Текст книги "КУДА? и КАК?"
Автор книги: Игорь Акимушкин
Жанр:
Природа и животные
сообщить о нарушении
Текущая страница: 18 (всего у книги 21 страниц)
Можно ли видеть тепло?
Натуралистов всегда поражала тонкость зрения сов: птицы охотятся в темноте на мелких грызунов и вылавливают их немало – десятки за ночь. Может быть, совы, как и животные, с которыми мы только что познакомились, тоже разыскивают добычу с помощью какого-нибудь необычного чувства?
Некоторые ученые считают, что совы видят… тепло, которое испускает тело их жертв. Возможно, что глаза совы улавливают невидимые для нашего зрения инфракрасные, то есть тепловые, лучи.
Если пучок света пропустить через призму, то он распадется на составляющие его лучи с разной длиной волн и частотой колебаний, которые воспринимаются нашими органами зрения как цветовые элементы спектра: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Кроме видимых человеческим глазом лучей пучок света составляют и невидимые лучи – ультрафиолетовые и инфракрасные. Их можно обнаружить с помощью различных приборов, например фотографической пластинки (ультрафиолетовые лучи) и очень чувствительного термометра (инфракрасные лучи). Установлено, что инфракрасные лучи представляют собой тепловое излучение всякого нагретого тела.
Каждая живая мышь, каждая пичужка тоже излучают инфракрасные лучи. Хищник, наделенный своеобразными «термометрами», чувствительными к тепловым лучам, мог бы определять с их помощью местонахождение своих жертв.
Опыты с совами дали разноречивый результат. Одним ученым удалось подтвердить предположение о «тепловом» зрении совы. Другие же своими работами показали, что такого зрения у совы нет.
Однако открыты другие животные – обладатели термолокаторов. Некоторые глубоководные кальмары помимо обычных глаз наделены еще так называемыми термоскопическими глазами, то есть органами, способными улавливать инфракрасные лучи. Эти глаза рассеяны у них по всей нижней поверхности хвоста. Каждый имеет вид небольшой темной точки. Под микроскопом видно, что устроен он как обычный глаз, но снабжен светофильтром, задерживающим все лучи, кроме инфракрасных. Светофильтр расположен перед преломляющей линзой – хрусталиком. Линза отбрасывает сконцентрированный пучок тепловых лучей на чувствительный к ним воспринимающий орган.
Термолокаторы иной конструкции изучены недавно у змей. Об этом открытии стоит рассказать подробнее.
Термолокаторы змей
На востоке СССР, от прикаспийского Заволжья и среднеазиатских степей до Забайкалья и уссурийской тайги, водятся некрупные ядовитые змеи, прозванные щитомордниками: голова у них сверху покрыта не мелкой чешуей, а крупными щитками.
Люди, которые рассматривали щитомордников вблизи, утверждают, что у этих змей будто бы четыре ноздри. Во всяком случае, по бокам головы (между настоящей ноздрей и глазом) у щитомордников хорошо заметны две большие (больше ноздри) и глубокие ямки.
Щитомордники – близкие родичи гремучих змей Америки, которых местные жители иногда называют квартонарицами, то есть четырехноздрыми. Значит, и у гремучих змеи тоже есть на морде странные ямки.
Всех змей с четырьмя «ноздрями» зоологи объединяют в одно семейство – так называемых кроталид, или ямкоголовых. Ямкоголовые змеи водятся в Америке (Северной и Южной) и в Азии. По своему строению они похожи на гадюк, но отличаются от них упомянутыми ямками на голове.
Более двухсот лет ученые решают заданную природой головоломку, пытаясь установить, какую роль в жизни змей играют эти ямки. Какие только не делались предположения!
Думали, что это органы обоняния, осязания, усилители слуха, железы, выделяющие смазку для роговицы глаз, улавливатели тонких колебаний воздуха (вроде боковой линии рыб) и, наконец, даже воздухонагнетатели, доставляющие в полость рта необходимый будто бы для образования яда кислород.
Проведенные анатомами тридцать лет назад тщательные исследования показали, что лицевые ямки гремучих змей не связаны ни с ушами, ни с глазами, ни с какими-либо другими известными органами. Они представляют собой углубления в верхней челюсти. Каждая ямка на некоторой глубине от входного отверстия разделена поперечной перегородкой (мембраной) на две камеры: внутреннюю и наружную. Наружная камера лежит впереди и широким воронкообразным отверстием открывается наружу между глазом и ноздрей (в области слуховых чешуи). Задняя (внутренняя) камера совершенно замкнута. Лишь позднее удалось заметить, что она сообщается с внешней средой узким и длинным каналом, который открывается на поверхности головы, около переднего угла глаза, почти микроскопической порой. Однако размеры поры, когда это необходимо, могут, по-видимому, значительно увеличиваться: отверстие снабжено кольцевой замыкающей мускулатурой.
Перегородка (мембрана), разделяющая обе камеры, очень тонка (около 0,025 миллиметра). Густые переплетения нервных окончаний пронизывают ее во всех направлениях.
Бесспорно, лицевые ямки – органы каких-то чувств. Но каких?
В 1937 году два американских ученых – Д. Нобл и А. Шмидт – опубликовали большую работу, в которой сообщали о результатах своих многолетних опытов. Им удалось доказать, утверждали авторы, что лицевые ямки представляют собой… термолокаторы! Они улавливают тепловые лучи и определяют по их направлению местонахождение нагретого тела, испускающего эти лучи.
Д. Нобл и А. Шмидт экспериментировали с гремучими змеями, искусственно лишенными всех известных науке органов чувств. К змеям подносили обернутые черной бумагой электрические лампочки. Пока лампы были холодными, змеи не обращали на них никакого внимания. Но вот лампочка нагрелась – змея это сразу почувствовала. Подняла голову, насторожилась. Лампочку еще приблизили. Змея сделала молниеносный бросок и укусила теплую «жертву». Не видела ее, но укусила точно, без промаха.
Экспериментаторы установили, что змеи обнаруживают нагретые предметы, температура которых хотя бы только на 0,2 градуса выше окружающего воздуха (если их приблизить к самой морде). Более теплые предметы они распознают на расстоянии до тридцати пяти сантиметров.
В холодной комнате термолокаторы работают точнее. Они приспособлены, очевидно, для ночной охоты. Вооружась ими, змея разыскивает мелких теплокровных зверьков и птиц. Не запах, а тепло тела выдает жертву! У змей ведь слабое зрение и обоняние и совсем неважный слух (хотя и говорят: «Все тело змеи – ее ухо»!). Поэтому на помощь им пришло новое, совсем особенное чувство – термолокация.
В опытах Д. Нобла и А. Шмидта показателем того, что змея обнаружила теплую лампочку, служил ее бросок. Но ведь змея, конечно, еще до того, как бросилась в атаку, уже чувствовала приближение теплого предмета. Значит, нужно найти какие-то другие, более точные признаки, по которым можно было бы судить о тонкости термолокационного чувства змеи.
Американские физиологи Т. Буллок и Р. Каулс провели в 1952 году более тщательные исследования. В качестве сигнала, оповещающего о том, что предмет обнаружен термолокатором змеи, они выбрали не реакцию змеи, а изменение биотоков в нерве, обслуживающем лицевую ямку.
Известно, что все процессы возбуждения в организме животных (и человека) сопровождаются возникающими в мышцах и нервах электрическими токами. Их напряжение невелико – обычно сотые доли вольта. Это так называемые биотоки возбуждения. Биотоки нетрудно обнаружить с помощью электроизмерительных приборов.
Т. Буллок и Р. Каулс наркотизировали змей введением определенной дозы яда кураре. Очистили от мышц и других тканей один из нервов, разветвляющихся в мембране лицевой ямки, вывели его наружу и зажали между контактами прибора, измеряющего биотоки. Затем лицевые ямки подвергли различным воздействиям: освещали светом (без инфракрасных лучей), подносили вплотную сильно пахнущие вещества, раздражали сильными звуками, вибрацией, щипками. Нерв не реагировал: биотоки не возникали.
Но стоило к змеиной голове приблизить нагретый предмет, даже просто человеческую руку (на расстоянии тридцати сантиметров), как в нерве возникало возбуждение – прибор фиксировал биотоки.
Осветили ямки инфракрасными лучами – нерв возбудился еще сильнее. Самая слабая реакция нерва обнаруживалась при облучении его инфракрасными лучами с длиной волны около 0,001 миллиметра. Увеличивалась длина волны – сильнее возбуждался нерв. Наибольшую реакцию вызывали самые длинноволновые инфракрасные лучи (0,01—0,015 миллиметра), то есть те лучи, которые несут максимум тепловой энергии, излучаемой телом теплокровных животных.
Оказалось также, что термолокаторы гремучих змей обнаруживают не только более теплые, но даже и более холодные, чем окружающий воздух, предметы. Важно лишь, чтобы температура этого предмета была хотя бы на несколько десятых долей градуса выше или ниже окружающего воздуха.
Воронкообразные отверстия лицевых ямок направлены косо вперед. Поэтому зона действия термолокатора лежит перед головой змеи. Вверх от горизонтали она занимает сектор в сорок пять, а вниз в тридцать пять градусов. Вправо и влево от продольной оси тела змеи поле действия термолокатора ограничено углом в десять градусов.
Физический принцип, на котором основано устройство термолокаторов змей, совсем другой, чем у кальмаров.
Скорее всего, в термоскопических глазах кальмаров восприятие излучающего тепло объекта достигается путем фотохимических реакций. Здесь происходят, вероятно, процессы такого же типа, как и на сетчатке обычного глаза или на фотопластинке в момент экспозиции. Поглощенная органом энергия приводит к перекомбинации светочувствительных (у кальмаров – теплочувствительных) молекул, которые воздействуют на нерв, вызывая в мозгу представление наблюдаемого объекта.
Термолокаторы змей действуют иначе – по принципу своеобразного термоэлемента.
Тончайшая мембрана, разделяющая две камеры лицевой ямки, подвергается с разных сторон воздействию двух разных температур. Внутренняя камера сообщается с внешней средой узким каналом, входное отверстие которого открывается в противоположную сторону от рабочего поля локатора. Поэтому во внутренней камере сохраняется температура окружающего воздуха. (Индикатор нейтрального уровня!) Наружная же камера широким отверстием – тепло– улавливателем направляется в сторону исследуемого объекта. Тепловые лучи, которые тот испускает, нагревают переднюю стенку мембраны. По разности температур на внутренней и наружной поверхности мембраны, одновременно воспринимаемых нервами, в мозгу и возникает ощущение излучающего тепловую энергию предмета.
Помимо ямкоголовых змей органы термолокации обнаружены у питонов и удавов (в виде небольших ямок на губах). Маленькие ямки, расположенные над ноздрями у африканской, персидской и некоторых других видов гадюк, служат, очевидно, для той же цели.
Разведка звуком
Что делал аббат на колокольне?
етом 1793 года рано на рассвете учёный аббат Ладзаре Спалланцани залез на колокольню собора в Павии. Сумрак только начинал рассеиваться, и летучие мыши, возвращаясь из ночных полетов, прятались по разным закоулкам под сводами старой башни. Аббат ловил летучих мышей и сажал в мешок. Потом с мешком спустился с колокольни и пошел домой.
Там он их выпустил в комнате. От потолка к полу в ней были натянуты тонкие нити, много нитей, всю комнату они опутали. Выпуская каждую мышь, Спалланцани заклеивал ей глаза воском. И вот по старому залу заметались крылатые тени.
Но ни одна слепая летучая мышь не задела за нитку! Ни одна. Словно глаза им и не нужны были, чтобы видеть.
Спалланцани отпустил потом этих мышей на волю. А рано утром на следующий день опять полез на колокольню. Снова наловил летучих мышей. Среди них были и старые его знакомые – слепые зверьки. Он вскрыл их – желудки полны комаров! Значит, чтобы продуктивно, так сказать, охотиться, этим зверюшкам совсем не нужны глаза. Спалланцани решил, что летучие мыши наделены каким-то особенным, неведомым нам шестым чувством, которое и помогает им ориентироваться в полёте.
Швейцарский натуралист Шарль Жюрин узнал об опытах Спалланцани. Он повторил их; да, слепые мыши летают не хуже зрячих. Тогда Шарль Жюрин заткнул их уши воском.
Результат был неожиданным: летучие мыши перестали различать окружающие предметы, стали натыкаться на стены, точно слепые.
В чем дело? Не могут же они видеть ушами?
Спалланцани, когда узнал об опытах Шарля Жюрина, подумал вначале, что произошла какая-то ошибка. Он решил проверить, так ли это.
Спалланцани изготовил тонкие медные трубочки точно по размеру ушных отверстий летучих мышей. Кропотливая эта была работа: ведь приходилось отливать трубочки толщиной меньше миллиметра. Медные втулки вставили летучим мышам в уши, зверьки отлично летали и на препятствия не натыкались. Когда же трубочки заткнули воском, мыши «ослепли».
В чем же дело? Спалланцани знал об этом не больше своих критиков. А критиков объявилось много, и все дружно высмеивали аббата-фантазера.
Жорж Кювье, знаменитый французский анатом и палеонтолог, крупнейший авторитет в биологической науке того времени, тоже не хотел поверить, что слух имеет какое-то значение в ориентировке летучих мышей. Кювье выдвинул довольно остроумную гипотезу, которая должна была иначе объяснить таинственные способности летучих мышей.
Летучие мыши, говорил Кювье, обладают очень тонким осязанием. Особенно чувствительна у них кожа крыльев. Настолько чувствительна, что, приближаясь к препятствию, летучая мышь воспринимает сгущение воздуха, возникающее между ее телом и встречным предметом. Это служит сигналом: впереди препятствие! И «пилот» изменяет курс.
Больше ста лет продержалась в научных представлениях гипотеза Кювье. Лишь в середине нашего столетия с помощью новейших приборов удалось установить наконец истину[49]49
Правда, известный изобретатель пулемёта Айрем Максим ещё в 1912 году предполагал, что летучие мыши ориентируются, улавливая эхо от шума собственных крыльев. На этом же принципе он хотел сконструировать прибор, который предупреждал бы суда об айсбергах.
[Закрыть].
К решению этой интересной проблемы ученые пришли почти одновременно в разных странах.
Голландец Свен Дийграаф решил проверить, действительно ли осязание помогает летучим мышам избегать препятствия. Он перерезал осязательные нервы крыльев – оперированные животные отлично летали. Значит, осязание здесь ни при чём. Тогда экспериментатор лишил летучих мышей слуха – они сразу точно ослепли.
Дийграаф рассуждал так: поскольку стены и предметы, встречающиеся летучим мышам в полете, не издают никаких звуков, значит, кричат сами мыши. Эхо их собственного голоса, отраженное от окружающих предметов, извещает зверюшек о препятствии на пути.
Дийграаф заметил, что летучая мышь, прежде чем пуститься в полет, раскрывает рот. Очевидно, издает неслышные для нас звуки, «ощупывая» ими окрестности. В полете летучие мыши тоже то и дело открывают рты (даже когда не охотятся за насекомыми).
Это наблюдение подало Дийграафу мысль проделать следующий эксперимент. Он надел на голову зверька бумажный колпак. Спереди, точно забрало у рыцарского шлема, в колпаке открывалась и закрывалась маленькая дверка.
Летучая мышь с закрытой дверкой на колпаке не могла летать, натыкалась на предметы. Стоило лишь в бумажном шлеме поднять забрало, как зверек преображался, его полет вновь становился точным и уверенным.
Свои наблюдения Дийграаф опубликовал в 1940 году. А в 1946 году советский ученый профессор А. П. Кузякин начал серии опытов над летучими мышами.
Он залепил им пластилином рот и уши и выпустил в комнате с натянутыми вдоль и поперек веревками – почти все зверьки не смогли летать. Экспериментатор установил интересный факт: летучие мыши, впервые пущенные в помещение для пробного полета с открытыми глазами, «многократно и с большой силой, как только что пойманные птицы, ударялись о стекла незанавешенных окон».
Это происходило днем. Вечером при свете электрической лампы мыши уже не натыкались на стекла. Значит, днем, когда хорошо видно, летучие мыши доверяют больше зрению, чем другим органам чувств. А ведь зрению летучих мышей многие исследователи склонны были совсем не придавать значения.
Профессор А. П. Кузякин продолжал опыты в лесу. На головы зверькам – рыжим вечерницам – он надел колпачки из черной бумаги. Зверьки не могли теперь ни видеть, ни употребить свой акустический радар. Летучие мыши не рискнули лететь в неизвестность Они раскрывали крылья и опускались на них, как на парашютах, на землю. Лишь некоторые отчаянные полетели на авось. Результат был печальным: они ударились о деревья и упали на землю.
Тогда в черных колпачках вырезали три отверстия: одно для рта, два для ушей. Зверьки без страха пустились в полет.
А. П. Кузякин пришел к выводу, что органы звуковой ориентировки летучих мышей «могут почти полностью заменить зрение, а органы осязания… никакой роли в ориентировке не играют, и зверьки ими в полете не пользуются».
Несколькими годами раньше американские ученые Д. Гриффин и Р. Галамбос[50]50
Отличная книга Д. Гриффина «Эхо в жизни людей и животных» была переведена в 1961 году на русский язык издательством физико-математической литературы.
[Закрыть] применили другую методику для изучения загадочных способностей летучих мышей.
Начали они с того, что просто поднесли этих зверюшек к аппарату Пирса – прибору, который мог «слышать» ультразвуки. И сразу же стало ясно, что летучие мыши «издают множество криков, но почти все они попадают в диапазон частот, лежащих за порогом возможностей человеческого уха», – писал Дональд Гриффин позднее.
С помощью электротехнической аппаратуры Гриффин и Галамбос сумели обнаружить и исследовать физическую природу «криков» летучих мышей. Установили также, вводя особые электроды во внутреннее ухо подопытных зверьков, какой частоты звуки воспринимают органы их слуха.
Изучением этой проблемы занялись и другие исследователи. И вот что было установлено.
Эхопеленг
С физической точки зрения всякий звук – это колебательные движения, распространяющиеся волнообразно в упругой среде.
Чем больше вибраций совершает в секунду колеблющееся тело (или упругая среда), тем выше частота звука. Самый низкий человеческий голос (бас) обладает частотой колебаний около восьмидесяти раз в секунду, или, как говорят физики, частота его колебаний достигает восьмидесяти герц. Самый высокий голос (например, сопрано перуанской певицы Имы Сумак) около 1400 герц.
В природе и технике известны звуки еще более высоких частот – в сотни тысяч и даже миллионы герц. Рекордно высокий звук у кварца – до одного миллиарда герц! Мощность звука колеблющейся в жидкости кварцевой пластинки в 40 тысяч раз превышает силу звука мотора самолета. Но мы не можем оглохнуть от этого «адского грохота», потому что не слышим его. Человеческое ухо воспринимает звуки с частотой колебаний лишь от шестнадцати до двадцати тысяч герц. Более высокочастотные акустические колебания принято называть ультразвуками, их волнами летучие мыши и «ощупывают» окрестности.
Ультразвуки возникают в гортани летучей мыши. Здесь в виде своеобразных струн натянуты голосовые связки, которые, вибрируя, производят звук. Гортань ведь по своему устройству напоминает обычный свисток: выдыхаемый из легких воздух вихрем проносится через нее – возникает «свист» очень высокой частоты, до 150 тысяч герц (человек его не слышит).
Летучая мышь может периодически задерживать поток воздуха. Затем он с такой силой вырывается наружу, словно выброшен взрывом. Давление проносящегося через гортань воздуха вдвое больше, чем в паровом котле. Неплохое достижение для зверька весом 5-20 граммов!
В гортани летучей мыши возбуждаются кратковременные высокочастотные звуковые колебания – ультразвуковые импульсы. В секунду следует от 5 до 60, а у некоторых видов даже от 10 до 200 импульсов. Каждый импульс, «взрыв», длится всего 2–5 тысячных долей секунды (у подковоносов 5-10 сотых секунды).
Краткость звукового сигнала – очень важный физический фактор. Лишь благодаря ему возможна точная эхолокация, то есть ориентировка с помощью ультразвуков.
От препятствия, которое удалено на семнадцать метров, отраженный звук возвращается к зверьку приблизительно через 0,1 секунды. Если звуковой сигнал продлится больше 0,1 секунды, то его эхо, отраженное от предметов, расположенных ближе семнадцати метров, будет восприниматься органами слуха зверька одновременно с основным звучанием.
А ведь именно по промежутку времени между концом посылаемого сигнала и первыми звуками вернувшегося эха летучая мышь инстинктивно получает представление о расстоянии до предмета, отразившего ультразвук.
Поэтому звуковой импульс так краток.
Советский учёный Е. Я. Пумпер сделал в 1946 году очень интересное предположение, которое хорошо объясняет физиологическую природу эхолокации. Он считает, что летучая мышь каждый новый звук издает сразу же, после того как услышит эхо предыдущего сигнала. Таким образом, импульсы рефлекторно следуют друг за другом, а раздражителем, вызывающим их, служит эхо, воспринимаемое ухом. Чем ближе летучая мышь подлетает к препятствию, тем быстрее возвращается эхо и, следовательно, тем чаще издает зверек новые эхолотирующие «крики». Наконец при непосредственном приближении к препятствию звуковые импульсы начинают следовать друг за другом с исключительной быстротой. Это сигнал опасности. Летучая мышь инстинктивно изменяет курс полета, уклоняясь от направления, откуда отраженные звуки приходят слишком быстро.
Действительно, опыты показали, что летучие мыши перед стартом издают в секунду лишь 5-10 ультразвуковых импульсов. В полете учащают их до 30. При приближении к препятствию звуковые сигналы следуют еще быстрее – до 50–60 раз в секунду. Некоторые летучие мыши во время охоты на ночных насекомых, настигая добычу, издают даже 250 «криков» в секунду.
Эхолокатор летучих мышей – очень точный навигационный «прибор»: он в состоянии запеленговать даже микроскопически малый предмет – диаметром всего 0,1 миллиметра!
И только когда экспериментаторы уменьшили толщину проволоки, натянутой в помещении, где порхали летучие мыши, до 0,07 миллиметра, зверьки стали натыкаться на нее.
Летучие мыши наращивают темп эхолотирующих сигналов примерно за два метра от проволоки. Значит, за два метра они ее и «нащупывают» своими «криками». Но лету– чая мышь не сразу меняет направление, летит и дальше прямо на препятствие и лишь в нескольких сантиметрах от него резким взмахом крыла отклоняется в сторону.
С помощью сонаров[51]51
Сонар – изобретенный в конце тридцатых годов подводный эхолокатор. Успешно применялся в последней войне для обнаружения неприятельских подводных лодок. Название прибора образовано от английских слов «Sound Navigation and Ranging».
[Закрыть], которыми их наделила природа, летучие мыши не только ориентируются в пространстве, но и охотятся за своим хлебом насущным: комарами, мотыльками и прочими ночными насекомыми.
В некоторых опытах зверьков заставляли ловить комаров в небольшом лабораторном зале. Их фотографировали, взвешивали – одним словом, все время следили за тем, насколько успешно они охотятся. Одна летучая мышь весом в семь граммов за час наловила грамм насекомых. Другая малютка, которая весила всего три с половиной грамма, так быстро глотала комаров, что за четверть часа «пополнела» на десять процентов. Каждый комар весит примерно 0, 002 грамма. Значит, за пятнадцать минут охоты было поймано 175 комаров – каждые шесть секунд один комар! Очень резвый темп.
Гриффин говорит, что если бы не сонар, то летучая мышь, даже всю ночь летая с открытым ртом, поймала бы «по закону случая» одного-единственного комара, и то если бы комаров вокруг было много.