355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Кудрявцев Степанович » Курс истории физики » Текст книги (страница 11)
Курс истории физики
  • Текст добавлен: 7 октября 2016, 12:05

Текст книги "Курс истории физики"


Автор книги: Кудрявцев Степанович


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 11 (всего у книги 48 страниц)

Прервем пока рассказ о «Началах» Ньютона и рассмотрим предварительно его открытия в оптике. По свидетельству самого Ньютона, он еще в 1665 г. купил призму, чтобы воспроизвести «знаменитое явление цветов». Призматический спектр был в то время хорошо известен, а призмы изготовлялись на продажу.

Призматическими цветами занимались многие ученые, и Марци, например, понял, что каждому цвету присуща своя преломляемость. Но Ньютон впервые исследовал спектр всесторонне и глубоко, заложив основы научной спектроскопии.

Титульный лист 'Механики' Эйлера

Он правильно понял удлиненную форму спектра, установил со всей определенностью факт различной преломляемости цветовых лучей, дальнейшую неразлагаемость монохроматического пучка, выяснил влияние формы щели на чистоту спектра, впервые применил метод скрещенных призм, короче, как было уже сказано, заложил основы спектроскопии.

Получая призматический спектр, мы устанавливаем призму на угол наименьшего отклонения, как это делал Ньютон, регулируем ширину щели, опираясь на его наблюдения о влиянии форм и размеров отверстия на чистоту спектра, скрещиваем спектральные аппараты при изучении аномальной дисперсии, как это сделал впервые Ньютон, еще не знавший аномальной дисперсии.

Рис. 15. Опыт Ньютона с солнечным спектром

Основной результат своих спектроскопических исследований Ньютон сформулировал так: «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может изменяться при отражениях и преломлениях».

Рис. 16. Метод скрещенных призм Ньютона

Таким образом, по Ньютону, у светового луча имеется объективная, неизменная характеристика (цвет), которую он сохраняет при отражении и преломлении. В другом месте Ньютон указывал, что эта характеристика не может быть изменена какой-либо иной причиной, которую он мог наблю дать.

Ньютон не наблюдал отражения от движущегося зеркала, комбинационного рассеяния, в которых проявляются изменения цветности луча.

Такие квантовые эффекты были обнаружены только в XX в., и до тех пор вывод Ньютона сохранил всю свою силу, как он сохраняет ее и сейчас во всех случаях, когда не происходит энергетических превращений световых квантов.

Как уже упоминалось, из своих исследований Ньютон сделал важный практический вывод о существовании хроматической аберрации, которую он ошибочно считал неустранимой. Им (впрочем, не только им одним) были введены в астрономию телескопы – рефлекторы.

Стеклянные зеркала таких рефлекторов Ньютон сам шлифовал с величайшим терпением и искусством, подробно описывая в «Оптике» процедуру шлифовки. Ньютон работал в оптике и как исследователь, и как практик. Чрезвычайно интересно, что он думал связать с качественной характеристикой света и число, соответствующее этой характеристике, осуществив первый интерференционный спектроскоп, известный под названием «кольца Ньютона».

Ньютон понял, что интерференционные цвета тонких пленок (интерференции света он еще не знал, хотя хорошо понимал сущность волновых явлений) определяются толщиной пленки. Это предположил еще раньше Гук, который запальчиво обвинил Ньютона в плагиате. Но Гук не проверил свою гипотезу и не сделал из нее конкретных выводов. Ньютон же разработал установку, в которой толщина менялась по простому геометрическому закону, получил на этой установке цветные коль-Ца и открыл важный факт повторяемости цветов при изменении толщины на определенную величину.

Другими словами, Ньютон был первым в мире, открывшим периодичность в световых явлениях. Он установил, что для каждого цвета имеется своя длина, на которую изменяется толщина воздушного клина, когда одно цветовое кольцо заменяется другим того же цвета. Она соответствует четверти длины световой волны, по волновым представлениям. Ньютон определил эту величину для всех основных цветов спектра—от красного до фиолетового. Принимая во внимание, что оттенки цвета распознать очень трудно и основные семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый – весьма неопределенные понятия, следует признать, что Ньютон определил длину волны весьма точно. Лишь в красной части спектра у него наблюдаются расхождения с современными данными.

Ньютон исследовал также явление дифракции и, описав достаточно точно радужные полосы на внешних границах тени волоса, не заметил внутренней светлой полосы. Не заметил он и фраунгоферовых линий в солнечном спектре, которые были открыты значительно позже (в 1801 г.) Волластоном и вновь переоткрыты и тщательно описаны фраунгофером. Сыграли ли тут роль недостатки зрения Ньютона или некоторая теоретическая предубежденность (один из «призраков» Бэкона), сказать трудно, фактом остается то, что знаменитый наблюдатель не заметил некоторых важных и интересных фактов. На каком же языке описывал Ньютон открытую им периодичность, если в оптике он не пользовался языком волновой теории и не прибегал к таким понятиям, как длина волны? Приведем его собственную формулировку из «Оптики».

Предложение XII

«Каждый луч света при своем прохождении через любую преломляющую поверхность приобретает некоторое преходящее строение или состояние, которое при продвижении луча возвращается через равные интервалы и располагает луч при каждом возвращении к легкому прохождению через ближайшую преломляющую поверхность, между же возвращениями—к легкому отражению».

Таким образом, луч света попеременно через равные интервалы находится то в фазе легкого прохождения (Ньютон вместо слова «фаза» употреблял термин «приступ». – Я. К.), то в фазе легкого отражения. Результат его, падения на поверхность определяется тем, в какой фазе он падает – в фазе (или приступе) легкого прохождения или, наоборот, легкого отражения. Эта идея дает ему возможность описать опыт с кольцами и определить интервал между возвращениями в одну и ту же фазу.

Явление периодичности света, с нашей точки зрения, означает, что в описании его играют фундаментальную роль периодические функции, синусоидальные функции времени, пространства, т. е. гармонические волны. Ньютон использовал для описания открытого им явления образ волны, возбуждаемой в преломляющей среде падением светового луча, подобно тому как камень, брошенный в воду, возбуждает в ней водяные водны. Эти волны, приводя в движение частицы преломляющего (или отражающего) тела, распространяются в этой среде подобно звуку и движутся со скоростью, большей скорости света, опережая луч.

Луч, падая на поверхность, либо движется в направлении фазы волны, и тогда он проходит, либо его движение противоположно направлению волнового движения, тогда он отражается. «Следовательно, – заключает Ньютон, – каждый луч попеременно располагается или к легкому отражению или к легкому пропусканию каждым колебанием, обгоняющим его».

Эта модель Ньютона, в которой сочетаются корпускулярные (световой луч) и волновые представления (направляющая волна), предвосхищает будущие идеи де Бройля о волне-пилоте, бегущей с фазовой скоростью, большей скорости частицы и большей скорости света. Вообще на всем протяжении своих оптических исследований, начиная с первых мемуаров и кончая «Оптикой», Ньютон постоянно обсуждает две концепции света: корпускулярную и волновую. Волновая теория ему кажется неспособной справиться с противостоящими ей огромными трудностями.

Во-первых, она не в состоянии объяснить прямолинейное распространение света, волна должна огибать препятствия и загибаться внутрь геометрической тени. Как мы знаем, это действительно и наблюдается. Но Ньютон не заметил светлой полосы внутри тени волоса, а радужные внешние полосы он объяснил действием краев на малых расстояниях. «Как только луч проходит мимо тела, он идет дальше по прямой».

Гюйгенс объяснил образование геометрической тени тем, что боковые вторичные волны, испускаемые точками волнового фронта, не имеют огибающей и поэтому неэффективны. Но тем самым он отказался от описания дифракции, которая с успехом была объяснена на основе его принципа Френелем через 130 лет. Гюйгенс далее очень удачно объяснил двойное преломление в одноосном кристалле, но остановился перед объяснением открытого им явления поляризации (употребляя теперешний термин).

Ньютон в своей «Оптике» разбирает это явление и считает, что его можно объяснить, исходя из представления присущей световому лучу полярности. Для волн (имелись в виду продольные волны) о такой полярности говорить нельзя, и, следовательно, волновая теория в этом пункте несостоятельна.

Во-вторых, волновая теория требует допущения среды, в которой распространяется свет. «Против заполнения неба жидкими средами, – говорит Ньютон, – если они только не чрезвычайно разрежены, возникает большое сомнение в связи с правильными и весьма длительными движениями планет и комет по всякого рода путям в небесном пространстве. Ибо отсюда ясно, что небесное пространство лишено всякого заметного сопротивления, а следовательно, и всякой ощутимой материи». «Если же ее (т. е. эту среду или материю. – П. К.) отбросить, то и гипотезы о том, что свет состоит в давлении или движении, распространяющемся через такую среду, отпадают вместе с нею».

Таким образом, Ньютон был первым строгим критиком волновой теории, рассматривающей свет как механические волны в особой среде, которая со времени Гюйгенса стала называться световым эфиром. Мысль же о том, что световые волны могут быть другой, не механической природы, ему, конечно, в то время не могла прийти в голову.

В связи с серьезными трудностями волновой теории Ньютон предлагает обсудить другую концепцию природы света: «Не являются ли лучи света очень малыми телами, испускаемыми светящимися веществами? Ибо такие тела будут проходить через однородные среды без загибания в тень, соответственно природе лучей света. Они могут иметь также различные свойства и способы сохранять эти свойства неизменными при прохождении через различные среды, в чем заключается другое условие лучей света. Прозрачные вещества действуют на лучи света на расстоянии, преломляя, отражая и изгибая их, и взаимно лучи двигают части этих веществ на расстоянии, нагревая их; это действие и противодействие на расстоянии очень похожи на притягательную силу между телами».

Ньютон считает, следовательно, что свет может быть исследован с точки зрения существования дальнодействующих сил. Свет по этой концепции мыслится состоящим из частиц, своеобразных световых атомов, которые могут взаимодействовать с частицами вещества. В «Началах» Ньютон доказывает, что частица, вступая в плотную среду, ускоряется притяжением частиц этой среды. Если тангенциальная составляющая скорости частицы при этом не меняется, то направление ее движения можно определить по закону преломления:

где с, – скорость света в первой среде, с2 – во второй среде. При этом если i > r, т. е. луч света идет из менее плотной среды в более плотную, то с2 > с1, – скорость света в воде или стекле больше, чем в воздухе.

К такому же выводу еще раньше пришел Декарт, но у него речь шла только о механической модели, иллюстрирующей преломление, скорость же света он считал бесконечной. Наоборот, у Гюйгенса закон преломления принимает вид:

и скорость света в воде меньше скорости света в воздухе.

Когда Фуко в 1850 г. показал, что скорость света в воде действительно меньше, чем скорость света в воздухе, то это казалось решающим опровержением корпускулярной теории. На самом деле обе концепции нашли свое место не только в описании света, но и в описании материи на совершенно иной, не классической основе. И Ньютон, как бы предвидя это обстоятельство, избегал высказываться решительно в пользу той или иной концепции. Только его последователи приписывали ему безоговорочную поддержку корпускулярной теории. Ньютон же как в оптике, так в вопросе о тяготении категорически подчеркивал, что он «не измышляет гипотез», а предполагает оставаться на почве строго установленных фактов и принципов.

При всем различии оптики Ньютона и Гюйгенса у них есть одна существенная общая черта: оба они стремятся описать явление света в рамках механических представлений. Механика лежала в основе физических и философских воззрений XVII в. Декарт, Гюйгенс, Ньютон —все они пытались свести явления природы к явлениям механики. «Было бы желательно вывести из начал механики и остальные явления природы...» —писал Ньютон в предисловии к «Началам», и с этим желанием солидаризировались современные ему физики и философы.

Механические явления были наиболее ясными и наглядными; в изучении этих явлений физика достигла наибольших успехов, и механическое мировоззрение явилось отражением этих успехов. Еще Декарт развивал механическую картину мира. Ньютон заложил новые основы механического мировозврения, после ожесточенной борьбы вытеснившие картезианские. Эти основы были заложены в его «Математических началах натуральной философии», к рассмотрению которых мы вновь обращаемся.

В «Началах» содержатся определения основных понятий механики, формулировка основных законов механики, известных ныне под именем законов Ньютона, приложения законов механики к теории движения под действием центральных сил и к решению других механических вопросов, обоснование закона всемирного тяготения, открытого Ньютоном, и изложение системы мира, т. е. теории движения планет и спутников на основе закона тяготения. Таким образом, это первый в истории науки систематический курс теоретической механики, включающий и небесную механику. Отдельные результаты предшественников Ньютона, начиная с Галилея, были обобщены и развиты Ньютоном в его гигантском труде. Ньютон завершил работу предыдущих поколений и открыл путь последующим поколениям физиков и механиков.

«Начала» открываются определением количества материи: «Количество материи есть мера таковой, устанавливаемая пропорционально плотности и объему ее».

Русский переводчик «Начал» академик А. Н. Крылов вставил в скобках после слов «количество материи» слово «масса», с тем чтобы ослабить впечатление от метафизического и неупотребительного в современных руководствах термина Ньютона. Ньютон вдобавок выражает массу через плотность, определяемую в этих руководствах как раз через массу и объем. Но термин «количество материи» и у Декарта, и у Ньютона имеет вполне определенное содержание. Декарт считает весь мир однородной материей и по большему или меньшему объему материи определяет ее количество. Ньютон, подобно древним атомистам, считает реальными атомы и пустоту. Количество однородных атомов и есть количество материи. Очевидно, оно будет тем больше, чем больше взятый объем и чем плотнее расположены атомы в этом объеме.

Чтобы не было никаких сомнений, Ньютон поясняет свое определение примерами воздуха, порошка, снега, количество материи которых увеличивается, если их сжать; «При этом, – добавляет Ньютон, – я не принимаю в расчет той среды, если таковая существует, которая свободно проникает в промежуток между частицами».

Таким образом, определение количества материи у Ньютона опирается на атомистику и соответствует определенному строю физического мышления. Самое же главное, что эта величина доступна измерению. Количество материи определяется по весу тела, оно пропорционально весу тела, «что мною найдено опытами над маятниками, произведенными точнейшим образом...».

Тысячелетняя практика использования весов для измерения количества вещества, массы вещества обобщается Ньютоном и анализируется экспериментально. Он наблюдал качания маятников одинаковых длин, но с разными грузами: свинцовым, золотым, деревянным, ртутью и т. д. У всех этих маятников периоды совпадали.

Но еще Галилей показал, что движение маятника – это не свободное падение его груза. Все тела в отсутствие сопротивления воздуха падают одинаково. Ньютон проверил экспериментально утверждение Галилея, поместив в трубку перышко, кусок свинца и пробку. Откачав из трубки воздух, он убедился, что различные тела в безвоздушном пространстве падают с одинаковой скоростью, а маятники качаются с одинаковым периодом независимо от веса груза.

Тем самым Ньютон подтвердил точным опытом независимость ускорения силы тяжести от массы тела. Масса и вес строго пропорциональны друг другу. Эту зависимость Ньютон использовал для практического измерения масс или количества вещества.

Ньютон, открывший закон тяготения, ясно понимал, что вес– случайное, переменное воздействие на тело, и поэтому считал необходимым установить и другую, внутреннюю характеристику тела – инерцию.( В современных школьных учебниках эту характеристику называют инертностью. Ньютон этого термина не знал и всюду говорил об инерции. ) Ей он посвящает третье определение своей книги: «Врожденная сила материи есть присущая ей способность сопротивления, по которой всякое отдельно взятое тело, поскольку оно предоставлено самому себе, удерживает свое состояние покоя или равномерного прямолинейного движения». «Эта сила, – добавляет Ньютон, – всегда пропорциональна массе и если отличается от инерции массы, то разве только воззрением на нее».

Масса как мера инерции сохранилась в современных учебниках физики, и ее по-прежнему, как и у Ньютона, измеряют с помощью весов. Там, где господствует невесомость, массу можно измерять по инерции, и в этом смысле измерение инерции есть самый общий способ измерения массы. Вместе с тем инерция и весомость – это различные физические понятия. То, что они пропорциональны друг другу, очень удобно для практических целей, но это совершенно необъяснимое явление. Галилей и Ньютон установили этот факт. Ньютон широко использовал его для измерения масс, физики последующих поколений также измеряли массы весами. Лишь Эйнштейн выяснил глуббкое значение этого факта.

Введя понятие массы, Ньютон дал точную, измеряемую механическую характеристику тела. До Ньютона такой ясной характеристики не было, механика еще не владела полностью этим фундаментальным понятием. Заслуга Ньютона состоит в том, что он ввел во всеобщее употребление понятие массы и указал способы ее измерения.

Ньютон ввел и второе фундаментальное понятие механики: количество движения, определив его как меру движения, пропорциональную массе и скорости (II определение «Начал»). Выражением «количество движения» пользовался еще и Декарт, но он не понял векторного характера этой величины и, применяя ее к теории удара, допустил грубые ошибки. Ньютон знал векторный характер скорости и, пользуясь на практике своим определением, всегда учитывал направление движения, формулируя правило параллелограмма скоростей.

Однако термин «количество движения», как показала история науки, был явно неудачным.( Это, однако, не помешало ему удержаться в науке вплоть до наших дней, аналогично другому неудачному термину – «лошадиная сила». Сегодня термин «количество движения» заменен термином «импульс». ) Дело в том, что было совершенно неясно, чем же измерять движение. Декарт предложил измерять его произведением массы на скорость и высказал закон сохранения движения в форме сохранения общего количества движения. За год до выхода «Начал», в 1686 г., Лейбниц опубликовал статью под заглавием «Краткое доказательство ошибки достопамятного Декарта и других касательно закона природы, благодаря которому бог желает сохранять всегда количество движения тем же». Лейбниц указывал, что в явлениях природы сохраняется и другая мера движения. Так, если падающий груз производит деформирующее действие (таким способом Галилей измерял скорости падения), то это действие пропорционально высоте падения и, следовательно, квадрату скорости, а так как оно к тому же пропорционально и массе падающего тела, то движение, сообщенное деформированному телу, пропорционально произведению массы на квадрат скорости.

Эту величину Лейбниц позже назвал «живой силой», отличая ее от «мертвой силы», силы давления неподвижного груза.

Что величина mv2 сохраняется, было ясно еще Гюйгенсу, который опирался на закон сохранения величины mv2 в своей теории упругого удара и в теории маятника. Этот же факт хорошо знал и Ньютон, дополняя выводы Гюйгенса установлением теоремы живых сил для движения под действием центральной силы. Эту теорему Ньютон доказывал геометрически, изображая графически зависимость силы от пути, пройденного движущейся точкой. Он доказывал, что квадрат скорости движения будет пропорционален площади кривой, ограниченной графиком силы, осью расстояния, начальной и конечной ординатой (начальной и конечной скоростью), т. е.

где f(r) – модуль действующей силы. И тем не менее Ньютон принимает в качестве «количества движения» величину ту. К этому его вынуждает динамика. Ньютон вводит в науку важное понятие силы. Контактные силы: мышечные усилия, удар, давление – хорошо известны из практики, и их введение в науку оправдано. Но Ньютон дает новое определение силы (определение IV «Начал») как действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения. Такое действие может быть произведено не только при контакте, но и на расстоянии некоторым силовым центром. Действие, производимое силовым центром, Ньютон называет центростремительной силой (независимо от того, притягивается или отталкивается тело от центра) и определяет ее следующим образом (определение V «Начал»): «Центростремительная сила есть та, с которой тела к некоторой точке как к центру отовсюду притягиваются, гонятся или как бы то ни было стремятся».

Центростремительная сила определяется, во-первых, мощностью или интенсивностью самого силового центра (например, массой Земли или Солнца, магнитной массой полюса магнита и т. д.). Эту мощность Ньютон называет абсолютной величиной центростремительной силы.

Во-вторых, она определяется ускорением, получаемым телом под действием силы. Это ускорение Ньютон называет ускорительной величиной центростремительной силы.

В-третьих, она определяется изменением количества движения за единицу времени. Эту скорость изменения количества движения Ньютон называет движущей величиной центростремительной силы.

Эти три фактора, определяющие действие центростремительной силы, которые Ньютон ясно отличает друг от друга, и поныне являются основными характеристиками силового поля. То, что Ньютон называет абсолютной величиной центростремительной силы, мы называем зарядом (электрическим, магнитным, гравитационным и т. д.). В XIX в. говорили о «массах» (электрических, магнитных, гравитационных).

Ньютоновская «ускорительная величина» центростремительной силы – это современная напряженность силового поля, а движущая величина центростремительной силы называется в настоящее время пондеромотор-ной силой.

Из этих определений центростремительной силы (определения V—VIII) видно, что Ньютон хорошо представлял картину силового поля вокруг «источника ее (т. е. силы. – П. К.) распространения из центра в окружающее ее пространство» и выработал точные характеристики, с помощью которых описывают это поле и поныне. Важнейшую роль в этих характеристиках играет скорость изменения количества движения тела. Ньютон понял фундаментальное значение понятия количества движения для динамики: быстротой изменения этой величины определяется действие силы, и поэтому положил ее в основу всей динамики. Развитие науки подтвердило правильность выбора, сделанного Ньютоном, и современная наука лишь перестала употреблять его термин «количество движения», заменив его коротким словом «импульс». Количество движения Ньютона – это динамическая характеристика движения.

Что же касается лейбницевской «живой силы», то она, как мы теперь знаем, является энергетической характеристикой движения и равна кинетической энергии ~mv2 движущейся точки.

Обе меры необходимы и полезны и с успехом «работают» в современной науке. Но до установления закона сохранения и превращения энергии такая двузначность «меры движения» вызывала путаницу и разногласие, физики разделились на сторонников Декарта и сторонников Лейбница в отношении меры движения, и шумные споры между ними не утихали.

Еще в 1758 г. Ломоносов писал-«...Самые первые начала механики а тем самым и физики, еще спорны и что наиболее выдающиеся ученые нашего века не могут прийти к соглашению о них. Самый явный пример этого—мера сил движения, которую одни принимают в простом, другие – в двойном отношении скорости».

В 1743 г. вышла «Динамика» французского энциклопедиста Жана Далам-бера (1717—1783). Даламбер разъясняет в предисловии к своему сочинению эквивалентность двух мер. Когда тело, обладающее некоторой скоростью, начинает тормозиться под действием силы, то выбор меры исчезнувшего движения определяется постановкой задачи. Если нам дано время торможения, то тормозящая сила определяется количеством движения mv. Если же нам дан путь торможения, то она находится из (mv2)/2

Этим простым замечанием Даламбер охладил разгоряченные головы, и споры о двух мерах движения мало-помалу затихли. Но, повторяем, истинная суть двух мер движения выяснилась только в результате открытия закона сохранения энергии, и Энгельс в «Диалектике природы», вернувшись к истории знаменитого спора, вскрыл его глубокую методологическую сущность.

Итак, Ньютон ввел в механику фундаментальные понятия: массы, силы, количества движения (импульса). Но для построения механики нужно было ещё одно важное понятие: система отсчета. Разговор о движении беспредметен, если не указана система отсчета. Ньютон хорошо понимал это обстоятельство, поэтому он заключает раздел определений «Поучением», в котором останавливается на понятиях пространства и времени.

Ньютону был известен принцип относительности Галилея, который он сформулировал в виде одного из основных следствий законов механики: «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство или движется равномерно и прямолинейно без вращения». В другом месте Ньютон утверждает: «Может оказаться, что в действительности не существует покоящегося тела, к которому можно было бы относить места и движения прочих», и, таким образом, он считает, что наблюдаемые нами движения относительны и абсолютного движения не существует. Но он знает также, что ускоренное движение системы отсчета проявляется динамически, вызывая явление инерции.

Так, поверхность воды во вращающемся ведре будет не плоскостью, а параболоидом вращения. Поэтому Ньютон принимает, что в природе существует абсолютный покой, абсолютно неподвижная система отсчета. Это пустое однородное неподвижное пространство атомистов и Евклида – чистое вместилище всех вещей. Существенно, что наряду с абсолютным пространством Ньютон признает и абсолютное время, текущее само по себе, безотносительно к каким-либо процессам. Вот как он определяет абсолютное и относительное время и пространство.

«I. Абсолютное, истинное математическое время само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.

Относительное, кажущееся, или обыденное, время есть или точная, или изменчивая, постигаемая чувствами, внешняя, совершаемая при посредстве какого-либо движения мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как-то: час, день, месяц, год».

Наше измерение времени как несовершенное, повседневное (от зари до зари), так и точное, астрономическое дает нам относительное, или обыденное, время, основанное на наблюдаемых нами движениях. Эти движения, даже вращение Земли, могут быть не вполне равномерными, в то время как истинное математическое время течет само по себе абсолютно равномерно. Постигая относительное время, конструируя все более и более точные часы, мы имеем в виду недостижимый идеал, истинное, абсолютное время.

«II. Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему, остается всегда одинаковым и неподвижным.

Относительное есть его мера или какая-либо ограниченная подвижная часть, которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное: так, например, протяжение пространства подземного воздуха или надземного, определяемых по их положению относительно Земли...»

«III. Место есть часть пространства, занимаемого телом, и по отношению к пространству бывает или абсолютным, или относительным...»

«IV. Абсолютное движение есть перемещение тела из одного абсолютного его места в другое, относительное – из относительного в относительное же».

Задача натуральной философии, по Ньютону, и состоит в том, чтобы распознать истинные, абсолютные движения и изучать их законы. Хотя на практике мы познаем кажущиеся относительные движения, мы можем по ним находить истинные движения и их причины. В качестве примера Ньютон приводит свой знаменитый опыт с вращающимся ведром. Если подвесить ведро с водой на веревке к потолку и, закрутив предварительно веревку, отпустить сосуд, предоставив веревке возможность раскручиваться, то стенки ведра начинают вращаться вместе с веревкой. Вода же сразу не увлекается движением, и ее поверхность сначала плоская, т. е. вода находится в сильном относительном вращении по отношению к ведру, и это относительное вращение не сказывается на ее состоянии. По мере вовлечения воды во вращение поверхность ее деформируется. Наибольшая деформация будет наблюдаться, когда скорость вращения воды относительно стенок ведра будет равна нулю. В этот момент абсолютное движение воды будет наибольшим. Ньютон заключает отсюда и возможность обнаружения вращательного движения в абсолютном пустом пространстве. Ускорение в механике Ньютона носит абсолютный характер.

Концепция абсолютного пространства—времени, оторванного от материальных тел и реальных процессов,– метафизична. Не случайно Ньютон связывает свои представления об абсолютном пространстве с божеством. Один из современников Ньютона в своем дневнике писал, что Ньютон, подготовляя новое издание «Оптики», предлагал включить в него вопрос: «Чем наполнено пространство, свободное от тел?» Ньютон считал, что оно наполнено богом. Бог, по Ньютону, присутствует как в пространстве, свободном от тел, так и там, где имеются тела.

Спрашивается: при чем же здесь физика? Почему до Эйнштейна физики не критиковали божество —метафизическую концепцию абсолютного, пустого, неподвижного, однородного пространства, а молчаливо соглашались с ней? Потому, что эта математическая абстракция хорошо соответствовала принципам евклидовой геометрии.


    Ваша оценка произведения:

Популярные книги за неделю