Текст книги "Восстановление данных. Практическое руководство"
Автор книги: Крис Касперски
Жанры:
Компьютерное "железо"
,сообщить о нарушении
Текущая страница: 24 (всего у книги 26 страниц)
Среди программ, поддерживающих запись диска в режиме MODE 2, в первую очередь следует выделить утилиту CDRWin, пользующуюся неизменной любовью профессионалов. Это – чрезвычайно мощный инструмент, возможности которого ограничены лишь фантазией пользователя, выполняющего запись. Самую свежую версию программы можно скачать, в частности, отсюда: http://www.goldenhawk.com/download_body.htm. Кроме того, пригодится и консольная версия программы, управляемая из командной строки, которая также имеется на сайте http://www.goldenhawk.com.
Процесс прожига диска мы начнем с подготовки исходного файла. Первым и единственным предъявляемым к нему требованием будет выравнивание его длины до целого количества секторов. Пусть длина файла равна 777 990 272 байтам, тогда, чтобы уложиться в целое число 2336-байтных секторов, мы должны либо отрезать 1824 байта от конца файла, либо дописать к нему 512 нулей. Аудио– и видеофайлы безболезненно переносят как усечение своего тела, так и мусор в хвосте. Обе этих операции можно осуществить в любом НЕХ-редакторе, например, HIEW (http://www.softpedia.com/get/Programming/File-Editors/Hiew.shtml). Усечение файлов выполняется очень просто. Открываем файл, запускаем стандартный Windows-калькулятор и, перейдя в инженерный режим, переводим десятичную длину файла в шестнадцатеричный формат: 777990272 – 1824 (обычным шрифтом набраны символы, набираемые на клавиатуре, а жирным – ответ калькулятора). Возвращаемся в HIEW, нажимаем 2E5F2960) и, подтвердив серьезность своих намерений клавишей
Переходим ко второму этапу – созданию файла cue sheet, содержащего всю информацию о структуре прожигаемого образа. Типичный файл cue sheet должен выглядеть приблизительно так, как показано в листинге 10.7.
Листинг 10.7. Типичный пример реализации файла cue-sheet
FILE "my_file.dat" BINARY
TRACK 1 MODE2/2336
INDEX 1 00:00:00
Здесь my_file.dat – имя записываемого на диск файла, TRACK 1 – номер трека, MODE2/2336 – режим записи, a INDEX 1 – номер индекса внутри файла. Подробнее о синтаксисе файлов cue sheet можно прочесть в документации, прилагаемой к CDRWin.
Вставляем диск CD-R/CD-RW в привод, запускаем CDRWin, нажимаем кнопку Load Cuesheet и указываем путь к только что сформированному файлу. Дождавшись завершения его компиляции, нажимаем кнопку Record Disk, предварительно убедившись, что галочка у опции Raw Mode сброшена (рис. 10.18). Вот, собственно говоря, и все. Несмотря на то, что размер исходного файла намного превышает заявленную емкость диска, процесс прожига протекает без каких-либо проблем.

Рис. 10.18. Запись 800/900 Мбайт диска в режиме MODE 2 средствами CDRWin. Исходные данные могут быть представлены в любом формате, однако штатными средствами операционной системы такой диск не поддерживается
Однако попытка просмотра оглавления только что записанного диска штатными средствами операционной системы ни к чему хорошему не приводит, и нас пытаются убедить в том, что данный диск пуст. Но ведь это не так! Запускаем CDRWin, выбираем Extract Disc/Tracks/Sectors to Image File, и в окне Track Selection видим наш трек TRACK 1 (рис. 10.19). Хотите его проиграть? Установите переключатель Select Track, а в группе Reading Options сбросьте флажок RAW (если этого не сделать, содержимое трека будет читаться в сыром режиме, с перемешиванием полезных данных с заголовками, что никак не входит в наши планы). Выбираем трек, который требуется извлекать, и, выбрав номинальную скорость чтения, нажимаем кнопку START (чтение трека, записанного в MODE 2 на максимальной скорости, зачастую приводит к многочисленным ошибкам).

Рис. 10.19. Чтение диска, записанного в MODE 2 средствами CDRWin, путем предварительного копирования одного или нескольких треков на винчестер
Вернув файлу его законное расширение (которое рекомендуется записывать на коробке диска фломастером, так как в процессе записи оно необратимо теряется), запускаем любой другой аудио– или видеопроигрыватель и наслаждаемся.
При желании процесс извлечения файла можно автоматизировать, воспользовавшись утилитой SNAPSHOT.EXE из пакета консольной версии программы CDRWin. Используя утилиту MAKEISO.EXE, поставляемую вместе с CDRWin, создайте один легальный трек, записанный в формате MODE 1/ISO 9660 и содержащий командный файл для автоматического извлечения выбранного пользователем трека MODE 2. Подробное описание этого процесса вы найдете в сопроводительной документации к программе CDRWin. Минимальные навыки программирования вам также не помешают.
Для записи файлов DivX/MP3 в формате Video CD нам понадобится утилита MODE 2 CD MAKER, бесплатную копию которой можно найти здесь: http://es.geocities.com/dextstuff/mode2cdmaker.html. Если командная строка вызывает у вас уныние (a MODE 2 CD MAKER – это утилита командной строки), воспользуйтесь специальной графической оболочкой, найти которую можно по следующему адресу: http://cs.geocities.com/dextstuff/mode2cdmaker.html.
Интерфейс программы прост и вполне традиционен: вы перетаскиваете мышью записываемые файлы в окно UbiK mode2cdmaker GUI (рис. 10.20) или нажимаете кнопку Add Files. Индикатор в нижней части этого окна отображает использованный объем. По умолчанию программа использует режим MODE 2 FORM 1 (2048 байт на сектор), и для перехода на MODE 2 FORM 2 (2324 байта на сектор) необходимо нажать кнопку Set/Unset Form 2.

Рис. 10.20. Запись 800/900-мегабайтного диска Video CD средствами MODE 2 CD MAKER. При наличии установленных фильтров RIFF/CDXA такой диск вполне корректно поддерживается операционной системой
Чтобы отключить еще одну установку по умолчанию, автоматически требующую размещать каждый файл в "своем" треке, установите флажок Single Track. Дело в том. что на создание одного трека расходуется порядка 700 Кбайт дискового пространства. Поэтому раздельная запись большого количества файлов становится попросту невыгодна (правда, диск, записанный в режиме Single Track, не поддерживается операционной системой Linux).
Наконец, когда все приготовления завершены, нажмите кнопку Write ISO, и через некоторое время на диске образуется образ CUE, для прожига которого можно воспользоваться все тем же CDRWin, Alcohol 120% или Clone CD.
Не забудьте только установить специальный фильтр DirectShow, без которого вы не сможете работать с диском Video CD в штатном режиме.
Хотите – верьте, хотите – нет, но 800/900 Мбайт на диск – это далеко не предел! Помимо основного канала данных, в котором, собственно, сырые сектора и хранятся, существуют и 8 каналов подкода. Один из них используется устройством позиционирования оптической головки, а остальные семь – свободны. В общей сложности мы теряем порядка 64 байт на сектор или ~20 Мбайт на стандартный 700-мегабайтный диск.
К сожалению, непосредственное хранение пользовательских данных в каналах подкода невозможно, поскольку операционные системы семейства Windows отказываются поддерживать такую возможность. Подходящих утилит от сторонних разработчиков также не наблюдается. Однако в каналы подкода нетрудно спрятать конфиденциальную информацию, не предназначенную для посторонних глаз.
Используя Clone CD (http://www.elby.ch/) или любой другой копировщик дисков аналогичного назначения, снимите образ прожигаемого диска, предварительно скопировав его на CD-RW. Когда эта операция закончится, на жестком диске образуются три файла: image.ccd, хранящий оглавление диска, image.img, хранящий содержимое основного канала данных, и image.sub, содержащий субканальные данные. Откройте последний файл любым НЕХ-редактором (например, HIEW).
Первые 12 байт принадлежат каналу P, предназначенному для быстрого поиска пауз, и его мы трогать не будем (хотя подавляющее большинство современных приводов P-канал попросту игнорируют). Следующие 12 байт заняты служебной информацией Q-канала, содержащей данные разметки. Модифицировать его ни в коем случае нельзя, в противном случае один или несколько секторов перестанут читаться. Байты с 24 по 96 принадлежат незадействованным каналам подкода и могут быть использованы по нашему усмотрению. За ними вновь идут 12 байт P/Q каналов и 72 байта пустых субканальных данных и так далее, чередуясь в указанном порядке вплоть до конца файла.
Нажав клавишу
Смотрите! Вот, например, сообщение, которое мне удалось внедрить в субканальные данные (рис. 10.21).

Рис. 10.21. Использование пустующих каналов подкода для сокрытия конфиденциальной информации
Внимание!
Не все приводы поддерживают чтение и запись "сырых" субканальных данных. Убедитесь, что в группе опций Profile parameters в Clone CD установлена опция Read subchannels from data tracks, а флажок Do not restore subchannel data сброшен. В противном случае у вас ничего не получится.
Наконец, дополнительные 13.5 Мбайт можно получить за счет выводной области диска (lead out), закрывать которую, в общем-то, не так уж и обязательно. Диски с отсутствующей выводной областью вполне успешно читаются подавляющим большинством современных приводов, и риск встречи с "неправильным" приводом минимален. Просто сбросьте флажок Always close the last session в используемой вами программе прожига!
Но и это еще не все! Недостатки стандартной кодировки EFM очевидны (и об этом уже говорилось выше), однако навязать приводу более совершенные способы модуляции пока невозможно. Тем не менее, в обозримом будущем ситуация может радикально измениться. Уже появились рекордеры, позволяющие "вручную" формировать объединяющие биты (чем значительно упрощается копирование защищенных дисков), однако все еще отсутствуют приводы, позволяющие читать объединяющие биты с интерфейсного уровня иерархии управления. Тем не менее, практически любой существующий привод CD-ROM/CD-RW поддается соответствующей доработке – достаточно лишь слегка модернизировать его микропрограммную прошивку. Экспериментируя со своим скоропостижно умершим приводом PHILIPS – модель CD-RW 2400 ("полетел" автоматический регулятор скоростей, в результате чего привод всегда работает на скорости 42х, безошибочно читая только высококачественные диски), я увеличил физическую плотность хранения информации на 12%, и это – практически без снижения надежности! Благодаря этому эффективная емкость диска, предназначенного для хранения 700 Мбайт информации, возросла до одного гигабайта! А это, согласитесь, уже кое-что!
Главным (и единственным) минусом такого способа записи является его несовместимость со стандартным оборудованием и, как следствие – полная непереносимость. Тем не менее, предложенная технология выглядит вполне перспективной и многообещающей.
Использование режима MODE 2 предъявляет достаточно жесткие требования, как к качеству самих носителей, так и к технологическому совершенству пишущего и читающего приводов. В противном случае риск необратимой потери данных недопустимо возрастает, а сам режим MODE 2 – нецелесообразен.
Тестировать только что записанные диски – бессмысленно. Во-первых, нам необходимо знать характер нарастания количества разрушений с течением времени. Во-вторых, следует набрать статистику надежности по нескольким партиям одних и тех же носителей.
Для получения достоверных результатов совершенно необязательно исследовать диски, записанные в MODE 2. Ведь с физической точки зрения режимы MODE 1 и MODE 2 совершенно идентичны. Необходимо лишь узнать, достаточны ли восстанавливающие способности кодов CIRC, или же нет.

Рис. 10.22. Диск Verbatim (а), записанный на приводе Teac 552Е, демонстрирует высочайшее качество записи, подходящее для записи в режиме MODE 2. Диск от безымянного производителя (б), записанный на том же приводе, содержит большое количество разрушенных секторов, и для записи в режиме MODE 2 не годится
Используя утилиту Ahead Nero CD Speed или любую другую аналогичную ей программу, протестируйте свою коллекцию CD-R/CD-RW дисков на предмет выявления разрушений. Утилита CD Speed ScanDisc (рис. 10.22) отображает исправные сектора, поврежденные сектора и нечитаемые сектора. "Хорошими" (good) считаются сектора, ошибки чтения которых восстанавливаются еще на уровне декодера CIRC. Частично разрушенные (damaged) сектора могут быть восстановлены на уровне MODE 1. На уровне CIRC такие ошибки уже неустранимы, и диск, содержащий большое количество таких секторов, категорически непригоден для записи в режиме MODE 2. Полностью разрушенные (unreadable) сектора не могут быть восстановлены ни на каком уровне. Присутствие даже одного-единственного нечитаемого сектора сигнализирует о ненормальности ситуации и требует перехода на более качественные носители или же указывает на неисправность читающего/пишущего приводов (наличие разрушений в конце диска вполне допустимо, поскольку здесь располагается 150 секторов области пост-зазора (post gap), не содержащей никаких данных).
Копеечная стоимость лазерных дисков практически полностью обесценивает достоинства режима MODE 2. Исходя из средней цены диска в 15 рублей, сотня дополнительных мегабайт позволяет сэкономить чуть более одного рубля пятидесяти копеек, при этом многократно снижая надежность хранения данных, которая на дешевых носителях и без того невелика. Даже при записи 100 Гбайт данных мы выигрываем порядка 20 дисков, экономя немногим менее 300 рублей. Стоит ли овчинка выделки?
Все зависит от того, что записывать. В частности, при перекодировке DVD на CD-R неизбежно снижается качество изображения, а записывать фильм на два CD-R-диска – слишком накладно. Сотня дополнительных мегабайт в такой ситуации оказывается как нельзя более кстати. С другой стороны, при выборе коэффициента сжатия невозможно заранее рассчитать точную длину перекодированного файла. Как же бывает обидно, когда с таким трудом сформированный файл превышает объем диска CD-R-диска на какие-то жалкие 30–50 Мбайт! Приходится, скрепя сердце, удалять файл с диска и повторять всю процедуру сжатия вновь, а это занимает от трех до двенадцати часов, в зависимости от скорости вашего процессора! Стоит ли говорить, что запись такого файла в режиме MODE 2 позволяет сэкономить не столько деньги, сколько время!
Глава 11
Ремонт приводов CD/DVD в домашних условиях
Будучи сложными электронными оптико-механическими устройствами, приводы CD/DVD относятся к самым ненадежным компонентам компьютера. Причины поломок могут быть самыми разнообразными. Чаще всего отказывает или теряет свою эмиссию лазер, еще чаще отказывает чипсет, особенно если оба двигателя – и привода, и катушки фокусировки лазера, соединены с единственной микросхемой. Я уже и не говорю о механических поломках и загрязнении оптических поверхностей!
Реально ли отремонтировать отказавший привод в домашних условиях? Может быть гораздо проще купить новый привод?
Далеко не всякая поломка привода носит фатальный характер. Зачастую отремонтировать привод можно и в домашних условиях, не имея ни специального оборудования, ни предварительной подготовки, выходящей за компетенцию рядового электронщика-умельца (рис. 11.1). Не бойтесь экспериментировать с поломанным приводом! Хуже ему уже все равно не будет (разумеется, при том условии, что привод не на гарантии). Можно, конечно, отнести его в сервис-центр, но это долго, дорого, да и неинтересно.

Рис. 11.1. Привод CD-ROM, разобранный для ремонта в домашних условиях
Для ремонта вам потребуются запчасти. А где их взять? Сходите на рынок, поспрашивайте своих друзей, и вы обязательно найдете множество "металлолома", который вам отдадут за бесценок. В первую очередь, обращайте внимание на приводы, созданные на той же самой элементной базе, что и ваш (в первую очередь это касается лазерной головки и чипсета, маркировка которых определяется по надписям на их корпусе). Допустим, у вас отказала плата электроники, а у товарища – рассыпались шестеренки. Тогда всю нерабочую плату можно заменить целиком, даже не разбираясь, что там за неисправность. Полезны также и все прочие модели. Оттуда, в частности, можно вытащить какую-то конкретную запчасть, например, предохранитель.
Методология поиска неисправностей здесь не приводится, так как эта тема слишком обширна. Наша задача значительно скромнее – дать читателю первоначальный импульс, сориентировав его в верном направлении и перечислив основные категории поломок и методы их исправления, отсортированные в порядке убывания их актуальности. Ну, а остальное, как говорится, дело техники. Более подробную информацию о разборке, сборке и ремонте приводов CD-ROM можно найти здесь: http://www.johnzpchut.com/external_links/cdrom/repairfaq4cdromdrives.htm.
ЛазерЛазерные излучатели, использующиеся в читающих (и особенно пишущих!) приводах, – достаточно недолговечные устройства, массово выходящие из строя после нескольких лет эксплуатации. Почему это происходит? Во-первых, сказывается естественная потеря эмиссии излучателя, во-вторых, свой вклад вносит и неблагоприятный режим работы. Уважающие себя производители подгоняют параметры каждого лазера строго индивидуально, выставляя требуемые режимы подстроечными резисторами (в дешевых моделях) или занося их непосредственно в саму прошивку (в моделях подороже). Как правило, в дешевых моделях все параметры выставляются на средний уровень, который для одних экземпляров головок оказывается слишком низок, а для других – чрезмерно высок. Кстати говоря, при разблокировании приводов DVD и замене прошивки на ее модифицированную версию прежние настройки не сохраняются. Если хакер не предпримет попытки их предварительного сохранения, лазер быстро выйдет из строя или будет работать нестабильно.
Снижение яркости свечения лазера увеличивает количество ошибок чтения/позиционирования (часть дисков вообще перестает опознаваться). Начиная с некоторого момента, привод отказывается опознавать диски вообще, зачастую даже и не пытаясь их раскручивать (обычно мотор привода раскручивается только тогда, когда датчик фиксирует отраженный сигнал, а если сигнала нет, то считается, что диск не вставлен в привод).
Аккуратно разобрав привод, подключите его к компьютеру и посмотрите – вспыхивает ли лазер в момент закрытия лотка. При нормальной эмиссии вы увидите луч даже при дневном освещении, а потерявший эмиссию лазер различим только в затемненной комнате. Если же и в полной темноте никаких следов присутствия луча нет, ищите причину отказа в электронике (только помните, что лазер виден не под всяким углом).
Внимание!
Операция визуального определения исправности лазера довольно рискованна, так как при попадании луча в глаз можно ослепнуть. Однако этот риск не так уж и велик...
Услуги по замене лазерной головки в среднем обходятся в половину стоимости нового привода. Учитывая, что научно-технический прогресс не стоит на месте, и новые приводы намного лучше старых, смысла в таком ремонте немного. Как вариант, можно попробовать вернуть лазер к жизни, просто увеличив питающее напряжение. Проследите проводники, подведенные к лазерному излучателю, – они должны упираться в резистор, параллельно к которому вам предстоит подпаять еще один, подобрав его сопротивление так, чтобы привод уверенно опознавал все диски. Более честный вариант состоит в том, чтобы выяснить марку чипсета, управляющего лазером (обычно это самая большая микросхема), и найти в Интернете ее техническую спецификацию. Кроме прочей полезной информации, этот документ должен содержать описание механизма регулировки мощности лазера. Как правило, за это отвечают один или несколько резисторов, подключенных к чипсету (не к лазерной головке!). Некоторые модели позволяют настраивать лазер через интерфейс SCSI/AT API с помощью специальных команд, описанных в технической документации на привод, или через технологический разъем.
В принципе, лазерную головку можно и разобрать, заменив непосредственно сам излучающий элемент, который можно извлечь из другого привода. Однако правильно собрать головку удавалось немногим.








