355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Генрих Кардашев » Радиоэлектроника-с компьютером и паяльником » Текст книги (страница 7)
Радиоэлектроника-с компьютером и паяльником
  • Текст добавлен: 16 апреля 2017, 22:00

Текст книги "Радиоэлектроника-с компьютером и паяльником"


Автор книги: Генрих Кардашев



сообщить о нарушении

Текущая страница: 7 (всего у книги 19 страниц)

Вариант азбуки Морзе для Европы был разработан австрийцем Фредериком Герке; именно он ввел в код одинаковые пробелы и всего лишь две длительности импульсов – точку и тире и ряд других упрощений. Американский и европейский варианты использовались для отправки сообщений по кабельным линиям, при переходе же к радиотелеграфу потребовался унифицированный код.

Вообще азбука Морзе неминуемо прошла весь путь, который проходила и обычная азбука, применяемая для письма.

Современный вариант международного «кода Морзе» (International Morse), или МТК появился в 1939 г., и имеет в своей основе «код Герке», хотя и не совпадает с ним полностью. Так называемый «континентальный» вариант продолжал еще использоваться кое-где на железных дорогах до середины 1960-х годов.

МТК является универсальным для языков на основе латиницы, но похожие коды были разработаны и для других алфавитов: так в эфире можно услышать своеобразный «японский код».

Для сообщений телетайпом (буквопечатающих телеграфных аппаратов стартстопного типа с клавиатурой) используется специальный код Бодо, унифицированный как Международный телеграфный код (МТК-2). Этот код является равномерным и в нем используется 5 двоичных знаков (точка/тире или ноль/единица) для каждого символа, а кодовая таблица содержит 32 позиции, от 0 до 31. В телетайпе применяется частотная манипуляция с двумя звуковыми сигналами частотой 170 Гц, передаваемым по отдельности, а каждый знак передается пятью битами. В радиоэфире телетайпные сообщения звучат как непрерывная трель и для их приема используются специальные декодеры. Совмещение идеи телетайпа с компьютером привело к созданию цифровой радиосвязи.

В настоящее время, когда происходит активный симбиоз радиолюбительского пакетного радио и сети Интернет, впервые за последние 65 лет в международный радиотелеграфный код Морзе был введен новый символ – «@». Введение в «морзянку» нового символа призвано удовлетворить, прежде всего, радиолюбителей, обменивающихся электронными адресами и почтой. Код символа «@» имеет вид: «точка-тире-тире-точка-тире-точка». Он составлен из кодов двух латинских букв – А («точка-тире») и С («тире-точка-тире-точка»), передаваемых без паузы.


Электродвигатели

Трудно составить такую комбинацию из магнитов, переменного тока и кусков меди, которая не имела бы тенденции к вращению.

У. Томсон

Электрические двигатели – это устройства, в которых происходит преобразование электрической энергии в механическую. Общая классификация предусматривает следующее разделение двигателей. По виду механической энергии на их выходе: на двигатели вращательного или поступательного (линейного) движения. По роду тока – переменного тока (асинхронные и синхронные) или постоянного тока, а также универсальные; по мощности – силовые и микродвигатели (двигатели малой мощности: примерно до 0,6 кВт).

Кроме того, в классификации могут использоваться и другие признаки: назначение, исполнение, вид физического эффекта, лежащего в основе преобразования энергии, способы управления и т. п.

Для радиолюбителей электродвигатели, как компоненты разнообразных устройств, в основном могут представить интерес в приводах орг– и бытовой техники, электроинструменте, в игрушках и моделях. Все это двигатели малой мощности, но самых разнообразных типов.

Создание электродвигателя условно можно отнести к одной из ступеней «очеловечивания» обезьяны по механической линии: палка, колесо, ветро– и гидродвигатели (и движители), тепловые устройства и машины (паровая, пороховая, реактивная, двигатель внутреннего сгорания), электродвигатель.

Первый шаг в этом направлении сделал М. Фарадей, описавший в 1821 г. опыты по вращению проводника в магнитном поле, а один из промежуточных, но результативных – Б. С. Якоби. В 1838 г. по реке Неве двигался бот с 12 пассажирами, приводимый в движение «магнитным двигателем» Якоби. Работа двигателя постоянного тока основана на взаимодействии проводников с током, располагаемых на якоре (вращающаяся часть двигателя) и магнитного поля, создаваемого обмоткой возбуждения, находящейся на магнитных сердечниках (полюсах) статора (рис. 24).


Рис. 24. Двигатель постоянного тока:

а – вид в разрезе (1, 6 – подшипниковые щиты; 2 – щетки; 3 – обмотка возбуждения; 4 – корпус; 5 – статор; 7 – вал; 8 – сердечник якоря; 9 – полюс; 10 – обмотка якоря; 11 – коллектор; 12 – подшипник); б – микродвигатель; в – компонент EWB

Поле возбуждения может также создаваться не обмоткой, а постоянными магнитами. Это взаимодействие приводит к появлению сил Ампера, создающих электромагнитный вращающий момент.

Подключение обмотки якоря к внешней цепи осуществляется через специальный щеточно-коллекторный узел. В последнее время появились бесколлекторные двигатели постоянного тока, имеющие датчики положения якоря и специальный полупроводниковый коммутатор.

В зависимости от способа соединения цепи якоря и обмотки возбуждения различают двигатели: независимого возбуждения, в которых обмотки питаются от разных источников (частный случай – возбуждение от постоянных магнитов); параллельного, последовательного и смешанного возбуждения. Вид механической характеристики (зависимости частоты вращения вала от нагрузки на нем) зависит от типа возбуждения.

В паспортных данных двигателей обычно указывают: напряжение питания, В; мощность (механическая мощность на валу) Вт или кВт; частоту вращения, об/мин; потребляемый ток, А. Реже можно встретить крутящий момент, момент инерции и другие характеристики.

Важной особенностью двигателей постоянного тока является простота регулирования частоты вращения с помощью реостатов, включаемых в цепь возбуждения или якоря, а также тиристорных преобразователей. При этом надо не забывать, что одновременно будет изменяться и момент (мощность) на валу двигателя.

В электродвигателях переменного тока неподвижная обмотка статора так распределена в пазах его внутренней поверхности, что при определенных способах питания ее переменным током, создаваемое ею магнитное поле вращается вокруг оси системы. Наиболее просто вращающееся поле получается в двух случаях.

В двухфазной системе (рис. 25) две обмотки (фазы) статора размещаются взаимно перпендикулярно (пространственный сдвиг) и питаются переменными синусоидальными напряжениями сдвинутыми по фазе также на 90° (временной сдвиг).


Рис. 25. Двухфазный асинхронный двигатель:

а – вид в разрезе (1 – обмотки статора; 2 – ротор); б – микродвигатель;в – УГО (РО – рабочая обмотка; УО – управляющая обмотка)

Таким образом, поле одной обмотки относительно ее оси (перпендикулярной оси двигателя) колеблется по синусоидальному закону, а второй – по косинусоидальному. Сложение этих взаимно перпендикулярных колебаний приводит к появлению суммарного магнитного поля, вращающегося вокруг оси статора. Смещение фазы напряжения второй обмотки на 90° в большинстве случаев получают за счет питания этой обмотки через конденсатор.

Принцип двухфазного двигателя был предложен итальянским ученым Г. Феррарисом и американским ученым и инженером, сербом по национальности, Н. Тесла практически одновременно во второй половине XIX в.

Еще более поразительным по своей оригинальности и простоте является второй вариант, предложенный в 1888 г. русским инженером-электриком, работавшим в германской компании АЭГ, М. О. Доливо-Добровольским. В его конструкции на статоре под углом 120° друг к другу размещались три фазные обмотки, питаемые от трехфазной сети переменного тока (напряжения отдельных фаз в этой сети имеют временной сдвиг, равный 1/3 периода). В результате образовывалось вращающееся магнитное поле.

В асинхронных двигателях это поле, пересекая проводники обмотки ротора, индуцирует в них ЭДС, которая создает ток в этих проводниках, если они замкнуты, например, как в короткозамкнутом роторе (по типу беличьей клетки, также предложенной М. О. Доливо-Добровольским). Взаимодействие вращающегося магнитного поля статора и проводников с токами в роторе приводит к появлению сил Ампера и вращающего момента. Ротор вращается вслед за полем статора, но с некоторым скольжением, т. е. асинхронно.

В мощных синхронных двигателях ротор в большинстве случаев представляет собой электромагнит. Для этого на валу размещают два сплошных контактных кольца (не путайте с коллектором) и питают обмотку ротора через щетки постоянным током, например от выпрямителя (двигатель при этом все равно относится к машине переменного тока – по принципу действия и питанию обмотки статора).

В маломощных двигателях ротор и вовсе выполняют как постоянный магнит, и проблемы с его питанием и особенностями классификации исчезают.

В некоторых микродвигателях ротор выполняют из магнитотвердых материалов (гистерезисные двигатели) или придают асимметрию его магнитной системе (реактивные двигатели).

Пуск синхронного двигателя происходит на «асинхронном моменте», для этого в мощных двигателях дополнительно размещают короткозамкнутую обмотку, а в маломощных начальные токи индуцируются просто в металлическом теле ротора. Далее ротор втягивается в синхронизм, продолжая вращаться вслед за полем статора с той же угловой частотой.

Интересной особенностью синхронных двигателей является возможность электрической редукции частоты вращения ротора по отношению к частоте вращения поля статора. Проще всего понижение частоты вращения ротора (субсинхронный режим) достигают выполнением на роторе значительно большего числа зубцов, чем на статоре.

Развитие цифровой техники стимулировало появление специального типа синхронных двигателей – шаговых двигателей. Собственно один из первых лабораторных электродвигателей, предложенный итальянским физиком Сальваторе даль Негро в 1831 г., содержащий электромагнит с храповым колесом, был предтечей шаговых двигателей. Подобные устройства впоследствии широко применялись в телефонии и телеграфии («шаговый искатель», стартстопные аппараты, импульсные механизмы дистанционной связи). Однако к середине прошлого века эта ветвь двигателестроения уже не развивалась. Появление ЭВМ привело к реанимации этого направления и бурному развитию дискретного привода.

Примером современного использования шаговых двигателей является привод перемещения считывающих и печатающих головок в различных устройствах.

В шаговых двигателях (рис. 26), имеющих ротор в виде постоянного магнита, последовательности импульсов в виде команд подаются на группы обмоток статора (имеющих 4, 6 или 8 выводов) так, что максимум суммарного поля поворачивается на определенный угол, ротор также поворачивается, следуя за полем и делая шаг, занимает новое положение.


Рис. 26. Шаговый двигатель:

а – общий вид; б – схема (А, В – управляющие обмотки; НВ – ротор)

Шаговые двигатели работают в комплекте с электронным коммутатором, переключающим обмотки управления на статоре с последовательностью и частотой, соответствующей заданной команде. Например, ротор может выполнять 48 шагов за один полный оборот, что соответствует угловому перемещению 7,5. Управление двигателями осуществляют от специальных микросхем или микроконтроллеров.

При подключении шаговых двигателей надо обратить внимание на рабочее напряжение, маркировку обмоток и величину вращающего момента.

Среди оригинальных конструкций микродвигателей, появившихся в последнее время, следует упомянуть пьезоэлектрические устройства, в которых колебания пьезокерамической пластинки через специальный упругий элемент приводят во вращение массивный ротор.

Антенно-фидерные устройства

Вертикальный провод и земля образуют род конденсатора, колебательный разряд которого и служит источником электромагнитных волн в окружающей среде.

А. С. Попов

С антенн начинается радиоприемник и ими заканчивается радиопередатчик. Слово «антенна» происходит от лат. antenna – мачта, рея. Антенны сопрягают электронные цепи преобразования сигналов с окружающим пространством, в котором распространяются радиоволны. Задача антенны заключается в преобразовании энергии электромагнитных волн, приходящих из окружающего пространства, в энергию электрических колебаний в приемном устройстве с сохранением заключенной в сигнале информации и, соответственно, в обратном преобразовании для передатчика.

Интуитивная догадка о конечной скорости распространения электромагнитных возмущений, наподобие волн иной физической природы, впервые была зафиксирована М. Фарадеем в его особом письме в Королевское общество Англии в 1832 г. Однако Фарадей, будучи по духу экспериментатором, не получив четкого экспериментального подтверждения своей гипотезы не опубликовал эту гипотезу, а лишь изложил ее в письме, которое запечатал и передан для хранения в архив. Когда в 1938 г. письмо вскрыли, то правота Фарадея и его приоритет стали очевидными.

Теорию электромагнитных волн и их родство со светом развил в своих работах Дж. К. Максвелл: он «родил» электромагнитные волны на кончике пера. Правда, как считан сам Максвелл, он лишь придан трудам Фарадея («плебейским», по выражениям других физиков, вследствие отсутствия в них математической «мишуры») строго математический («аристократический») вид.

Знаменитые «уравнения Максвелла» уже давно стали основой классической электродинамики, но вначале они представляли собой лишь не подтвержденную практикой теорию, разбросанную по всему «Трактату» и записанные не так, как приводятся сейчас. Эта работа всколыхнула многих ученых. Немецкий физик Генрих Герц, ученик Гельмгольца, первым ринулся ее ниспровергать, проводя многочисленные оригинальные и кропотливые опыты, но добился прямо противоположного результата: открыл существование электромагнитных волн в свободном пространстве и подтвердил их аналогию со светом.

5 декабря 1886 г. Герц пишет в письме Гельмгольцу (не разделявшему взглядов Максвелла): «Мне удалось совершенно определенно установить индукционное действие одной незамкнутой прямолинейной цепи на другую незамкнутую прямолинейную цепь».

Установка Герца была гениально проста. Источник высокого напряжения (типа автомобильной бобины) возбуждал кратковременный искровой разряд в воздухе между небольшими шариками, от которых горизонтально в две противоположные стороны отходили металлические стержни с большими шарами на концах. Позже это устройство назвали «вибратором Герца».

Индикатор представлял собой плоскую проволочную рамку с малым воздушным разрывом между хорошо зачищенными концами, располагаемыми в плоскости вибратора на удаленном от него конце. Регулировка этого зазора проводилась микрометрическим винтом, а систематические наблюдения за его состоянием – под микроскопом. Это устройство позже назвали «резонатором Герца».

12, 13 ноября 1886 г. Герц отмечает в своем дневнике: «Посчастливилось установить индукционное действие друг на друга двух незамкнутых цепей с током. Длина цепей 3 м, расстояние между ними 1,5 м». Герц обрадовался, увидев маленькую искорку в разряднике резонатора – это была «искра Божья», приведшая его к открытию, вместо предполагаемого «закрытия». А природа продолжала удивлять его: искра проскакивала и тогда, когда он перенес резонатор в другую комнату за дверь, благо она в то время была деревянной. Открытые волны, долгое время называемые «волнами Герца», послушно преломлялись в полуторатонной асфальтовой призме, как свет в стеклянной…

Подтвердив теорию Максвелла, Герц с немецкой пунктуальностью записал систему основных дифференциальных уравнений. Он использовал витиеватый и крайне неудобный готический шрифт (хорошо еще, что эта работа не проходила в стране «восходящего Солнца» или в «Поднебесной»). Современный вид того, что на всех языках теперь принято называть «уравнениями Максвелла», придал замечательный ученый-самоучка, его соотечественник О. Хевисайд.

В 1894 г. безвременно оборвалась жизнь Герца, но рожденные им волны продолжали жить. В этом же году английский физик О. Лодж прочитал в его память лекцию, продемонстрировав систему Герца, но используя в качестве регистратора волн вибратор, дополненный когерером, созданным на основе открытого французским ученым Э. Бранли эффекта уменьшения сопротивления металлических порошков под влиянием электромагнитного излучения. В цепь когерера включалась батарея и гальванометр, уверенно показывающий результат прихода волн большой аудитории.

Работы Герца и доклад Лоджа стали достоянием ученых и инженеров всего мира, и двое из них почти одновременно и, возможно, независимо друг от друга сделали следующие революционные шаги в рождении радиотехники.

7 мая 1895 г. преподаватель Минного офицерского класса в г. Кронштадте А. С. Попов продемонстрировал на заседании Физического общества в Петербурге прием электромагнитных волн от «герцевского вибратора» на изобретенный им прибор. В ознаменование этой даты в нашей стране с 1945 г. 7 мая был установлен как ежегодный День радио.

Приемник Попова, названный «грозоотметчиком» по одной из его функций, в отличие от устройства Лоджа, имел в своем составе ряд дополнительных элементов: реле, позволявшее с помощью принимаемых сигналов проводить их регистрацию (звуковую или запись на ленту); автоматический ударник, приводивший когерер в исходное состояние после приема очередного импульса; экран в виде клетки Фарадея, защищавший когерер от внешних помех, и, наконец, приемную антенну. Позже понятие об антенне, да и сам термин, были впервые употреблены в письме французского физика А. Блонделя к А.С. Попову в связи с изобретением последним антенн. А. Блондель в 1898 г. указал на необходимость учета влияния земли на работу вертикального вибратора и предложил, считая землю идеальным проводником, заменять ее в расчетах зеркальным изображением.

В первой конструкции Попова звонок одновременно выполнял функцию ударника, регенерирующего когерер. Приемник был выполнен в виде отдельного законченного устройства, а не набора, собираемого для проведения физических опытов или лекционных демонстраций (как у Лоджа), кроме того, и дальность приема была уже значительной.

В марте 1896 г. Попов продемонстрировал передачу по «беспроволочному телеграфу» сообщения между химическим и физическим корпусами Петербургского университета. Была использована не только приемная, но и передающая антенна, а текст сообщения – «Heinrich Hertz», напечатанный в коде Морзе на ленте, явился первой в мире радиограммой.

2 июня 1896 г. итальянский инженер-электрик Г. Маркони получил английский патент на «…усовершенствование в передаче электрических импульсов и сигналов на расстояние и в аппаратуре для этого». Его устройство мало чем отличалось от системы Попова, однако Маркони, получив патент, создал коммерческое предприятие и начал интенсивно развивать приемопередающую аппаратуру в мировом масштабе, тогда как работы Попова фактически ограничивались рамками Морского ведомства России и были весьма стеснены в средствах.

В отличие от большинства компонентов, рассмотренных в предыдущих разделах, составляющих различные электрические цепи, в которых распространение электромагнитных волн не имеет существенных задержек во времени прихода сигнала в различные части, в антенно-фидерных устройствах эти явления составляют сущность их функционирования. Если геометрия (размеры и конфигурация) соединения цепей в принципе не имеет большого значения (за исключением взаимных наводок и теплоотвода), то изменение геометрии в антеннах приводит к существенным изменениям их характеристик.

Процессы в антеннах зависят от соотношения между их размером и рабочей длиной волны: для оценок можно принять, что она не должна быть на порядок меньше, иначе ее эффективность будет ничтожно мала. Поскольку в современной радиоэлектронике используются волны с длиной от децимиллиметров до десятков километров, то и конструкции антенн имеют большое разнообразие в зависимости от диапазона и назначения.

По назначению различают антенны для радиовещательных станций, радиосвязи, телевизионные, для радиолокации и радио-телелемеханики, а также для радиоастрономии.

Основными элементами антенн являются, как правило, симметричные или несимметричные вибраторы. Симметричный вибратор (восходящий к Герцу) представляет собой два проводника одинаковой длины (в большинстве случаев в сумме составляющей половину длины волны – полуволновый вибратор), между которыми включается фидер (питающая линия), соединяющая антенну с передатчиком/приемником. Примером такой антенны является простейшая телевизионная антенна, показанная на рис. 27, а.


Рис. 27. Антенны:

а – простейшая телевизионная антенна (1 – полуволновой вибратор; 2 – фидер; 3 – подставка; пунктиром показано распределение тока I вдоль вибратора; λ – длина рабочей волны); б – вертикальная КВ-антенна

Вертикальная антенна (рис. 27, б) представляет, по сути, несимметричный вибратор (восходящий к Попову), в ней используется один проводник, подсоединенный к передатчику/приемнику. Один из зажимов последнего соединяется с землей (противовесом).

Важнейшей характеристикой антенн являются их поляризационные параметры. Электромагнитные волны могут иметь различную поляризацию – упорядоченное расположение вектора напряженности электрического поля в пространстве. В линейно поляризованной волне этот вектор при распространении остается параллельным самому себе.

Плоскость, в которой лежит вектор напряженности электрического поля, ориентируют горизонтально по отношению к земле (горизонтальная поляризация) или вертикально (вертикальная поляризация). Например, в системе эфирного телевизионного вещания, принятой в России, используется горизонтальная поляризация, что не трудно увидеть по расположенным горизонтально элементам антенн коллективного пользования, установленным на крышах зданий. Тогда как в США используется вертикальная поляризация, и приемные диполи там, соответственно, ориентированы вертикально.

В качестве фидера в телевизионных антеннах (а также в ряде других случаев) используют коаксиальный кабель. Коаксиальный ВЧ-кабель (рис. 28, а) состоит из центрального многопроволочного медного проводника, окруженного толстой полиэтиленовой оболочкой, одетой в медную оплетку, поверх которой имеется защитная полиэтиленовая оболочка. Внутренний проводник может быть также однопроволочным с изоляцией в виде диэлектрических шайб (рис. 28, б).


Рис. 28. Коаксиальные кабели:

а – с многопроволочным внутренним проводником и сплошной изоляцией; б – с однопроволочным внутренним проводником и изоляцией из диэлектрических шайб; в – ВЧ-разъем; г – компоненты EWB (линии передачи без потерь и с потерями)

Разборное соединение кабеля с отдельными блоками аппаратуры производится с помощью специальных разъемов (рис. 28, в).

Основные характеристики этих кабелей связаны с неискажаемой передачей информации. Кабель должен быть согласован по входу и выходу своим волновым сопротивлением и иметь малое затухание сигнала, а также быть экранированным от внешних электромагнитных наводок. Наиболее распространены кабели с волновыми сопротивлениями 50 и 75 Ом.

Свойства передающих антенн выражают через КПД, сопротивления излучения, волновое и входное, характеристику направленности, коэффициент усиления, частотную характеристику и полосу пропускания.

В зависимости от последних факторов различают широкополосные и диапазонные антенны.

Конструкции приемной и передающей антенн могут отличаться, однако их основные характеристики при использовании в другом режиме сохраняются (свойство взаимности), если схемы включения антенны в передатчике и приемнике соответствуют друг другу. Поэтому по многим вышеперечисленным характеристикам передающих антенн можно судить и об антеннах приемных.

Важной характеристикой приемных антенн является их действующая длина (высота) и согласование ее с фидерной линией.

Действующая высота антенны – коэффициент пропорциональности между ЭДС, наведенной в антенне электромагнитной волной, и напряженностью поля при вертикальной поляризации; сопротивление излучения – величина, пропорциональная произведению квадрата отношения действующей высоты антенны к длине рабочей волны.

Большое влияние на работу антенн оказывает земля. Специальное заземление через грозовой переключатель и разрядник обязательно выполняется для наружных антенн с целью предохранения людей, аппаратуры и зданий от проявлений атмосферного электричества во время грозы. Грозоразрядники являются непременным атрибутом коммерческих радиосистем. Любители коротковолновики и ультракоротковолновики также всегда уделяют внимание проблемам грозозащиты. Однако старое «дедовское» отключение входных цепей и питания при приближении грозы – это самый надежный способ. Все-таки, радио родилось от грозы, не дайте ему от нее и погибнуть.

В отличие от приемных либо передающих радиовещательных и телевизионных антенных устройств, антенны для систем связи являются приемопередающими. Отечественные разработчики классифицируют антенны для систем связи на две большие группы. Базовые антенны, устанавливаемые вблизи базовой приемопередающей станции и обеспечивающие максимально возможную зону покрытия. Абонентские антенны, предназначенные для обеспечения устойчивой связи в зоне покрытия базовой станции. Последние могут быть стационарными и мобильными самых разнообразных конструкций (типа волновой канал, спиральные, параболические и т. п.).

В мобильных устройствах связи (радиотелефон и т. п.) используют специальные приемы для уменьшения их габаритов по сравнению с четвертьволновой штыревой антенной с одновременным обеспечением их эффективности. Это добавление удлинительной катушки, т. е. индуктивной катушки, имеющей высокую добротность и элементы настройки, включаемой последовательно с укороченной штыревой антенной. Используется также CLC-катушка – удлинительная катушка, находящаяся не в корпусе и не в основании антенны, а в середине штыря.

Укорочение антенн ДВ и СВ диапазонов, где радиостанции работают с вертикальной поляризацией, производится включением емкостной нагрузки на верхнем конце приемного вертикального диполя. Роль этой емкости выполняет горизонтальная часть Г-образных и Т-образных антенн, проводники в изоляторе «метелочной» антенны или спицы в «колесе», закрепленные на вертикальном шесте, а также верхние части растяжек в «зонтичной» антенне. Вообще антенны представляют сложные и разнообразные конструкции, например, на рис. 29, а показана ромбическая антенна.


Рис. 29. Антенны:

а – ромбическая (l – сторона ромба; Ф – фидер, соединяющий антенну с передатчиком или приемником: R – резистор);б – типа «волновой канал» (1 – кабель питания; 2 – рефлектор; 3 – директоры; 4 – активные вибраторы). Стрелкой показано направление максимальной интенсивности излучения/приема

Для усиления принимаемого сигнала используются многоэлементные антенны (рис. 29, б).

В электрических («проволочных») антеннах (Г-образных, Т-образных, штыревых и т. п.) принимаемый сигнал формируется электрической составляющей электромагнитного поля, а в магнитных – магнитной компонентой.

Магнитная антенна (рис. 30) представляет собой высокочастотный ферритовый стержень (цилиндрический или плоский), на котором располагаются катушки: приемные и связи. Для ДВ и СВ диапазонов ферритовая антенна, реагирующая на магнитную составляющую, перпендикулярную электрической, располагается горизонтально.


Рис. 30. Магнитные антенны:

а – внешний вид; б – УГО

В портативных радиоприемниках магнитная антенна закрепляется обычно под верхней крышкой (т. е. в нормальном положении в горизонтальной плоскости). В связи с направленностью магнитной антенны для увеличения чувствительности приемник (или в ламповых приемниках антенну) вращают вокруг вертикальной оси, добиваясь эффективного приема. Для приема в КВ и УКВ диапазонах используют настраиваемую по длине и углу наклона телескопическую штыревую антенну.

С уменьшением длины волны растет направленность излучения и приема волн, и радиосистемы становятся похожими на оптические. В антенно-фидерных устройствах используют волноводы, делители мощности и другие специальные компоненты. Антенны деци– и сантиметровых волн снабжают рефлекторами: параболическими или сферическими («тарелки»), в фокусе которых помещают приемный или передающий элемент. Применяют также разнообразные рупоры (рис. 31) и специальные линзовые системы.


Рис. 31. Рупорная антенна:

1 – рупор; 2 – питающий радиоволновод. (Направление максимального излучения показано стрелкой)

В заключение этого раздела отметим, что наиболее короткие приемные дипольные антенны созданы сейчас на основе нанотрубок, и их размеры соизмеримы с длинами электромагнитных волн светового диапазона (сотни нанометров). Однако пока не создан соответствующий детектор, а то бы после столетия развития радио мы (по спирали) вернулись бы к детекторному приемнику, но крайне малых размеров и работающему за границами радиодиапазонов.


    Ваша оценка произведения:

Популярные книги за неделю