этой серии, а также в последующих—шестой, седьмой и восьмой – Сериях фарадей занимается изучением химических действий тока.

Рис. 38 Опыт по электромагнитной индукции. Рисунок Фарадея

Химические действия тока были открыты сразу после изобретения вольтова столба. Дэви открыл электролитическим разложением щелочные металлы. Иоганн Риттер обнаружил поляризацию гальванического элемента. Пропуская ток через подкисленную воду, он установил, что электроды, опущенные в электролит и отключенные от источника, снова дают после их соединения проводником электрохимическое разложение, но в обратном направлении. Так был открыт аккумулятор.

Рис. 39. Униполярная машина. Рисунок Фарадея

Прибалтийский ученый Кристиан Гротгус (1785—1822) впервые пытался представить механизм электролиза посредством цепочек полярно заряженных молекул.

В пятой серии Фарадей формулирует точный закон электролиза: «Что бы собой ни представляло разлагаемое вещество: воду, растворы солей, кислоты, расплавленные тела и т. д., – для одного и того же количества электричества сумма электрохимических действий есть также величина постоянная, т. е. она всегда эквивалентна стандартному химическому действию, основанному на обычном химическом сродстве»

В седьмой серии фарадей формулирует этот закон более сжато:« Химиче ское действие электрического тока прямо пропорционально абсолютному количеству проходящего электричества».

Фарадей вводит новую терминологию, ныне общеупотребительную. Электроды, подводящие ток к разлагаемому раствору, он называет анодом и катодом. Разложимые вещества он называет электролитами, вещества, на которые разлагаются электролиты, – ионами, а именно анионами и катионами, смотря по тому, где отлагается вещество – у анода или катода. «Числа, соответствующие весовым количествам, в которых они выделяются, я называю электрохимическими эквивалентами».

Фарадей устанавливает важный факт, что для выделения любого вещества в количестве, равном его электрохимическому эквиваленту, требуется одно и то же количество электричества. Эта величина играет важную роль в современной физике, являясь одной из основных физических констант, и называется «число фарадея». Фарадей связывает этот факт с основными представлениями химии. Он пишет: «Согласно этой теории эквивалентные веса тел представляют собой такие количества их, которые содержат равные количества электричества... Иначе если принять атомную теорию и соответствующие ей выражения, то атомы тел, эквивалентные друг другу в отношении их обычного химического действия, содержат равные количества электричества, естественно связанного с ними». Таким образом фарадей приходит к представлению о некотором элементарном заряде, связанном с атомами вещества. Он указывает, что «атомы материи каким-то образом одарены электрическими силами или связаны с ними и им они обязаны своими наиболее замечательными качествами, и в том числе своим химическим сродст вом друг к другу».

Все это позволяет высказать утверждение, что фарадей является основателем электронной теории вещества, впервые высказавшим мысль о дискретности электричества, об элементарном электрическом заряде. Тринадцатый раздел седьмой серии, в котором содержатся эти глубокие мысли, называется «Об абсолютном количестве электричества, связанном с частицами или атомами материи». Это название говорит само за себя.

В девятой серии, озаглавленной «Об индуктивном влиянии электрического тока на самого себя и об индуктивном действии электрических токов вообще», фарадей описывает явление самоиндукции. Это явление было открыто независимо друг от друга американцем Генри и англичанином Дженкиным. фарадей упоминает только о последнем, очевидно, не зная об открытии Генри. Современная физика увековечила приоритет Генри, присвоив единице индуктивности название генри.

Фарадей описывает экспериментальную установку, посредством которой и доныне демонстрируют на лекциях явление самоиндукции. Он констатирует, что самоиндукция аналогична инерции в механике, указывает, что индуктивность проводника зависит от его формы и особенно возрастает, если проводник свернуть в спираль. Все это заставляет его еще раз вернуться к идее электротонического состояния и к исследованию связи между электрическими и магнитными силами. Мысль фарадея неустанно обращается к пространству, окружающему проводники, и в его уме постепенно вызревает глубокая идея поля.

В одиннадцатой серии фарадей подробно исследует диэлектрические свойства веществ, вводя для их характеристик особое число, которое он называет удельной индукцией или удельной индуктивной способностью. Эту величину позже назвали диэлектрической постоянной, а ныне называют диэлектрической проницаемостью. Исследование диэлектриков вновь подводит фарадея к мысли о существовании роли среды в электрических взаимодействиях, которые как бы разливаются в окружающем пространстве по кривым линиям. Это последнее обстоятельство особенно подчеркивает фарадей, считая, что оно противоречит картине действия на расстоянии, принятой сторонниками мгновенного дальнодействия.

От опытов с диэлектриками фарадей переходит к исследованию электрического разряда в газах. Он описывает различные формы разряда в газах при атмосферном давлении и в разреженном состоянии. В последнем случае фарадею Удалось обнаружить темное пространство, разделяющее, области свечения у катода и у анода. Это темное пространство ныне называется фарадеевым. Так фарадей положил начало детальному изучению разрядов в газах, той области физики, которую он сам считал важной и из которой в дальнейшем историческом развитии возникли электроника, рентгенофизика, радиоактивность.

Рис. 40. Рисунок Фарадея по электролизу

В шестнадцатой и семнадцатой сериях «Экспериментальных исследований по электричеству» фарадей рассматривает спор между сторонниками контактной теории источника электрического тока и сторонниками химической теории. Контактная теория, ведущая свое происхождение от Вольты, «находит источник мощности в контакте» разнородных проводников, а химическая – «в химической силе», как выражается фарадей, или в химической энергии, как бы сказали мы. Свое мнение фарадей – он является сторонником химической теории – обосновывает многочисленными соображениями и экспериментальными фактами. В качестве окончательного вывода он прямо указывает, что «контактная теория допускает, что сила... может будто бы возникнуть из ничего, что без всякого изменения действующей материи и без расхода какой-либо производящей силы может производиться ток, который будет вечно идти против постоянного сопротивления...». «Это было бы поистине сотворением силы, – продолжает Фарадей, – и это не похоже ни на какую другую силу в природе».

Эти слова были написаны в январе 1840 г., когда закон сохранения энергии еще не был открыт, но фарадей пишет так, как будто ему этот закон известен. Более того, он ясно представляет картину превращения энергии из одного вида в другой. «Мы имеем много процессов, – пишет он, – при которых форма силы может претерпеть такие изменения, что происходит явное превращение ее в другую. Так мы можем превратить химическую силу в электрический ток или ток в химическую силу. Прекрасные опыты Зеебека и Пельтье показывают взаимную превращаемость теплоты и электричества, а опыты Эрстеда и мои собственные показывают взаимную превращаемость электричества в магнетизм. Но ни в одном случае, даже с электрическим угрем и скатом, нет чистого сотворения силы; нет производства силы без соответствующего израсходования чего-либо, что питает ее».

Этот 2071-й параграф семнадцатой серии, датированный 29 декабря 1839 г., представляет по сути дела законченную качественную формулировку закона сохранения и превращения энергии. Мысли, высказанные здесь фарадеем, очень близки воззрениям Энгельса на закон сохранения энергии. Энгельс подчеркивает в законе именно превращаемость форм энергии, фарадей на собственном опыте осознал эту сторону закона. Он «превратил магнетизм в электричество», исследовал химические превращения в электрической цепи, он, наконец, искал превращения света в магнетизм, тяготения – в электричество и магнетизм. Читая летом 1834 г. популярные лекции о взаимоотношении электрических и магнитныхявлений, он последнюю, шестую лекцию посвятил вопросу о взаимоотношении «химического сродства, электричества, теплоты, магнетизма и других сил материи».

Эта философская установка Фарадея в значительной степени способствовала его научным достижениям. Он открыл электромагнитную индукцию не случайно, он напряженно искал ее десять лет. Осенью 1845 г. он открывает магнитное вращение плоскости поляризации, получившее в науке название эффекта фарадея. Этот тонкий эффект опять-таки не был случайным открытием.

Девятнадцатую серию, посвященную эффекту фарадея, он открывает следующим признанием: «Я давно уже придерживался мнения – и оно почти достигло степени убеждения – ... что различные формы, в которых проявляются силы материи, имеют общее происхождение, или, другими словами, настолько близко родственны друг другу и взаимно зависимы, что они могут как бы превращаться друг в друга и обладают в своем действии эквивалентами силы», фарадей сообщает, что он давно и безуспешно пытался «открыть прямую связь между светом и электричеством» и что «в конце концов мне удалось намагнитить и наэлектризовать луч света и осветить магнитную силовую линию». Далее он описывает свои опыты по вращению плоскости поляризации света магнитным полем.

Фундаментальная идея о взаимосвязи, взаимопревращаемости различных сил природы дополнялась у фарадея другой фундаментальной идеей об активной роли среды, в том числе и пустого пространства, в физических процессах. В двадцатой серии он описывает влияние магнитного поля на различные среды и находит диамагнетизм и парамагнетизм (термины введены фарадеем).

Тщательное изучение электрических и магнитных свойств вещества в конце концов привело фарадея к установлению фундаментальной новой идеи, идеи поля. фарадей разработал экспериментальную методику исследования магнитного поля с помощью пробной катушки и баллистического гальванометра. Он ввел метод изображения магнитного поля с помощью силовых линий. Он писал в 1851 г.: «Я..., изучая отношение вакуума к магнитной силе и общий характер магнитных явлений, протекающих вне магнита, больше склоняюсь к мысли, что передача силы представляет собой именно такое явление, протекающее вне магнита; я считаю невероятным, что эти явления представляют собой простое притяжение и отталкивание на расстоянии». Следует отметить, что современники фарадея предпочитали идею «простого притяжения и отталкивания на расстоянии».

Слишком осязательны были успехи Ньютона, формула закона тяготения которого так блестяще оправдалась в небесной механике. Напоминающие эту формулу законы Кулона дали возможность развить математическую теорию электростатики и магнитостатики. Амперу удалось включить в эту схему и электромагнетизм. Теперь оставалось так обобщить закон Ампера, чтобы он включил в себя и индукционные процессы, открытые и изученные фарадеем. Эту задачу поставил перед собой Вильгельм Вебер (1802-1891), которому в конце концов удалось найти формулу взаимодействия заряженных электрических частиц (1846). Однако в эту формулу входили не только заряды взаимодействующих частиц и их положения, но также их относительная скорость и ускорение, что делало ее совсем непохожей на законы Ньютона и Кулона и сложной для расчетов.

Фарадей же вообще отказался от концепции действия на расстоянии и ввел в физику совершенно новый объект – физическое поле. «При этой точке зрения на магнит, – писал Фарадей в 1852 г.,—среда или пространство, его окружающие, играют столь же существенную роль, как и самый магнит, будучи частью настоящей и полной магнитной системы». Для фарадея поле – это то, что излучается, распространяется с конечной скоростью в пространстве, взаимодействует с веществом. Примером такого поля является излучение Солнца. «В этом случае лучи (которые представляют собой силовые линии) проходят через промежуточное пространство; но здесь мы можем оказывать на эти линии действие при помощи различных сред, расположенных на их пути. Мы можем изменить их направление посредством отражения или преломления; мы можем заставить их идти по криволинейным или ломаным путям. Мы можем отрезать их от их источника и затем искать их и найти, прежде чем они достигнут своей конечной цели. Они связаны с временем и требуют 8 минут, чтобы пройти от Солнца до Земли; таким образом, они могут существовать независимо и от своего источника и от места, в которое в конце концов приходят. Таким образом, они имеют ясно различимое физическое существование» (подчеркнуто мною, – Я. К.).

Такова концепция поля, к которой фарадей пришел в результате длительного научного пути и первоначальный набросок которой он дал в своем запечатанном письме 1832 г. С фарадеем в физику наряду с частицами вещества вошла и новая форма материи – поле, излучаемое и поглощаемое частицами и распространяющееся в пространстве с конечной скоростью. Математически эта идея была разработана гениальным преемником фарадея Джемсом Клерком Максвеллом.

Напряженная работа надломила душевные силы фарадея. Все чаще и чаще он жалуется на ослабление памяти: «Уже через день я не могу припомнить выводов, к которым пришел накануне... Я забываю, какими буквами изобразить то ил л другое слово», – пишет он в одном из писем. В таком состоянии он проводит, угасая, долгие годы, год от года сужая круг своей деятельности. Умер он 25 августа 1867 г.

Возникновение и развитие термодинамики. Карно

Если в XVIII в. в физике (за исключением механики) господствовал эксперимент, так что физику определяли как науку «о всем том, что через опыты познать можно», то в XIX в. картина начинает меняться. Экспериментальная физика продолжает господствовать над теоретической, и редактор ведущего физического журнала «Annalen der Physik» Поггендорф, будучи сам экспериментатором, тщательно заботится о том, чтобы на страницы журнала не попала «метафизика». Но уже волновая оптика Юнга и Френеля представляла собой, кроме совокупности изящных и остроумных опытов, стройную теоретическую систему, позволившую Гамильтону предсказать тонкое, трудно наблюдаемое явление конической рефракции. Электростатика и магнитостатика в руках Гаусса и Грина развивались по образцу ньютоновской теории тяготения, и ее основные результаты и поныне входят в курсы теоретической физики. Электродинамика Ампера позволяла надеяться, что аналогичная математическая теория будет разработана и для электромагнетизма. Но великие открытия фарадея спутали все карты, и, хотя поиски обобщающего закона не прекращались, в электродинамике до Максвелла господствовал идейный разброд.

Труднее всего поддавались теоретической обработке тепловые явления. Здесь еще шло накопление эмпирических фактов, разрабатывались методы определения тепловых характеристик: коэффициентов расширения, теплопроводности, удельных теплоемкостей. Эти измерения нужны были и для бурно развивающейся теплотехники. «Его величество пар» работал на фабриках и заводах, на железных дорогах, на морских и речных путях Паровая машина была основным и единственным двигателем бурно развивающейся капиталистической индустрии.

Правительство капиталистической франции сочло необходимым субсидировать исследования Анри Виктора Реньо (1810—1878), предпринятые «с целью определить числовые данные, важные в теории паровой машины». «Большие средства, представленные в распоряжение Реньо, – писал А. Г. Столетов, – позволили ему не стесняться ни помещением, ни размерами аппаратов». Лаборатория Реньо помещалась в небольшом здании, построенном им в саду College de France. Лаборатория была хорошо снабжена для термодинамических исследований (паровая машина в 4 л. с., газометры, манометры в 20 м длиной, точные термометры, барометры, прибор, служивший Реньо для определения абсолютного расширения ртути, приборы для калориметрических измерений и т. д.). С 1854 г. Реньо директор Севрской фарфоровой фабрики, где для него также сооружается обширная лаборатория для научных исследований по теплоте. Реньо привлекает к своим исследованиям молодых ученых. В основном молодые исследователи из франции, Германии, Италии, Швеции, Швейцарии и России работали в Севрской лаборатории Реньо. Эксперименты, которые здесь проводились, относились к определению скрытой теплоты различных жидкостей при переходах из парообразного состояния в жидкое и наоборот. Методы тепловых измерений, предложенные Реньо, переносились в научные и учебные лаборатории высших учебных заведений, и еще в XX в. почти все физические практикумы университетов по теплоте были поставлены «по Реньо».

Исследования Реньо начали публиковаться в конце 30-х годов XIX в. В 1847 г. вышел первый том его «Сообщений об опытах предприятий по распоряжению министров общественных работ». Лаборатория Реньо вместе с его последними трудами была уничтожена немцами при взятии Парижа в 1870 г.

Реньо был ярким представителем экспериментального направления в физике XIX в. А. Г. Столетов совершенно точно характеризовал его: «Реньо не проводил новых идей в науке, если не считать того скептицизма, с которым он относился к слишком ранним обобщениям фактов и обличал неточность положений, до тех пор принимавшихся за непреложные законы. Новые идеи, как например механическая теория теплоты, проникли в науку помимо Реньо, можно сказать, вопреки ему: он не вдруг в них уверовал. Он считал себя работником, собирателем материалов, измерителем, и в этом смысле он не имеет себе подобного».

Эта очень важная характеристика, данная Столетовым, может быть приложена не к одному Реньо, а ко многим, даже подавляющему большинству физиков первой половины XIX в. Таким был, например, уже упоминавшийся Иоганн Кристиан Поггендорф, внесший определенный вклад в развитие электрических измерений. Таким был и Генрих Густав Магнус (1802—1870), открывший известный «эффект Магнуса» физики этой школы, как справедливо указывал Столетов, настороженно и недоверчиво относились к новым теоретическим обобщениям, и рождение термодинамики было трудным.

В общей обстановке эмпиризма лишь два исследования теоретического характера, выполненные в первой четверти столетия, стоят особняком. Первое исследование носило математический характер и оказало существенное влияние на развитие математической физики. Оно было выполнено французским математиком Жан Батистом Жозе-фом фурье (1768-1830). Его работа «Аналитическая теория тепла» содержала математическую теорию теплопроводности, которой фурье занимался начиная с 1807 г. Фурье вывел дифференциальное уравнение теплопроводности и разработал методы его интегрирования при заданных краевых условиях для некоторых частных случаев. В своей математической теории Фурье применил разложение функции в тригонометрический ряд (ряд фурье). Возникшая в математике дискуссия по этому поводу оказалась плодотворной, и в математическую физику прочно вошли ряды и интеграл Фурье.

фурье рассматривал теплоту как некоторую жидкость (теплород). Большего ему не требовалось, и его теория казалась одним из достижений теории теплорода. Эту же теорию разделял и другой замечательный ученый, военный инженер Сади Карно (1796-1832). Сади Никола Леонард Карно был старшим сыном знаменитого «организатора победы» французской революции Лазаря Карно. Сади родился 1 июня 1796 г. В 1812 г. он поступил в Политехническую школу и окончил ее военным инженером в 1814 г. Наполеон к этому времени был разгромлен и сослан на остров Святой Елены. Отец Сади был осужден, и военная карьера самого Карно была сомнительной. Спустя три года после окончания школы он сдал экзамен и с чином поручика перешел в главный штаб, занимаясь в основном наукой, музыкой и спортом. В 1824 г. был издан его главный труд «Размышления о движущей силе огня». Через четыре года Карно вышел в отставку в чине капитана. Умер он 24 августа 1832 г. от холеры.

«Размышления о движущей силе огня и о машинах, способных развивать эту силу» начинаются с характеристик огромной движущей силы тепла. «Развивать эту силу и приспособлять ее для наших нужд—такова цель тепловых машин», —пишет Карно. Он характеризует быстрое развитие тепловых машин и предсказывает им большое будущее: «Если когда-нибудь, – говорит Карно,– улучшения тепловой машины пойдут настолько далеко, что сделают дешевой ее установку и использование, то она соединит в себе все желательные качества и будет играть в промышленности роль, всю величину которой трудно предвидеть, ибо она не только заменит имеющиеся теперь в употреблении двигатели удобным и мощным двигателем, который можно повсюду перенести и поставить, но и даст тем производствам, к которым будет применена, быстрое развитие и может даже создать новые производства». Предвидение Карно блестяще оправдалось. Двигатели внутреннего сгорания и паровые турбины получили широкое развитие, создали новые производства: авиационное и автомобильное. Новые двигатели второй половины XX в – ракеты – создали сверхскоростной воздушный транспорт и вывели человечество в космос.

«Движущая сила тепла» в наши дни играет огромную роль. Но во времена Карно она только начинала свой путь как малоэкономичная паровая машина. Хотя со времен Севери и Ньюкомена прошло более столетия и паровая машина прочно утвердилась в промышленности, сущность ее работы оставалась неясной, «явление получения движения из тепла не было рассмотрено с достаточно общей точки зрения», как отмечал Карно.

Карно видит ненормальность случайных эмпирических усовершенствований паровых машин, он хочет дать теоретические основы теплотехники. В этом огромное историческое значение работы Карно, выходящее далеко за рамки специального исследования. Характерно, что он в своем труде не ограничивается существующими паровыми машинами, а говорит о тепловом двигателе вообще. «Чтобы рассмотреть принцип получения движения из тепла во всей его полноте, —пишет Карно,—надо его изучить независимо от какого-либо определенного агента; надо провести рассуждения, приложимые не только к паровым машинам, но и ко всем мыслимым тепловым машинам, каково бы ни было вещество, пущенное в дело и каким бы образом ни производилось воздействие» (подчеркнуто мною. —П. К.).

Так, отправляясь от конкретной задачи, подсказанной практикой, Карно формулирует абстрактный, общий метод ее решения – термодинамический метод.

Сочинение Карно явилось началом термодинамики. Карно ввел в термодинамику метод циклов. Цикл Карно описывается сегодня во всех учебниках физики. В них он сопровождается диаграммой процесса и расчетами для идеального газа, которых нет у Карно. Диаграмма и расчеты были даны в 1834 г. Клапейроном, который повторил работу Карно.

Бенуа Поль Эмиль Клалейрон (1799– 1864), французский академик и инженер, был в 1820-1830 гг. профессором Петербургского института инженеров путей сообщения. В 1834 г. он дал общеупотребительную форму трактовки цикла Карно и объединенное уравнение газового состояния. Ему же принадлежит вывод зависимости точки плавления от давления (уравнение Клапейрона—Клаузиуса).

Карно в своем исследовании придерживается еще теории теплорода. Он рассматривает работу тепловой машины как результат перепада теплорода с высшего уровня на низшие. «Возникновение движущей силы,– пишет Карно, – обязано в паровых машинах не действительной трате теплорода, а его переходу от горячего тела к холодному...»

Общий вывод Карно формулирует следующим образом: «Движущая сила тепла не зависит от агентов, взятых для ее развития; ее количество исключительно определяется температурами тел, между которыми в конечном счете происходит перенос теплорода».

В наше время этот вывод Карно формулируется иначе: коэффициент полезного действия идеальной тепловой машины не зависит от рабочего вещества, а зависит лишь от температуры нагревателя и холодильника.

Вывод этот вошел в термодинамику в качестве фундаментального принципа, а сама работа Карно, изложенная Клапейроном и напечатанная в 1843 г. на немецком языке в «Анналах» Поггендорфа, послужила исходным пунктом для исследований В.Томсона и Р. Клаузиуса, приведших к открытию второго начала термодинамики.

Хотя Карно в своей работе опирался на неверную теорию теплорода, его глубокий ум скоро почувствовал недостатки этой теории.(Исторический анализ пути, приведшего Карно к изложенному открытию, дан в работе Б. И. Спасского и Ц. С. Сарангова «К истории открытия теоремы Карно», УФН, 1960, т. 99, вып. 2.) Карно сделал следующее примечание к своей ра,боте: «Основные положения, на которые опирается теория тепла, требуют внимательного исследования. Некоторые данные опыта представляются необъяснимыми при современном состоянии теории». В своем дневнике, выдержки из которого были опубликованы его братом после смерти Карно, он пишет: «Тепло не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.

Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, т. е. вызывает то один род движения, то другой, но никогда не исчезает».

Если заменить слова «движущая сила» словом «энергия», то мы получим законченную формулировку закона сохранения энергии. В последней формуле Карно дает значение механического эквивалента теплоты. Оно равно 370 кгс • м на 1 ккал, т. е. имеет правильный порядок величины.

Таким образом уже к 30-м годам XIX в. настало время для возвращения к идеям Ломоносова относительно теплоты. К сожалению, имя Ломоносова к тому времени на Западе было основательно забыто, и основоположники механической теории теплоты создавали ее заново.


    Ваша оценка произведения:

Популярные книги за неделю