Текст книги "Радиоэлектроника-с компьютером и паяльником"
Автор книги: Генрих Кардашев
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 8 (всего у книги 19 страниц)
1.4. Вспомогательные компоненты
Провода и кабелиЕсли взяться за один конец оголенного провода и за другой конец оголенного провода, то поймешь, почему горит электрическая лампочка.
С. Альтов, писатель-юморист
Провода и кабели, используемые радиолюбителями в своей практике, условно можно разделить по назначению на пять групп: силовые, монтажные, обмоточные, высокого сопротивления и информационные. Силовые кабели, провода и шнуры используются для обеспечения питания устройств. Поэтому требования к ним исходят из условий передачи необходимой мощности электроэнергии при соблюдении электро– и пожаробезопасности.
В качестве изоляции проводов используют резину, полиэтилен, поливинилхлорид и т. п. материалы. Кабель или шнур содержит несколько токопроводящих жил, изолированных друг от друга и заключенных в общую защитную оболочку.
Токонесущие жилы выполняют в основном из меди и алюминия. Сечение жил измеряют в мм2 и называют «квадратом». Для ориентировки укажем, что при однофазной нагрузке в 1 кВт в бытовой электросети напряжением 220 В ток в отдельном проводе составляет примерно 5 А. Допустимый же длительный ток в отдельном проводе кабеля с медными жилами сечением жил от 1,5 до 6 квадрат соответственно составляет от 23 до 50 А.
Монтажные провода различают по виду жил: с однопроволочной жилой диаметром 0,3…1,8 мм и гибкие провода сечением 0,05…2,5 мм, скрученные из проволок диаметром 0,07…0,3 мм.
Отдельные провода для удобства пайки при монтаже аппаратуры покрывают оловом или оловянным сплавом («луженые» провода).
Изоляция проводов бывает волокнистой (шелк – МШЛ, МГШЛ), эмалево-волокнистой и пластмассовой.
Медные обмоточные провода, используемые в катушках, дросселях, трансформаторах и двигателях, имеют диаметр 0,02…5,2 мм и изоляцию из лакостойкой эмали (ПЭЛ), винефлексированное покрытие (ПЭВ), шелковые и хлопчатобумажные покрытия. Термостойкость проводов составляет в зависимости от вида покрытия 100…200°, но рекомендуется не доводить температуру обмоток выше 80°. Для намоток высокочастотных контурных катушек используют провод, называемый литцендратом. В нем скручено от 7 до 119 отдельных изолированных жил диаметром от 0,07 до 1,22 мм.
Провода с высоким сопротивлением используют для изготовления эталонов сопротивлений, шунтов и добавочных сопротивлений, реостатов и балластных сопротивлений, а также нагревательных приборов. Эти провода изготавливают из сплавов с высоким удельным сопротивлением (манганин, константан, нихром и др.).
Провода могут быть как изолированными, так и не иметь ее («голый провод»).
Информационные шнуры и кабели используются для передачи сигналов. Например, телефонный двухжильный кабель или рассмотренный выше высокочастотный коаксиальный телевизионный антенный кабель.
Для защиты от помех в структурированных кабельных системах (СКС) компьютерных сетей и интерфейсных проводах помимо экранов используют так называемые витые пары из медных изолированных проводов. Один из этих проводов соединяется с «сигнальной землей». (Здесь уместно вспомнить, что на заре электрификации бытовую электропроводку также выполняли скрученным из двух проводов шнуром и, отнюдь, не для борьбы с помехами или «чтобы синус легче бегал по этим изогнутым проводам», как шутили школьники, а для удобства монтажа в помещениях на опорных фарфоровых изоляторах – «роликах».)
В отдельный кабель, как правило, заключают несколько витых пар, имеющих цветовую маркировку (рис. 32, а).
Рис. 32. Кабели СКС:
а – витая пара; б – кабель ВОЛС
Часто в подобных кабелях используют два дополнительных экрана: из фольги и медной оплетки – «кашу маслом не испортишь».
В компьютерной технике межблочные соединения выполняют специальным плоским ленточным кабелем с количеством проводников от 9 до 64.
HI-FI изыски привели аудиогурманов к созданию так называемых «акустических кабелей», состоящих из специально обработанных медных жил, особой чистоты и структуры вытяжки, и даже позолоченных для уменьшения потерь на скин-эффект.
Особую группу составляют волоконно-оптические линии связи (ВОЛС). Идея передачи света по специальным каналам просматривается в известном опыте 1870 г. английского физика Дж. Тиндаля, продемонстрировавшего полное внутреннее отражение в параболической струе воды. В середине прошлого века Брайеном О Бриеном, работавшим в американской оптической компании, и Нариндером Капани с коллегами в Имперском научно-технологическом колледже в Лондоне были разработаны волокна для передачи изображения. В 1956 г. Капани ввел термин «волоконная оптика».
После изобретения лазеров ВОЛС начали развиваться очень активно во всем мире.
В ВОЛС сигналы в виде световых импульсов передаются по кабелям, составленным из световодов – тонких цилиндрических волокон сверхчистого кварцевого стекла. Световод имеет две области: сердцевину диаметром 62,5 мкм и оболочку диаметром 125 мкм.
Показатель преломления оболочки выполняют меньшим, по сравнению с показателем преломления сердцевины. В результате большая часть лучей света, попавших от оптоэлектронного источника на торец световода претерпевает на поверхности раздела сердцевина – оболочка полное внутреннее отражение и с очень малыми потерями распространяется вдоль него.
Существуют световоды и с более сложной внутренней структурой. В качестве передаваемого сигнала обычно используется электромагнитное оптическое излучение ближнего инфракрасного диапазона, соответствующее частотам 1014…1015 Гц. Оптический кабель может иметь несущие стальные проволоки и ряд защитных оболочек, а также дополнительно медную витую пару. Количество отдельных волокон может составлять от 4 до 72 (рис. 32, б). Стандартные длины кабелей составляют до 5 км, хотя существуют и трансокеанские ВОЛС в 50 км. Сварка оптических кабелей производится на специальных аппаратах и значительно сложнее пайки или сварки медных проводов.
В заключение этой беглой экскурсии по проводам да кабелям напомню один анекдотический случай, чуть не приведший к катастрофе. В некоторой стране N готовились к постройке ядерного реактора. Заказали урановые блоки в нужном количестве. Снабженцы стали доставлять и складировать их, как обычные ящики. При штабелировании очередной партии узрели небольшой дымок и позвали физиков. Те схватились за голову и немедленно бросились растаскивать блоки в разные стороны. Еще чуть-чуть и набралась бы критическая масса для взрыва. Применяя провода, не уподобляйтесь этим «горе-снабженцам», а задумывайтесь: «что, для чего и почему».
Соединители и разъемыМухи, забираясь между контактами и в зазоры, могут нарушить работу аппаратов…крысы сгрызают изоляцию до металла провода.
Р. А. Кисаримов. Справочник электрика
Существуют самые разнообразные способы и устройства, с помощью которых осуществляется соединение электронной аппаратуры с источниками питания и сигналов, отдельных блоков между собой, соединения с выходными устройствами и т. п. Если отбросить вульгарную «скрутку» проводников, то первые соединители и разъемы появились на физических приборах в виде клемм и специальных наконечников на проводах (рис. 33, а).
Рис. 33. Электрические соединители:
а – наконечники; б, в – клеммники; г – УГО разъемного соединения; д – розетка; е – вилка; ж– панелька для микросхемы
Для соединения проводников широко используют разнообразные клеммники (рис. 33, б, в).
Электрическая вилка (штепсель) и розетка являются простейшим примером силового разъема; в мобильных устройствах штепсельный разъем может выполняться на концах кабелей (рис. 33, д, е).
Другим широко используемым ВЧ-разъемом являются штеккер и гнездо для телевизионной антенны (см. рис. 28, в).
В зависимости от области применения к конструкциям соединителей предъявляются разные требования, и они изготавливаются соответствующим образом.
Условно соединители или разъемы можно разделить на электротехнические (силовые, сильноточные) и радиотехнические (слаботочные, сигнальные, связные). К первым предъявляется требование передачи необходимой мощности, а ко вторым – отсутствие искажений в передаваемом сигнале. Различие между первыми и вторыми растет по мере увеличения мощности и частоты сигнала.
Соединители (или разъемы) имеют изоляционные основания, на которых закрепляются штыри (ножи) и гнезда, образующие контактные пары. Разъемы отличаются числом контактных пар, их конфигурацией и площадью, геометрическим расположением в пространстве, типом изолятора, способами крепления и фиксации и т. п. Преобладающими формами соединителей являются цилиндрические и плоские (рис. 33, ж). Поверхности ВЧ-разъемов для обеспечения малого сопротивления покрывают серебром и золотом. Для того чтобы обезопасить выход аппаратуры из строя («защита от дурака»), разъемы каждого типа часто имеют свои характерные ключи, например, вырезы в разъеме материнской платы персонального компьютера.
Специальные типы разъемов используют в ВОЛС. Они отличаются прецизионной точностью сочленения (рис. 34).
Рис. 34. Оптоволоконные разъемы
В электроосветительной аппаратуре используют разъем типа цоколь – патрон, а в радиоустройствах – цоколь на радиолампе и панельку на шасси. Разъемы специального типа (слоты) используют в компьютерном «железе».
Для обеспечения электрического контакта с подвижными токовводами (например, с коллектором электродвигателя), используют специальные углеграфитовые щетки.
Любые разъемы достаточно часто являются источником отказов в работе аппаратуры и требуют поэтому повышенного внимания при выборе и эксплуатации.
Электрорадиоматериалы и изделияЭлектроизоляционные материалы и изделия
Использование электричества немыслимо без применения не только проводников, но и изоляторов. Разнообразные диэлектрики, начиная от природного янтаря, от которого У. Гильберт в 1600 г. произвел термин «электричество», и, кончая самыми мудреными композитными материалами, на протяжении веков сопровождают развитие электротехники, электроники и радиотехники.
По своей физической природе электроизоляционные материалы относятся к диэлектрикам, поэтому при их использовании надо руководствоваться соответствием их функционального назначения и соответствующих свойств.
В силовых системах электроснабжения изоляционные материалы обеспечивают электрическую изоляцию устройств и их отдельных частей и защиту от внешних воздействий, поэтому основными характеристиками служат: электрическая и механическая прочность, термо– и влагостойкость.
В высокочастотных цепях важна диэлектрическая проницаемость и потери энергии на нагрев («тангенс угла диэлектрических потерь»). Косвенно важны старение и другие показатели.
На бытовом уровне к наиболее ходовым электроизоляционным материалом относятся различные изоляционные ленты. Лента электроизоляционная прорезиненная липкая представляет собой хлопчатобумажную ткань, на поверхность которой нанесена липкая резиновая смесь. Лента изоляционная поливинилхлоридная липкая марки ПВХ изготовляется на основе светотермостойкого изоляционного пластиката, на одну сторону которого нанесен липкий состав. Существуют также ленты термостойкие, лакотканевые и киперные.
Полихлорвиниловые трубки могут заменять изоляционную ленту для защиты отдельных проводов или жгутов проводов при их вводе в корпуса аппаратов, двигателей, в металлические трубы. В последнее время появились специальные термоусадочные трубки.
В радиолюбительской практике находят применение и другие изоляционные материалы: прокладочный картон (толщиной от 0,3 до 2,5 мм), картон асбестовый, асбестовые нити и шнуры, слюда, а также разнообразные высокополимерные твердые материалы (полистирол, полиэтилен, поливинилхлорид, фторопласт, органическое стекло и др.). По-прежнему широко используются гетинакс, текстолит, изделия из керамики, фарфора, радиофарфора и карболита. Термопласты (например, полиэтилен) позволяют после нагрева придавать изделиям определенную форму, а реактопласты формовать их в процессе полимеризации.
Соединения изоляционных изделий производят склеиванием и сваркой. Популярными народными средствами являются клеи БФ и «Момент», а также эпоксидные компаунды и разнообразные лаки.
Магнитные материалы и изделия
Все магнитные материалы подразделяют на два класса.
Магнитно-мягкие материалы обладают большой магнитной проницаемостью, небольшой коэрцитивной силой и малыми потерями на гистерезис. К подобным материалам относят листовую электротехническую сталь, железоникелевые сплавы (пермаллой), магнитодиэлектрики (например, карбонильное железо) и высокочастотные ферриты. Эти материалы применяют в сердечниках трансформаторов, электродвигателей, реле и индуктивных катушек. Ферриты используют также для «магнитных антенн» радиоприемников.
Магнитно-твердые материалы имеют большую коэрцитивную силу и способны длительное время сохранять свое намагничивание. Именно это их свойство, а также способность притягивать железные предметы и привели человечество к открытию ферромагнетиков и исследованиям магнитных явлений. Магнитно-твердые материалы классифицируют по способу их получения.
Литые материалы получают на основе сплавов Fe-Ni-AI и Fe-Ni-AI–Co, легированных медью, титаном, ниобием и некоторыми другими элементами.
Порошковые материалы получают путем прессования и спекания различных порошков, например ферритов бария и кобальта.
Магнитно-твердые материалы широко используют для изготовления постоянных магнитов динамических головок, измерительных приборов, в электродвигателях, устройствах магнитной памяти.
Печатные платы
Внимательное изучение поверхности платы с лупой позволило заметить тоненькое замыкание шириной 0,08 мм, образовавшееся в результате того, что на фотошаблон упал волос.
Роберт А. Пиз
По мере роста интеграции компонентов в микроэлектронике, когда отдельные функциональные блоки устройств в виде интегральных микросхем в устройстве стали миниатюрными и уменьшились напряжения и токи их питания, старые способы проводного монтажа стали бессмысленны. Произошел переход к печатному монтажу, в основу которого была положена печатная плата.
Свое название печатная плата получила по первоначальному процессу изготовления путем печати фотошаблонов. В настоящее время подобные платы изготавливают травлением, но название сохранилось.
Плата является пластиной из электроизоляционного материала (стеклотекстолита или гетинакса) с поверхностным слоем фольги, которой травлением придан рисунок необходимых соединений выводов компонентов. В плате выполняются отверстия для крепления компонентов и контактные площадки для крепления и пайки деталей (рис. 35).
Рис. 35. Печатные и макетные платы
Платы могут быть одно– и двухсторонними, а также многослойными. Соединительные проводники из тонкой медной фольги, остающиеся после травления, называют дорожками. В конечном счете, проводящий рисунок из дорожек и контактных площадок представляет собой своеобразную монтажную электрическую схему устройства. Таким образом, печатная плата несет двойную функцию, играя роль универсального межкомпонентного соединителя и, одновременно, несущей конструкции для навесных компонентов, разъемов и т. п. деталей.
Опытные радиолюбители самостоятельно разрабатывают разводки печатных плат и изготавливают их. В литературе имеется на этот счет множество полезных рекомендаций. Однако следует отметить, что разработка рисунка (по научному – топологии) разводки проводников и размещения компонентов на плате является даже для сравнительно простых устройств не простой задачей. Дело в том, что при этом необходимо учесть множество самых разных факторов: минимизация длины дорожек, отсутствие их пересечения на одной плоскости, взаимные электромагнитные наводки, теплоотвод и т. д.
В профессиональной деятельности для этих целей используются специальные компьютерные программы автоматизированного проектирования. Процесс нанесения фотошаблона, например на лазерном принтере, конечно, не так сложен, но вот последующее химическое травление требует большой аккуратности и терпения. Поэтому начинающим радиолюбителям рекомендуется на первых порах ограничиться более простыми макетными платами, на которых закрепляются компоненты, а соединения выполняется тонкими проводниками, или готовыми печатными платами.
Радиаторы охлаждения
Держи ноги в тепле, а голову (и приборы) на холоде…
Роберт А. Пиз
На транзисторе должна рассеиваться мощность…
Не пытайтесь убедиться в этом, если вы не готовы к последствиям! Выделяющегося тепла достаточно, чтобы за очень короткое время испортить устройство (и обжечь палец).
Дж. Уэйкерли. Проектирование цифровых устройств
Работа электронных устройств с неизбежностью приводит к их нагреву вследствие потерь при протекании тока, поглощения переменных высокочастотных полей и других факторов. В то же время многие характеристики компонентов сильно зависят от температуры. Поэтому на практике принимают меры, не только уменьшая рабочие токи и применяя специальные материалы, но и непосредственно по их охлаждению.
Тепло от нагретого тела может отводиться излучением, теплопроводностью и конвекцией. В любом случае развитие охлаждающей поверхности существенно увеличивает теплоотдачу.
Наиболее простой прием заключается в использовании специальных радиаторов, закрепляемых на соответствующих компонентах.
Радиаторы изготавливают из легких сплавов, снабжая их большим числом разнообразных ребер, увеличивающих теплоотдачу в окружающий воздух за счет конвекции (естественной) и вынужденной (обдув). Кроме того, внешнюю поверхность радиаторов зачерняют для увеличения теплового излучения. В теле радиаторов выполняют посадочные поверхности, сопрягаемые с соответствующими корпусами компонентов: диодов, транзисторов и интегральных схем (рис. 36).
Рис. 36. Радиаторы охлаждения
Основным параметром радиаторов является так называемое «тепловое сопротивление». Это «сопротивление» вводится из аналогии процессов теплопроводности и электропроводности. В рассматриваемом случае причиной передачи тепла выступает разность температур (аналог разности потенциалов) между нагретым телом и окружающей средой (измеряется в градусах), а следствием (аналогом электрического тока) – тепловой поток (измеряется в ваттах). Деля количественную меру причины на количественную меру следствия, получаем количественную меру теплового сопротивления в град/Вт.
Выпускаются радиаторы малой мощности с тепловым сопротивлением от 4 до 10 град/Вт, средней – от 2 до 4 град/Вт, большой мощности – от 2 до 1 град/Вт и очень большой, для которых оно меньше.
Необходимо иметь в виду, что дополнительный обдув радиаторов потоком воздуха от вентилятора сильно снижает величину теплового сопротивления.
Поскольку радиаторы выполняют из металла, то в случае, если корпус компонента не должен заземляться, между ним и радиатором вводят проводник тепла, обладающий электроизоляционными свойствами: слюда, окись алюминия или специальная термическая смазка (компаунд). Смазки приготовляют из смесей окиси бериллия, нитрита бора, силиконового каучука и стекловолокна. Смазки имеют тепловые сопротивления от 0,1 до 0,45 град/Вт. Тепловое сопротивление смазки и радиатора в процессе теплопередачи включаются последовательно (складываются).
Смазку обязательно используют, например, при фиксации радиатора с микровентилятором на центральном процессоре компьютера.
Корпуса и механические детали
Конструирование электронной аппаратуры требует мастерства, а мастерство, как известно, приходит с опытом.
Дж. Кар. «Проектирование и изготовление электронной аппаратуры»
Всякая аппаратура и устройства, за исключением макетных плат, обычно заключаются в тот или иной корпус. Основное назначение корпуса: сборка всех блоков в одно целое, механическая и иная защита устройства, размещение органов управления, контроля и интерфейсных входов и выходов и т. п. Кроме этого, корпус может иметь и дополнительные функции: акустического элемента, электромагнитного экрана и др. От корпуса зависит эргономика (удобство обращения) и эстетическое восприятие всей конструкции.
Радиолюбители зачастую корпуса изготовляют самостоятельно на свой вкус. Можно воспользоваться и готовыми изделиями и доработать их под свое устройство: «довести до ума». Когда-то в ходу были пластмассовые мыльницы, используемые для корпусов первых транзисторных радиоприемников. Теперь для своей самоделки можно подобрать подходящий стандартный корпус.
Стандартные корпуса изготовляют из тонкостенных (0,8 мм) материалов: стали, алюминия и различных пластмасс. Корпуса могут иметь различные покрытия и отделку, в них также имеются разнообразные функциональные отверстия, сборочные и технологические закладные крепежные элементы (рис. 37).
Рис. 37. Пластиковые корпуса