355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Генрих Кардашев » Радиоэлектроника-с компьютером и паяльником » Текст книги (страница 1)
Радиоэлектроника-с компьютером и паяльником
  • Текст добавлен: 16 апреля 2017, 22:00

Текст книги "Радиоэлектроника-с компьютером и паяльником"


Автор книги: Генрих Кардашев



сообщить о нарушении

Текущая страница: 1 (всего у книги 19 страниц)

Кардашев Генрих Арутюнович
«Радиоэлектроника – с компьютером и паяльником»
Массовая радиобиблиотека
Выпуск 1276

Предисловие

Видеть и делать новое – очень большое удовольствие.

Вольтер



Открыв обложку этой книги, мы приоткрываем дверь, ведущую в загадочную страну с певучим названием «Ра-ди-о», ощущая ритм ее сердца-столицы: «Э-лек-тро-ни-ка». Люди более ста лет назад открыли этой чудесный край, и теперь мы все время живем в нем, смотря «видак», общаясь через «сотовый» и без устали молотя по клавиатуре терпеливого ПК.

«Но что же находится внутри этих умных устройств? Как они устроены? Нельзя ли сделать что-либо такое же или еще лучше самому?» Хотелось бы во всем этом разобраться.

Народная мудрость гласит: «Клин клином вышибают». Следуя ей, будем для постижения тайн электроники использовать саму электронику, ее высшее достижение – Компьютер.

Издавна инженеры и ученые для изучения и разработки устройств использовали различные модели. Одной из таких моделей и является принципиальная электрическая схема. Вот если бы только она была говорящей да показывающей, что там происходит в этой «мешанине» резисторов, да транзисторов. Это было бы чудо, но оно стало возможным: теперь это «обыкновенное чудо». Чтобы его совершить, вовсе не надо быть волшебником, а надо иметь ПК и установить на него какую-либо простейшую схемотехническую программу, например, Electronics Workbench («Электронная лаборатория»), называемую далее EWB.

Заранее не пугайтесь слова «моделирование» – оно носит характер обычной компьютерной игры, но только с электронными компонентами. Правила, по которым происходит эта игра и есть правила моделирования электронных устройств в виде виртуальных схем-моделей, набираемых на компьютере.

Сегодняшний радиолюбитель без компьютера, это как прежний – без паяльника. Нет, сомнений, что читатели обладают навыками работы на ПК в Windows и смогут работать с книгой не «всухую» или не «вслепую», а параллельно с набором рассматриваемых схем на компьютере.

Это в части теории, но ее надо обязательно подкрепить практикой. Поэтому периодически откладываем в сторонку компьютерную мышь и вооружаемся паяльником. Выбор объекта является произвольным, но он обязательно привязан к какому-либо реальному устройству. Наиболее удобными в этом плане представляются наборы Мастер КИТ, позволяющие все пощупать своими руками, создать что-то полезное «для дома, для семьи» или для души, а в паре с компьютерным моделированием – и для ума. Для более систематического изучения электроники и компьютерного моделирования можно обратиться к двум ранее вышедшим нашим книгам по аналоговым и цифровым устройствам или иным источникам.

В данной книге популярно рассказывается, как собрать простейшие и в то же время интересные электронные самоделки, отладить их работу, одновременно выясняя принцип действия. Несомненно, на предлагаемом пути могут встретиться трудности: не всегда виртуальные модели и реальные устройства будут работать «как часы». «Не ошибается только тот, кто ничего не делает», хотя это и есть основная ошибка: ничего не делать.

В связи с использованием графического интерфейса конкретной компьютерной программы и схем-вкладышей, прилагаемых к наборам, между ними может наблюдаться некоторый диссонанс в условно-графических обозначениях. Кроме того, наборы совершенствуются, и меняется их элементная база. Однако это не изменяет существа и требует лишь дополнительного внимания. «Тяжело в учении». Зато, когда устройства заработают, можно радостно воскликнуть победное: «Ура!». И вот еще дымится паяльник, но уже «подмигивают» светодиоды, играет музыка, невидимые лучи сторожат ваше жилище… Это, безусловно, здорово – создать что-то своими руками и не менее интересно что-то постигнуть своим умом и открыть (пусть даже лишь для себя) заново.

Книгой можно пользоваться вместе с товарищами, а также при организации работы любительских кружков. Мы будем рады оказать Вам необходимую консультационную помощь в случае возникновения вопросов в данной области.

Итак, у нас наготове два конструктора: виртуальный и реальный, неведомая сила влечет нас. Включаем компьютер и паяльник.

Смело, вперед!

1. ЗАГЛЯНЕМ ВНУТРЬ

Переход от принципиальной схемы к ее практической реализации не прост. Объясняется это столь большим разнообразием типов и их модификаций, что человек, не знакомый с их особенностями, зачастую может стать в тупик.

Жан-Франсуа Машу.


Путеводитель по электронным компонентам

Функционирование и характеристики любого электронного устройства заложены в его «внутренностях», главным образом в компонентах, из которых оно изготовлено, и схемотехнике, т. е. способе соединения компонентов. Конечно, окончательная работоспособность устройства зависит и от многих других факторов: конструктивных особенностей, вида и качества сборки, внешних условий, режимов эксплуатации и т. п. Однако это все вторичные факторы, а первичными являются компоненты – «внутренние органы» и схемотехника, своеобразная «электроанатомия» устройств, раскрывающая взаимосвязь этих «органов». На радиолюбительском жаргоне это, соответственно, «радиодетали» и «схемы».

Вначале мы разберем электронные устройства по «косточкам» – компонентам, пощупаем их. «Вскрытие покажет» – любят говорить врачи. Мы же посмотрим, как устроены детали, попробуем их на вкус, запах и цвет, вспомним, как они рождались. Позже научимся составлять из них «живые» электронные устройства: виртуальные и реальные.

В виртуальных устройствах, моделируемых на компьютере, используется специальный графический язык, на котором реальные компоненты замещены на их условно-графические обозначения (УГО), а устройство «работает-живет» на дисплее в виде некоторой схемной модели. Поэтому, наряду с описанием реальных компонентов, приводятся их изображения на схемах, как в российском ГОСТ, так и в европейском стандарте DIN, принятом в одном из вариантов установки программы EWB.

Основу классификации компонентов составляют их физические характеристики и функциональное назначение в электронных устройствах.

Все радиоэлектронные компоненты можно очень условно разделить на несколько групп.

Простейшими являются батареи, резисторы, конденсаторы, индуктивные катушки и трансформаторы.

К основным компонентам относятся электровакуумные, полупроводниковые и оптоэлектронные приборы. Среди них главенствующее положение занимают интегрированные устройства: микросхемы, микропроцессоры, микроконтроллеры и различные приборы программируемой логики.

Дополнительными компонентами являются электромеханические и электроакустические системы, а также антенно-фидерные устройства.

Существует также и группа различных вспомогательных компонентов, к которым относятся соединительные провода, разъемы и т. п.

Рассматривая электронные устройства как сложные электрические цепи, режимы их работы характеризуют протекающими токами и напряжениями на отдельных участках. «Жизнь» электронного устройства проявляется в его сигналах (внутренних и внешних). Однако как бы сложно не было электронное устройство, для своей работы оно требует источника питания. Ничто не дается даром (в частном случае – простейшем детекторном радиоприемнике – таковым является сам принимаемый сигнал).

Все источники питания являются преобразователями энергии. Различают первичные и вторичные источники.

Первичные – преобразуют какой-либо вид энергии в электрическую (электромагнитную) энергию. Например, электромашинные генераторы, приводимые в действие турбинами, или солнечные (световые) батареи.

Вторичные – преобразуют электрическую энергию с одними характеристиками в электрическую энергию с другими характеристиками. Например, выпрямители, инверторы и т. п. устройства.

Вторичные источники электропитания, как правило, являются отдельными выносными (адаптеры, стабилизаторы и т. п.) или внутренними блоками, собранными из других компонентов. Примеры этих источников приводятся в последующих разделах наряду с другими электронными устройствами, начнем же с обычных химических источников тока (ХИТ).

1.1. Простейшие компоненты
Химические источники тока

«Ежели бы вы видели электрическую батарею, из чего она составлена», – говорит телеграфист…

А. П. Чехов. Брак по расчету


Сколько ХИТу лет?

Поиск ответа на этот вопрос, как это ни странно, переносит нас в Иракский музей, находящийся в Багдаде. Там, по крайней мере до недавнего американского вторжения, можно было увидеть небольшой (около 18 см высотой) незамысловатый глиняный кувшин овальной формы, найденный в древнем захоронении в окрестности Багдада. Содержимое кувшина вызвало в свое время (1936 г.) большой переполох в мире археологов и привлекло внимание физиков. Уолтер Уинстон (физик-консультант Британского музея), увидевший внутри кувшина медную трубу с одним закрытым концом, железный прут в ней и кусочки осыпавшегося битума, воскликнул: «Добавьте немного кислоты или даже уксуса в медный сосуд, и вы получите простой элемент, генерирующий электрический ток». Для того чтобы убедиться, что этот «хит» того сезона и вправду ХИТ, Уинстону недоставало еще кувшинов вокруг и проводов, соединяющих их в батарею. Не помешало бы обнаружить рядом и какие-либо другие изделия, подтверждающие электротехническое назначение сосуда. Позже подобные и не одиночные кувшины были обнаружены в парфянском городе Ктесинофоне, недалеко от Багдада. Однако проводов и тут не оказалось, а жаль!

Загадочный кувшин, названный «багдадской батарейкой», по мнению одних исследователей использовался вавилонскими врачами для местной анестезии (при отсутствии под руками обычно применяемого ими электрического ската), а по мнению других – для гальванизации металлов. Последнее применение косвенно подтверждается тем, что примитивные методы гальванического покрытия серебром медных ювелирных изделий до сих пор используются местными умельцами. Наследована ли эта «технология» со времен Парфянского царства или нет, в настоящее время может быть, на наш взгляд, проверено путем детального металлографического анализа структуры покрытий изделий, датируемых от 250 г. до н. э. – 250 г. н. э. Возможно в будущем, может быть удастся подтвердить и электрофизиологические использования «багдадской батарейки» путем расшифровки надписей и рисунков на древних табличках (если таковые еще уцелели).

Все же для обеих версий явно маловато напряжение на одном кувшине и их надо бы соединить последовательно, а проводов-то нет! Рискнем, в шутку (в которой, как известно, всегда есть доля истины) предложить, для раздумий читателей, еще несколько (может быть и не слишком-то оригинальных) гипотез применения этого загадочного кувшина.

Одиночный кувшин, в который заливалось вино, служил для гурманов особым яством: при питье непосредственно из него они испытывали дополнительное раздражение вкусовых нервов во рту слабым электрическим током (убедитесь в этом, лизнув небольшую батарейку). По крайней мере, как размеры сосуда, так и его возможное действие этому не противоречат.

Другой возможный вариант использования заправленного вином или уксусом, в который оно рано или поздно превращалось, одиночного кувшина это своеобразная электрохимическая обработка водных растворов. В последнем случае этот небольшой кувшин необходимо было «с головой» погрузить в жидкость, находящуюся в большем сосуде, которая просто замыкала на себя торчащие из горловины электроды. Наконец еще одно предположение будет представлено ниже, в связи с описанием демонстрационных опытов знаменитого Алессандро Вольта.

Спор Гальвани и Вольта

Научная дата рождения ХИТ относится все же не ко временам Парфянского царства двухтысячелетней давности, а к периоду с конца XVIII начала XIX веков н. э. ХИТ был рожден в результате спора двух знаменитых итальянских ученых прошлого: Луиджи Гальвани и Алессандро Вольта.

Гальвани, будучи заведующим кафедрой практической анатомии Болонского университета, в 1786 г. проводил серию опытов по изучению «спокойного» (т. е. в отсутствие грозы) атмосферного электричества на мышцы лягушки. Подвешивая на медном крючке свежепрепарированную лапку лягушки на железной решетке своего балкона, он долго ожидал ее реакции, но лапка не сокращалась ни при какой погоде. И вдруг, в одном из опытов, 26 сентября, лапка резко сократилась. Гальвани, со свойственной ему наблюдательностью экспериментатора, отметил, что причиной сокращения лапки послужило ее касание свисающим концом о балконную решетку, а отнюдь не атмосферные явления (хотя, как знать, может быть, вначале лапку все-таки качнул ветерок, приведя ее в решающее соприкосновение с решеткой).

Гальвани тут же принялся перепроверять полученный результат, поскольку отлично знал, что только строго контролируемые и воспроизводимые результаты могут иметь научную ценность.

Опыты были многократно повторены и на балконе, и на лабораторном столе в помещении. И всегда, как только образовывалась замкнутая цепь (которую мы бы сейчас назвали гальванической), состоящая из железа, меди (или других разнородных металлов) и лапки с нервом, лапка сокращалась. Гальвани стоял перед дилеммой поиска источника электричества: металлы или сама лапка лягушки. Он выбрал второе, более близкое ему по духу как медику, ошибочно истолковав результаты своего знаменитого «балконного опыта», но прозорливо предвосхитив существование биоэлектричества.

Алессандро Вольта, профессор физики университета в Павии и член Лондонского Королевского общества, в 1792 г. принялся тщательно изучать опубликованный Гальвани «Трактат о силах электричества при мышечном движении». Ставя, в отличие от Гальвани, количественные опыты с использованием электрометра собственной конструкции и значительно варьируя условия экспериментов, он приходит к выводу об отсутствии «животного электричества».

Источником электричества Вольта как физик провозгласил контакт разнородных металлов, считая, что лапка в «балконном опыте» Гальвани была всего лишь чувствительным электрометром. Этим он, как бы перечеркивает открытие Гальвани, но одновременно «на его костях», а точнее, лягушачьих лапках, делает новое, свое.

Чтобы продемонстрировать действие найденного источника электричества, Вольта берет две соединенные одними концами проволочки из олова и серебра и другими концами касается языка на кончике и чуть подальше. Когда кончика языка касаются серебром, то ощущается щелочной вкус, когда оловом – кислотный.

Вольта тут же интерпретирует это как изменение знака заряда с «плюса» на «минус» подводимого от пары металлов к кончику языка, являющегося неизменным индикатором. Поскольку все же электричество проходит через язык и вызывает разные реакции, то он задумывается над вопросом: не связана ли работа и других органов с электричеством, словно возвращаясь к «животному электричеству» Гальвани, но этот вопрос для него остается риторическим.

Для более эффектной демонстрации проявлений электричества Вольта устраивал настоящее шоу. Четыре человека образовывали друг с другом цепь так, что первый касался пальцем кончика языка соседа, следующий мокрым пальцем – глазного яблока своего другого соседа, двое остальных держались мокрыми пальцами один за спинку, а другой за лапку свежепрепарированной лягушки. Кроме этого, первый держал в другой мокрой руке цинковую, а последний – серебряную пластинку. После того как пластинки приводились в соприкосновение, у человека, кончика языка которого касались пальцем, возникало ощущение кислого вкуса, в глазу того, которого касались мокрым пальцем, возникало ощущение вспышки света и тут же сокращались лягушачьи лапки.

Эти опыты, проводимые с людьми-проводниками, позволяют предположить, что подобные «игры» могли происходить и в окрестностях Багдада 2000 лет тому назад: в «живую цепь» могла включаться описанная выше «багдадская батарейка» и не обязательно одна.

Несмотря на ясность сегодня многих проблем, связанных с природой электричества и его взаимодействием с живыми организмами, и в наши дни можно столкнуться с фактами явной профанации, рассчитанной разве что на полных невежд. Особенно это заметно по распространению «чудодейственных» электронных приборов для врачевания «от всего и вся».

Однако эта область использования электричества требует специального обсуждения, поэтому ограничимся простыми примерами. Талантами в области биоэлектричества журналисты в основном наделяют женщин.

В статье с безграмотным заголовком «Поцелуй напряжением в миллион киловатт», путая киловатты с киловольтами, рассказывалось о многих подобных «героинях». Одна из них без каких бы то ни было усилий пережигала любую электробытовую технику, попадавшую ей в руки и не включенную в сеть. А уж ее объятьям и поцелуям, которыми она одаривала мужа, позавидовал бы сам маркиз де Сад.

Летом 2003 г. в зарубежной прессе появилось сообщение о том, что в персинг на языке молодой девушки, отдыхавшей на о. Корфу, ударила молния (!), и она быстро пришла в себя. После этого друзья «пострадавшей» подшучивали над ней: «Она основательно подзарядила свой аккумулятор во время отпуска».

Интересная мысль… Жаль, что Э. Распэ, красочно описавший приключения знаменитого барона Мюнхгаузена, очевидно, не был знаком с электричеством, а то мы бы наверняка сейчас потешались над рассказом о том, как барон, восседая на туче во время летней грозы, визжал от удовольствия, полизывая сверкающие вокруг него молнии. Особое удовольствие ему доставляли те из них, которые влетали прямо в рот на его вытянутый язык. В гастрономических изысках барон тогда далеко бы превзошел французских гурманов: в конце обеда его гостям подавали бы в специальных вазочках замороженные шаровые молнии.

Рецепт приготовления этого фантастического блюда исчез вместе с загадочным бароном, и бедные физики до сих пор не могут его восстановить.

Вернемся, однако, к спору ученых XVIII в.

После ошеломительной критики со стороны Вольта, Гальвани ставит опыты, используя только один металл для замыкания цепи. На это Вольта замечает, что все равно условия на концах этого металла разные, так как там имеются различные части лапки лягушки, две части меди могут иметь разные примеси, может различаться температура этих концов и т. д.

В своей критике Вольта зашел слишком далеко, не заметив, что в новой серии опытов Гальвани все же имел дело именно с «животным электричеством». Однако реабилитация Гальвани, которого теперь по праву считают основателем электробиологии, последовала с запозданием на 100 лет после его исторического «балконного опыта». Вольта же на основе истолкования этого опыта и последующих экспериментов изобрел свой знаменитый «Вольтов столб», называемый до сих пор гальванической батареей. Вот уж поистине «невообразимы судьбы человеческие».


Современные ХИТ со всех сторон и изнутри

Пора в магазин или на поток за покупками…

Хотим купить «Крону», нам предлагают батарею на 9 V, на которой написано: 0 % Mercury, 0 % Cadmium, Jan 2000 (use before), MadeinE.U.

Р.Г. Варламов. Современные источники питания

Сотни миллионов разнообразных ХИТ с самыми различными характеристиками, фирменных и «левых» ежегодно обрушиваются на покупателя. Как не потонуть в этом море обозначений и красочных (но далеко не всегда достоверных) сведений? Проблема выбора здесь очень остра: цены отличаются в несколько раз, а при неверном выборе в лучшем случае устройство не заработает как надо, в худшем – может быть испорчено. За подробной информацией надо обратиться к справочникам или специалистам по конкретным устройствам. Здесь мы приведем лишь некоторые общие сведения.

Сосредоточимся на герметичных ХИТ для портативной аппаратуры, не рассматривая проточные топливные элементы и силовые источники большой мощности. Характеристики ХИТ и применяемую терминологию по возможности упростим до пользовательского уровня.

В простейшем случае ХИТ представляет собой два электрода различной природы, ионная проводимость между которыми обеспечивается электролитом, жидким или твердым. Один из электродов содержит окислитель, а другой – восстановитель. На отрицательном электроде при работе ХИТ восстановитель окисляется, и свободные электроны по внешней цепи переходят к положительному электроду, где участвуют в реакции восстановления окислителя.

Напомним, что за положительное (расчетное) направление тока во внешней цепи принимают движение условного положительного заряда. Этот заряд будет двигаться противоположно электронному току, т. е. от плюса к минусу во внешней цепи источника при его разрядке (работе).

Наиболее простыми и дешевыми являются первичные источники тока как бы однократного действия, в которых при работе (прерывистой или непрерывной) протекают необратимые (или частично обратимые) окислительно-восстановительные реакции. Эти источники – гальванические элементы, после исчерпания токообразующих реагентов подлежат замене. По поводу этих источников радиолюбители шутят: «Купил. Поставил. Поработал. Сели – выбрасывай и беги за новыми».

В гальванических элементах используют следующие электрохимические системы, аббревиатуры (или химические символы) которых используются при маркировке: Л (Li) – литиевые; МЦ (MnZn) – марганцево-цинковые; РЦ (HgZn) – ртутно-цинковые; СЦ (AgZn) – серябрено-цинковые.

Некоторые из гальванических элементов допускают относительно небольшое число циклов перезаряда. Примером могут служить алкалиновые (от англ. alkaline – щелочной) элементы. Их можно подзарядить, если корпус не имеет механических дефектов (выделяется газ!) и емкость снизилась не более чем наполовину.

Более сложными являются вторичные источники, которые создаются с обратимо работающими электродами. Это перезаряжаемые ХИТ, или аккумуляторы. Они допускают до тысячи циклов перезаряда (от дополнительного источника постоянного тока), восстанавливающих их работоспособность. В аккумуляторах используют следующие электрохимические системы: никель-кадмиевые (NiCd) и никель-металлогидридные (NiMH); свинцово-кислотные (Sealed Lead Acid, SLA); литий-ионные (Li-Ion) и литий-полимерные (Li-Polimer).

Основными электрическими характеристиками ХИТ являются: напряжение на его зажимах, внутреннее (омическое) сопротивление и емкость. Напряжение на зажимах ХИТ зависит от типа и состояния его электрохимической системы и характера нагрузки.

При холостом ходе (разомкнутый источник) напряжение на нем равно его электродвижущей сипе (ЭДС); последняя характеризует работу, производимую химическими реакциями по разделению зарядов на электродах.

Внутреннее сопротивление характеризует потери в самом источнике при его работе. Емкость ХИТ – количество электричества (заряд) в ампер-часах (А·ч) или миллиампер-часах (мА·ч), которое отдается при его разряде до заданного напряжения. Обратите внимание на то, что размерность «емкости ХИТ» кулон, а не кулон/Вольт = Фарад, как у «электрической емкости конденсатора», ибо это разные физические понятия.

Соединяя отдельные гальванические или аккумуляторные элементы в группы, последовательно для увеличения напряжения, параллельно для увеличения тока или смешанным образом, образуют соответствующие батареи. На радиожаргоне или в быту зачастую любой ХИТ называют просто батарейкой.

Конструктивно, гальванические элементы и аккумуляторы выпускают в трех видах исполнения: дисковые (так называемые «пуговичные» или «кнопочные»), цилиндрические («пальчиковые» или «стаканчиковые») и призматические («галетные», и т. п.). Корпуса батарей из них, как правило, имеют вид параллелепипеда, зачастую со скругленными гранями, например плоские батареи (рис. 1, а).

На УГО (условно-графических обозначениях) ХИТ, как правило, показывают полярность выводов (см. рис. 1, б, в). На конкретных схемах в программе EWB указывают рядом с ним позиционное обозначение компонента и величину ЭДС, например Е1 = 9 В (см. рис. 1, г).


Рис. 1. Химические источники тока:

а – внешний вид; б, в – УГО на принципиальных схемах; г – модельный компонент EWB

Общие сравнительные характеристики ХИТ таковы.

Солевые МЦ элементы наиболее дешевы, но их энергетические характеристики сильно зависят от скорости разряда, а напряжение существенно меняется за время разряда; срок их годности не превышает 5 лет с момента выпуска.

Щелочные МЦ элементы более стабильны и работоспособны; срок их сохранности (не работы) доходит до 10 лет.

Литиевые элементы имеют еще более высокие показатели по всем перечисленным параметрам.

Щелочные аккумуляторы в отличие от щелочных элементов обладают большей стабильностью рабочего напряжения. «Перезарядка» этих аккумуляторов может быть проведена за время от 16 ч до 1 ч (а для некоторых за 15 мин.). При хранении в разряженном состоянии они длительное время не теряют работоспособности: никель-металлогидридные – до 1 года, а никель-кадмиевые аккумуляторы (НКА) – до 10 лет. Последние пользуются большой популярностью у любителей портативных радиостанций, так как они переносят «ударные» нагрузки при работе в режиме передатчика. Радиолюбители ласково прозывают их «НКАшками». К основным недостаткам НКА относится «эффект памяти», заключающийся в уменьшении его полезной емкости при неполной разрядке. НКА необходимо периодически полностью разряжать.

Никель-металлогидридные аккумуляторы имеют более высокую емкость и значительно меньший «эффект памяти».

Свинцово-кислотные аккумуляторы имеют более высокое напряжение, чем щелочные, и выпускаются, как правило, в виде батарей из 3 или 6 аккумуляторов, соединенных последовательно и соответственно с напряжением 6 и 12 В. Примером могут служить стартерные батареи для мотоциклов и автомобилей. Жизнь автолюбителей, особенно в зимний период, во многом разнообразится капризами этих батарей, особенно при неряшливой эксплуатации. Эти батареи нашли применение также в источниках бесперебойного питания, системах охраны и сигнализации.

Литий-ионные аккумуляторы имеют самое высокое напряжение среди других ХИТ и наилучшие удельные характеристики. Однако они и дороже, так как обязательно (из-за возможного воспламенения электролита) оснащаются дополнительно устройствами защиты по току и напряжению от перезаряда. Этого недостатка лишены литий-полимерные аккумуляторы, но они имеют повышенное внутреннее сопротивление.

В последние годы появились компоненты, которые являются как бы гибридом ХИТ и конденсатора – ионисторы, они будут рассмотрены далее наряду с другими конденсаторами.

Перспективными являются также так называемые топливные элементы, в которых благодаря каталитической химической реакции генерируется электрическая энергия. Эти элементы для зарядки необходимо доливать, например, метанолом (метиловым спиртом), хотя исследователи с успехом угощали их этанолом, водкой и даже джином…


    Ваша оценка произведения:

Популярные книги за неделю