Текст книги "Восстановление данных. Практическое руководство"
Автор книги: Крис Касперски
Жанры:
Компьютерное "железо"
,сообщить о нарушении
Текущая страница: 11 (всего у книги 26 страниц)
Структурно всякий атрибут состоит из атрибутного заголовка (attribute header) и тела атрибута (attribute body). Заголовок атрибута всегда хранится в файловой записи, расположенной внутри MFT. Тела резидентных атрибутов хранятся там же. Нерезидентные атрибуты хранят свое тело вне MFT, в одном или нескольких кластерах, перечисленных в заголовке данного атрибута в специальном списке. Если 8-разрядное поле, расположенное по смещению 08h байт от начала атрибутного заголовка, равно нулю, то атрибут считается резидентным, а если единице, то атрибут нерезидентен. Любые другие значения недопустимы.
Первые четыре байта атрибутного заголовка определяют его тип. Тип атрибута, в свою очередь, определяет формат представления тела атрибута. В частности, тело атрибута данных (тип: 80h – $DATA) представляет собой "сырую" последовательность байт. Тело атрибута стандартной информации (тип: 10h – $STANDARD_INFORMATION) описывает время его создания, права доступа и т.д. Более подробно эта тема будет рассмотрена далее в данной главе.
Следующие четыре байта заголовка содержат длину атрибута, выражаемую в байтах. Длина нерезидентного атрибута равна сумме длин его тела и заголовка, а длина резидентного атрибута равна длине его заголовка. Если к смешению атрибута добавить его длину, мы получим указатель на следующий атрибут (или маркер конца, если текущий атрибут – последний в цепочке).
Длина тела резидентных атрибутов, выраженная в байтах, хранится в 32– разрядном поле, расположенном по смещению 10h байт от начала атрибутного заголовка. 16-разрядное поле, следующее за его концом, хранит смещение резидентного тела, отсчитываемое от начала атрибутного заголовка. С нерезидентными атрибутами в этом плане все намного сложнее, и для хранения длины их тела используется множество полей. Реальный размер тела атрибута (real size of attribute), выраженный в байтах, хранится в 64-разрядном поле, находящемся по смещению 30h байт от начала атрибутного заголовка. Следующее за ним 64-разрядное поле хранит инициализированный размер потока (initialized data size of the stream), выраженный в байтах. Судя по всему, инициализированный размер потока всегда равен реальному размеру тела атрибута. 64-разрядное поле, расположенное по смещению 28h байт от начала атрибутного заголовка, хранит выделенный размер (allocated size of attribute), выраженный в байтах и равный реальному размеру тела атрибута, округленному до размера кластера (в большую сторону).
Два 64-разрядных поля, расположенные по смещениям 10h и 18h байт от начала атрибутного заголовка, задают первый (starting VCN) и последний (last VCN) номера виртуального кластера, принадлежащего телу нерезидентного атрибута. Виртуальные кластеры представляют собой логические номера кластеров, не зависящие от своего физического расположения на диске. В подавляющем большинстве случаев номер первого кластера тела нерезидентного атрибута равен нулю, а последний – количеству кластеров, занятых телом атрибута, уменьшенному на единицу. 16-разрядное поле, расположенное по смещению 20h от начала атрибутного заголовка, содержит указатель на массив Data Runs, расположенный внутри этого заголовка и описывающий логический порядок размещения нерезидентного тела атрибута на диске.
Каждый атрибут имеет свой собственный идентификатор (attribute ID), уникальный для данной файловой записи и хранящийся в 16-разрядном поле, расположенном по смещению 0Eh от начала атрибутного заголовка.
Если атрибут имеет имя (attribute Name), то 16-разрядное поле, расположенное по смещению 0Ah байт от атрибутного заголовка, содержит указатель на него. Для безымянных атрибутов оно равно нулю (большинство атрибутов имен не имеют). Имя атрибута хранится в атрибутном заголовке в формате UNICODE, а его длина определяется 8-разрядным полем, расположенным по смещению 09h байт от начала атрибутного заголовка.
Если тело атрибута сжато, зашифровано или разрежено, 16-разрядное поле флагов, расположенное по смещению 0Ch байт от начала атрибутного заголовка, не равно нулю.
Основные поля резидентных и нерезидентных атрибутов кратко описаны в табл. 6.4 и 6.5. Остальные поля не играют существенной роли, и потому здесь они не рассматриваются.
Таблица 6.4. Структура резидентного атрибута
00h | 4 | Тип атрибута (например, 0x10, 0x60, 0xB0) | ||
04h | 4 | Длина атрибута, включая этот заголовок | ||
08h | 1 | 00h | Флаг нерезидентности (non-resident flag) | |
09h | 1 | N | Длина имени атрибута (ноль, если атрибут безымянный) | |
0Ah | 2 | 18h | Смещение имени (ноль, если атрибут безымянный) | |
0Ch | 2 | 00h | Флаги | |
0001h | Сжатый атрибут (compressed) | |||
4000h | Зашифрованный атрибут (encrypted) | |||
8000h | Разреженный атрибут (sparse) | |||
0Eh | 2 | Идентификатор атрибута (attribute ID) | ||
10h | 4 | L | Длина тела атрибута, без заголовка | |
14h | 2 | 2N+18h | Смещение тела атрибута | |
16h | 1 | Индексный флаг | ||
17h | 1 | 00h | Используется для выравнивания | |
18h | 2N | UNICODE | Имя атрибута (если есть) | |
2N+18h | L | Тело атрибута | ||
Таблица 6.5. Структура нерезидентного атрибута
00h | 4 | Тип атрибута (например, 0x20, 0x80) | ||
04h | 4 | Длина атрибута, включая этот заголовок | ||
08h | 1 | 01h | Флаг нерезидентности (non-resident flag) | |
09h | 1 | N | Длина имени атрибута (ноль, если атрибут безымянный) | |
0Ah | 2 | 40h | Смещение имени (ноль, если атрибут безымянный) | |
0Ch | 2 | Флаги | ||
0001h | Сжатый атрибут (compressed) | |||
4000h | Зашифрованный атрибут (encrypted) | |||
8000h | Разреженный атрибут (sparse) | |||
0Eh | 2 | Идентификатор атрибута (attribute ID) | ||
10h | 8 | Начальный виртуальный кластер (starting VCN) | ||
18h | 8 | Конечный виртуальный кластер (last VCN) | ||
20h | 2 | 2N+40h | Смещение списка отрезков (data runs) | |
22h | 2 | Размер блока сжатия (compression unit size), округленный до 4 байт в большую сторону | ||
24h | 4 | 00h | Используется для выравнивания | |
28h | 8 | Выделенный размер (allocated size), округленный до размера кластера | ||
30h | 8 | Реальный размер (real size) | ||
38h | 8 | Инициализированный размер потока (initialized data size of the stream) | ||
40h | 2N | UNICODE | Имя атрибута (если есть) | |
2N+40h | … | Список отрезков (data runs) | ||
NTFS поддерживает большее количество предопределенных типов атрибутов, перечисленных в табл. 6.6. Тип атрибута определяет его назначение и формат представления тела. Полное описание всех атрибутов заняло бы не одну главу, а целую книгу, поэтому здесь приводятся лишь наиболее "ходовые" из них, а за информацией об остальных обращайтесь к документации Linux-NTFS Project.
Таблица 6.6. Основные типы атрибутов
010h | Любая | $STANDARD_INFORMATION | Стандартная информация о файле (время, права доступа) |
020h | Любая | $ATTRIBUTE_LIST | Список атрибутов |
030h | Любая | $FILE_NAME | Полное имя файла |
040h | Windows NT | $VOLUME_VERSION | Версия тома |
040h | Windows 2000 | $OBJECT_ID | Глобально уникальный идентификатор (GUID) и прочие ID |
050h | Любая | $SECURITY_DESCRIPTOR | Дескриптор безопасности и списки прав доступа (ACL) |
060h | Любая | $VOLUME_NAME | Имя тома |
070h | Любая | $VOLUME_INFORMATION | Информация о томе |
080h | Любая | $DATA | Основные данные файла |
090h | Любая | $INDEX_ROOT | Корень индексов |
0A0h | Любая | $INDEX_ALLOCATION | Ветви (sub-nodes) индекса |
0B0h | Любая | $BITMAP | Карта свободного пространства |
0C0h | Windows NT | $SYMBOLIC_LINK | Символическая ссылка |
0C0h | Windows 2000 | $REPARSE_POINT | Для сторонних производителей |
0D0h | Любая | $EA_INFORMATION | Расширенные атрибуты для HPFS |
0E0h | Любая | $EA | Расширенные атрибуты для HPFS |
0F0h | Windows NT | $PROPERTY_SET | Устарело и ныне не используется |
100h | Windows 2000 | $LOGGED_UTILITY_STREAM | Используется шифрующей файловой системой (EFS) |
$STANDARD_INFORMATION
Атрибут стандартной информации описывает время создания/изменения/последнего доступа к файлу и права доступа, а также некоторую другую вспомогательную информацию (например, квоты). Структура атрибута стандартной информации кратко описана в табл. 6.7.
Таблица 6.7. Структура атрибута $STANDARD_INFORMATION
| – - | Любая | Стандартный атрибутный заголовок (standard attribute header) | ||
00h | 8 | Любая | C – время создания (creation) файла | |
08h | 8 | Любая | A – время изменения (altered) файла | |
10h | 8 | Любая | M – время изменения файловой записи (MFT changed) | |
18h | 8 | Любая | R – время последнего чтения (read) файла | |
20h | 4 | Любая | Права доступа MS-DOS (MS-DOS file permissions) | |
0001h | Только на чтение (read-only) | |||
0002h | Скрытый (hidden) | |||
0004h | Системный (system) | |||
0020h | Архивный (archive) | |||
0040h | Устройство (device) | |||
0080h | Обычный (normal) | |||
0100h | Временный (temporary) | |||
0200h | Разреженный (sparse) файл | |||
0400h | Точка передачи (reparse point) | |||
0800h | Сжатый (compressed) | |||
1000h | Оффлайновый (offline) | |||
2000h | Неиндексируемый (not content indexed) | |||
4000h | Зашифрованный (encrypted) | |||
24h | 4 | Любая | Старшее двойное слово номера версии (maximum number of versions) | |
28h | 4 | Любая | Младшее двойное слово номера версии (version number) | |
2Ch | 4 | Любая | Идентификатор класса (class ID) | |
30h | 4 | Windows 2000 | Идентификатор владельца (owner ID) | |
34h | 4 | Windows 2000 | Идентификатор безопасности (security ID) | |
38h | 8 | Windows 2000 | Количество квотируемых байт (quota charged) | |
40h | 8 | Windows 2000 | Номер последней последовательности обновления (update sequence number USN) | |
$ATTRIBUTE_LIST
Атрибут списка атрибутов (прямо каламбур) используется в тех случаях, когда все атрибуты файла не умещаются в базовой файловой записи, и файловая система вынуждена располагать их в расширенных файловых записях. Индексы расширенных файловых записей содержатся в атрибуте списка атрибутов, помещаемом в базовую файловую запись.
При каких обстоятельствах атрибуты не умещаются в одной файловой записи? Это может произойти в следующих случаях:
□ файл содержит много альтернативных имен или жестких ссылок;
□ файл сильно фрагментирован;
□ файл содержит очень сложный дескриптор безопасности;
□ файл имеет очень много потоков данных (т.е. атрибутов типа $DATA).
Структура атрибута списка атрибутов приведена в табл. 6.8.
Таблица 6.8. Структура атрибута $ATTRIBUTE_LIST
| – - | Стандартный атрибутный заголовок (standard attribute header) | |
00h | 4 | Тип (type) атрибута (см. табл. 6.6) |
04h | 2 | Длина записи (record length) |
06h | 1 | Длина имени (name length), или ноль, если нет, условно – N |
07h | 1 | Смещение имени (offset to name), или ноль если нет |
08h | 8 | Начальный виртуальный кластер (starting VCN) |
10h | 8 | Ссылка на базовую/расширенную файловую запись |
18h | 2 | Идентификатор атрибута (attribute ID) |
1Ah | 2N | Если N>0, то имя в формате UNICODE |
$FILE_NAME
Атрибут полного имени файла хранит имя файла в соответствующем пространстве имен. Таких атрибутов у файла может быть и несколько (например, имя Win32 и имя MS-DOS). Здесь же хранятся и жесткие ссылки (hard link), если они есть.
Структура атрибута полного имени приведена в табл. 6.9.
Таблица 6.9. Структура атрибута $FILE_NAME
| – - | Стандартный атрибутный заголовок (standard attribute header) | |
00h | 8 | Ссылка (file reference) на материнский каталог |
08h | 8 | C – время создания (creation) файла |
10h | 8 | A – время последнего изменения (altered) файла |
18h | 8 | M – время последнего изменения файловой записи (MFT changed) |
20h | 8 | R – время последнего чтения (read) файла |
28h | 8 | Выделенный размер (allocated size) файла |
30h | 8 | Реальный размер (real size) файла |
38h | 4 | Флаг (см. табл. 6.7) |
3Ch | 4 | Используется HPFS |
40h | 1 | Длина имени в символах – L |
41h | 1 | Пространство имен файла (filename namespace) |
42h | 2L | Имя файла в формате UNICODE без завершающего нуля |
Тела нерезидентных атрибутов хранятся на диске в одной или нескольких кластерных цепочках, называемых отрезками (runs). Отрезком называется последовательность смежных кластеров, характеризующаяся номером начального кластера и длиной. Совокупность отрезков называется списком (run-list или data run).
Внутренний формат представления списков не то, чтобы сложен, но простым его тоже на назовешь. Для экономии места длина отрезка и номер начального кластера хранятся в полях переменной длины. Если размер отрезка умещается в байт (т.е. его значение не превышает 255), то он займет один байт. По аналогии, если размер отрезка требует для своего представления двойного слова, то он займет двойное слово.
Сами же поля размеров хранятся в 4-битных ячейках, называемых нибблами (nibble) или полубайтами. Шестнадцатеричная система счисления позволяет легко переводить байты в нибблы и наоборот. Младший ниббл равен (X & 15), а старший – (X / 16). Иначе говоря, младший ниббл соответствует младшему шестнадцатеричному разряду байта, а старший – старшему. Например, 69h состоит из двух нибблов, причем младший равен 9h, а старший – 6h.
Список отрезков представляет собой массив структур, каждая из которых описывает характеристики "своего" отрезка. Структура элемента списка отрезков показана в табл. 6.10. В конце списка находится завершающий ноль. Первый байт структуры состоит из двух нибблов: младший задает длину поля начального кластера отрезка (условно обозначаемого буквой F), а старший – количество кластеров в отрезке (L). Затем идет поле длины отрезка. В зависимости от значения L оно может занимать от одного до восьми байт (поля большей длины недопустимы). Первый байт поля стартового кластера файла расположен по смещению 1+L байт от начала структуры (что соответствует 2+2*L нибблам). Кстати говоря, в документации Linux-NTFS Project (версия 0.4) поля размеров начального кластера и количества кластеров в отрезке перепутаны местами.
Таблица 6.10. Структура одного элемента списка отрезков
| 0 | 1 | Размер поля длины (L) |
| 1 | 1 | Размер поля начального кластера (S) |
| 2 | 2*L | Количество кластеров в отрезке |
2+2*L | 2*S | Номер начального кластера отрезка |
Покажем, как с этим работать на практике. Предположим, что мы имеем следующий список отрезков, соответствующий нормальному не фрагментированному файлу (что может быть проще!): 21 18 34 56 00. Попробуем его декодировать?
Начнем с первого байта – 21h. Младший полубайт (01h) описывает размер поля длины отрезка, старший (02h) – размер поля начального кластера. Следующие несколько байт представляют поле длины отрезка, размер которого в данном случае равен одному байту – 18h. Два других байта (34h 56h) задают номер начального кластера отрезка. Нулевой байт на конце сигнализирует о том, что это последний отрезок в файле. Таким образом, наш файл состоит из одного-единственного отрезка, начинающегося с кластера 5634h и заканчивающегося кластером 5634h + 18h == 564Ch.
Рассмотрим более сложный пример фрагментированного файла со следующим списком отрезков: 31 38 73 25 34 32 14 01 E5 11 02 31 42 AA 00 03 00. Извлекаем первый байт – 31h. Один байт приходится на поле длины, и три байта – на поле начального кластера. Таким образом, первый отрезок (run 1) начинается с кластера 342573h и продолжается вплоть до кластера 342573h + 38 == 3425ABh. Чтобы найти смещение следующего отрезка в списке, мы складываем размер обоих полей с их начальным смещением: 3 + 1 == 4. Отсчитываем четыре байта от начала списка отрезков и переходим к декодированию следующего отрезка: 32h – два байта на поле длины отрезка (равное в данном случае 0114h) и три байта – на поле номера начального кластера (0211E5h). Следовательно, второй отрезок (run 2) начинается с кластера 0211E5h и продолжается вплоть до кластера 0211E5h + 114h == 212F9h. Третий отрезок (run 3): 31h – один байт на поле длины и три байта – на поле начального кластера, равные 42h и 0300AAh соответственно. Поэтому третий отрезок (run 3) начинается с кластера 0300AAh и продолжается вплоть до кластера 0300AAh + 42h == 300ECh. Завершающий ноль на конце списка отрезков сигнализирует о том, что это последний отрезок в файле.
Таким образом, подопытный файл состоит из трех отрезков, разбросанных по диску в следующем живописном порядке: 342573h–3425ABh; 0211E5h–212F9h; 0300AAh–300ECh. Остается только прочитать его с диска! Нет ничего проще!
Начиная с версии 3.0, NTFS поддерживает разреженные (sparse) атрибуты, т.е. такие атрибуты, которые не записывают на диск кластеры, содержащие одни нули. При этом поле номера начального кластера отрезка может быть равным нулю, что означает, что данному отрезку не выделен никакой кластер. Поле длины содержит количество кластеров, заполненных нулями. Их не нужно считывать с диска. Вы должны самостоятельно изготовить их в памяти. Между прочим, далеко не все дисковые доктора знают о существовании разреженных атрибутов (если атрибут разрежен, его флаг равен 8000h), и интерпретируют нулевую длину поля номера начального кластера весьма странным образом. Последствия такого "лечения" обычно оказываются весьма печальными.
NTFS изначально проектировалась как файловая система, не зависящая от платформы, способная работать с большим количеством различных подсистем, в том числе: Win32, MS-DOS, POSIX. Так как каждая из перечисленных подсистем налагает собственные ограничения на набор символов, допустимых для использования в имени файла, NTFS вынуждена поддерживать несколько независимых пространств имен (name spaces).
POSIX
Допустимы все символы UNICODE (с учетом регистра), за исключением символа нуля (NULL), обратной косой черты () и знака двоеточия (:). Последнее из перечисленных ограничений, кстати говоря, не есть ограничение POSIX. Напротив, это – внутреннее ограничение файловой системы NTFS, использующей этот символ для доступа к именованным атрибутам. Максимально допустимая длина имени составляет 255 символов.
Win32
Доступны все символы UNICODE (без учета регистра), за исключением следующего набора: кавычки ("), звездочка (*), косая черта (/), двоеточие (:), знак "меньше" (<), знак "больше" (>), вопросительный знак (?), обратная косая черта (), а также символ конвейера (|). Кроме того, имя файла не может заканчиваться точкой или пробелом. Максимально допустимая длина имени составляет 255 символов.
MS-DOS
Доступны все символы пространства имен Win32 (без учета регистра), за исключением следующих: знак плюса (+), запятая (,), точка (.), точка с запятой (;), знак равенства (=). Длина имени файла не должна превышать восьми символов, за которыми следует необязательное расширение имени файла, имеющее длину от одного до трех символов.
NTFS содержит большое количество служебных файлов (метафайлов) строго определенного формата. Важнейший из метафайлов, $MFT, мы только что рассмотрели. Остальные метафайлы играют вспомогательную роль. Для восстановления данных детально знать их структуру необязательно. Тем не менее, если они окажутся искажены, то штатный драйвер файловой системы не сможет работать с таким томом, поэтому иметь некоторые представления о назначении каждого из них все же необходимо.
Краткие сведения о назначении важнейших метафайлов приведены в табл. 6.11. К сожалению, в пределах одной главы нет возможности подробно рассмотреть структуру всех существующих метафайлов, поэтому заинтересованным читателям рекомендуется искать эту информацию в документации к Linux-NTFS Project.
Таблица 6.11. Назначение основных метафайлов NTFS
| 0 | $MFT | Любая | Главная файловая таблица (Master File Table, MFT) |
| 1 | $MFTMirr | Любая | Резервная копия первых четырех элементов MFT |
| 2 | $LogFile | Любая | Журнал транзакций (transactional logging file) |
| 3 | $Volume | Любая | Серийный номер, время создания, флаг не сброшенного кэша (dirty flag) тома |
| 4 | $AttrDef | Любая | Определение атрибутов |
| 5 | . (точка) | Любая | Корневой каталог (root directory) тома |
| 6 | $Bitmap | Любая | Карта свободного/занятого пространства |
| 7 | $Boot | Любая | Загрузочная запись (boot record) тома |
| 8 | $BadClus | Любая | Список плохих кластеров (bad clusters) тома |
| 9 | $Quota | Windows NT | Информация о квотах (quota information) |
| 9 | $Secure | Windows 2000 | Использованные дескрипторы безопасности (security descriptors) |
| 10 | $UpCase | Любая | Таблица заглавных символов (uppercase characters) для трансляции имен |
| 11 | $Extend | Windows 2000 | Каталоги: $ObjId, $Quota, $Reparse, $UsnJrnl |
| 12-15 | не используется | Любая | Помечены как использованные, но в действительности пустые |
| 16-23 | не используется | Любая | Помечены как неиспользуемые |
| Любой | $ObjId | Windows 2000 | Уникальные идентификаторы каждого файла |
| Любой | $Quota | Windows 2000 | Информация о квотах (quota information) |
| Любой | $Reparse | Windows 2000 | Информация о точке передачи (reparse point) |
| Любой | $UsnJrnl | Windows 2000 | Журнал шифрованной файловой системы (journaling of encryption) |
| >24 | Пользовательский файл | Любая | Обычные файлы |
| >24 | Пользовательский каталог | Любая | Обычные каталоги |
Рассказ о файловой системе NTFS был бы неполным без практической иллюстрации техники разбора файловой записи вручную. До сих пор мы витали в облаках теоретической абстракции. Пора спускаться на грешную землю.
Воспользовавшись любым дисковым редактором, например, Disk Probe, попробуем декодировать одну файловую запись вручную. Найдем сектор, содержащий сигнатуру FILE в его начале (не обязательно брать первый встретившийся сектор). Он может выглядеть, например, как в листинге 6.4.
Листинг 6.4. Ручное декодирование файловой записи (разные атрибуты выделены разным цветом)
: 00 01 02 03 04 05 06 07 | 08 09 0A 0B 0C 0D 0E 0F
00000000: 46 49 4C 45 2A 00 03 00 | 60 79 1A 04 02 00 00 00 FILE*...`y......
00000010: 01 00 01 00 30 00 01 00 | 50 01 00 00 00 04 00 00 ....0...P.......
00000020: 00 00 00 00 00 00 00 00 | 04 00 03 00 00 00 00 00 ................
00000030: 10 00 00 00 60 00 00 00 | 00 00 00 00 00 00 00 00 ................
00000040: 48 00 00 00 18 00 00 00 | B0 D5 C9 2F C6 0B C4 01 H.......░╒╔/╞.─.
00000050: E0 5A B3 7B A9 FA C3 01 | 90 90 F1 2F C6 0B C4 01 рZ│{й·├.PPё/╞.─.
00000060: 50 7F BC FE C8 0B C4 01 | 20 00 00 00 00 00 00 00 P⌂╝■╚.─. .......
00000070: 00 00 00 00 00 00 00 00 | 00 00 00 00 05 01 00 00 ................
00000080: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 ................
00000090: 30 00 00 00 70 00 00 00 | 00 00 00 00 00 00 02 00 0...p...........
000000A0: 54 00 00 00 18 00 01 00 | DB 1A 01 00 00 00 01 00 T.......█.......
000000B0: B0 D5 C9 2F C6 0B C4 01 | B0 D5 C9 2F C6 0B C4 01 ░╒╔/╞.─.░╒╔/╞.─.
000000C0: B0 D5 C9 2F C6 0B C4 01 | B0 D5 C9 2F C6 CB C4 01 ░╒╔/╞.─.░╒╔/╞.─.
000000D0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 ................
000000E0: 20 00 00 00 00 00 00 00 | 09 03 49 00 6C 00 66 00 ..........I.l.f.
000000F0: 61 00 6B 00 2E 00 64 00 | 62 00 78 00 00 00 00 00 a.k...d.b.x.....
00000100: 80 00 00 00 48 00 00 00 | 01 00 00 00 00 00 03 00 А...H...........
00000110: 00 00 00 00 00 00 00 00 | ED 04 00 00 00 00 00 00 ........э.......
00000120: 40 00 00 00 00 00 00 00 | 00 E0 4E 00 00 00 00 00 @........рN.....
00000130: F0 D1 4E 00 00 00 00 00 | F0 D1 4E 00 00 00 00 00 Ё╤N.....Ё╤N.....
00000140: 32 EE 04 D9 91 00 00 81 | FF FF FF FF 82 79 47 11 2ю.┘С..Б ВyG.
000001F0: 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 03 00 ................
: 00 01 02 03 04 05 06 07 | 08 09 0A 0B 0C 0D 0F 0F
Первым делом необходимо восстановить оригинальное содержимое последовательности обновления. По смещению 04h от начала сектора лежит 16-разрядный указатель на нее, равный в данном случае 2Ah (значит, это NTFS 3.0 или более ранняя версия). А что у нас лежит по смещению 2Ah? Это – пара байт 03 00. Данная последовательность представляет собой номер последовательности обновления. Сверяем его с содержимым двух последних байт этого и следующего секторов (смещения 1FEh и 3FEh соответственно). Они равны! Следовательно, данная файловая запись цела (по крайней мере, на первый взгляд), и можно переходить к операции ее восстановления. По смещению 2Ch расположен массив, содержащий оригинальные значения последовательности обновления. Количество элементов в нем равно содержимому 16-разрядного поля, расположенному по смещению 06h от начала сектора и уменьшенного на единицу (в данном случае имеем 03h – 01h == 02h). Извлекаем два слова, начиная со смещения 2Ch (в данном случае они равны 00 00 и 00 00) и записываем их в конец первого и последнего секторов.
Теперь нам необходимо выяснить, используется ли данная файловая запись, или же ассоциированный с ней файл или каталог был удален. 16-разрядное поле, расположенное по смещению 16h, содержит значение 01h. Следовательно, перед нами файл, а не каталог, и этот файл еще не удален. Но является ли эта файловая запись базовой для данного файла или мы имеем дело с ее продолжением? 64-разрядное поле, расположенное по смещению 20h, равно нулю, следовательно, данная файловая запись – базовая.
Очень хорошо, теперь переходим к исследованию атрибутов. 16-разрядное поле, находящееся по смещению 14h, равно 30h, следовательно, заголовок первого атрибута начинается со смещения 30h от начала сектора.
Первое двойное слово атрибута равно 10h, значит, перед нами атрибут типа $STANDARD_INFORMATION. 32-разрядное поле длины атрибута, находящееся по смещению 04h и равное в нашем случае 60h байт, позволяет нам вычислить смещение следующего атрибута в списке: 30h (смещение нашего атрибута) + 60h (его длина) == 90h (смещение следующего атрибута). Первое двойное слово следующего атрибута равно 30h, значит, это атрибут типа $NAME, и следующее 32-разрядное поле хранит его длину, равную в данном случае 70h. Сложив длину атрибута с его смещением, мы получим смещение следующего атрибута – 90h + 70h == 100h. Первое двойное слово третьего атрибута равно 80h, следовательно, это атрибут типа $DATA, хранящий основные данные файла. Складываем его смещение с длиной – 100h + 32h == 132h. И вот здесь мы наткнулись на частокол FFFFFFh, сигнализирующий о том, что атрибут $DATA последний в списке.
Теперь, разбив файловую запись на атрибуты, можно приступить к исследованию каждого из атрибутов в отдельности. Начнем с разбора имени. 8-разрядное поле, находящееся по смещению 08h от начала атрибутного заголовка (и по смещению 98h от начала сектора), содержит флаг нерезидентности. В данном случае этот флаг равен нулю. Это значит, атрибут резидентный, и его тело хранится непосредственно в самой файловой записи, что уже хорошо. 16-разрядное поле, расположенное по смещению 0Сh от начала атрибутного заголовка (и по смещению 9Ch от начала сектора) равно нулю, следовательно, тело атрибута не сжато и не зашифровано. Таким образом, можно приступать к разбору тела атрибута. 32-разрядное поле, расположенное по смещению 10h от начала атрибутного заголовка (и по смещению A0h от начала сектора), содержит длину атрибутного тела, равную в данном случае 54h байт. 16-разрядное поле, расположенное по смещению 14h от начала атрибутного заголовка и по смещению A4h от начала сектора, хранит смещение атрибутного тела, равное в данном случае 18h. Следовательно, тело атрибута $FILE_NAME располагается по смещению A8h от начала сектора.
Формат атрибута типа $FILE_NAME описан в табл. 6.9. Первые восемь байт содержат ссылку на родительский каталог этого файла, равную в данном случае 11ADBh:01 (индекс – 11ADBh, номер последовательности – 01h). Следующие 32 байта содержат данные о времени создания, изменения и времени последнего доступа к файлу. По смещению 28h от начала тела атрибута и D0h от начала сектора лежит 64-разрядное поле выделенного размера, а за ним – 64-разрядное поле реального размера. Оба равны нулю, что означает, что за размером файла следует обращаться к атрибутам типа $DATA.
Длина имени файла содержится в 8-разрядном поле, находящемся по смещению 40h байт от начала тела атрибута и по смещению E8h от начала сектора. В данном случае оно равно 09h. Само же имя начинается со смещения 42h от начала тела атрибута и со смещения EAh от начала сектора. И здесь находится имя файла llfak.dbx.
Переходим к атрибуту основных данных файла, пропустив атрибут стандартной информации, который не содержит решительно ничего интересного. 8-разрядный флаг нерезидентности, расположенный по смещению 08h от начала атрибутного заголовка и по смещению 108h от начала сектора, равен 01h, следовательно, атрибут нерезидентный. 16-разрядный флаг, расположенный по смещению 0Ch от начала атрибутного заголовка и по смещению 10Ch от начала сектора, равен нулю, значит, атрибут не сжат и не зашифрован. 8-разрядное поле, расположенное по смещению 09h от начала атрибутного заголовка и по смещению 109h от начала сектора, равно нулю – атрибут безымянный. Реальная длина тела атрибута (в байтах) содержится в 64-разрядном поле, расположенном по смещению 30h от начала атрибутного заголовка и по смещению 130h от начала сектора. В данном случае она равна 4ED1F0h (5.165.552). Два 64-разрядных поля, расположенных по смещениям 10h/110h и 18h/118h байт от начала атрибутного заголовка/сектора соответственно, содержат начальный и конечный номер виртуального кластера нерезидентного тела. В данном случае они равны: 0000h и 4EDh соответственно.
Остается лишь декодировать список отрезков, адрес которого хранится в 16-разрядном поле, находящемся по смещению 20h от начала атрибутного заголовка и 120h от начала сектора. В данном случае поле равно 40h, что соответствует смещению от начала сектора в 140h. Сам же список отрезков выглядит так: 32 EE 04 D9 91 00 00. Ага! Два байта занимает поле длины (равное в данном случае 04EEh кластерам) и три – поле начального кластера (0091h). Завершающий ноль на конце говорит о том, что этот отрезок последний в списке отрезков.
Подытожим полученную информацию. Файл называется llfak.dbx, он начинается с кластера 0091h и продолжается вплоть до кластера 57Fh, при реальной длине файла в 5.165.552 байт. Это все, что надо! Теперь остается только скопировать файл на резервный носитель (например, ZIP или стример).








