Текст книги "Радиоэлектроника-с компьютером и паяльником"
Автор книги: Генрих Кардашев
Жанр:
Технические науки
сообщить о нарушении
Текущая страница: 12 (всего у книги 19 страниц)
В качестве генератора несущей G1 (рис. 84, а) будем использовать источник синусоидального напряжения, сделав в окне его редактирования необходимые установки: амплитуда 0.1 V и частота 135.75 kHz.
Для модуляции несущей телеграфными посылками перемножим оба сигнала. Один подадим на вход X, а другой на вход Y схемного блока Multiplier (умножитель). Последний выбираем по его иконке в группе функциональных блоков управления — Controls . На выходе этого «перемножителя» формируется сигнал, пропорциональный произведению сомножителей и коэффициентов, которые поставлены по умолчанию в окне редактирования на рис. 84, в. Включив моделирование и настроив осциллоскоп, получим на его экране графики: луч А – модулирующий сигнал при посылке кода латинской буквы «С»; луч В – радиоимпульсы, соответствующие этой букве. Поскольку период несущих колебаний значительно меньше длительности посылок, то заполнение прямоугольников выглядит сплошным. Если увеличить скорость развертки луча, то можно увидеть синусоидальное заполнение, но тогда потеряется картина модуляции, поскольку эти сигналы «живут» в разных временах.
Теперь займемся приемником, схема которого показана на рис. 85, а.
Сигнал с приемной антенны WA2 через конденсатор С1 поступает в селективный LC-контур, настроенный на частоту несущей, и далее на детектор VD1-R1 и фильтр низких частот LPF (Low-Pass Filter). Структура фильтра, представленного в виде субблока, показана на рис. 85, б. Аналогично, в виде субблоков можно представить и приемный контур LC, и детектор Det (рис. 85, в, г). Тогда структурная схема-модель приемника примет вид, показанный на рис. 85, д. Соединив антенные выводы модели передатчика WA1 и приемника WA2 (сам радиоканал здесь не моделируется и принят идеальным), подключив осциллоскоп и включив моделирование, получим картину (рис. 85, е) принимаемых (луч А) и демодулированных колебаний (луч В).
Полученный на выходе приемного устройства сигнал повторяет сигнал телеграфного модулятора. Однако полученный сигнал можно напечатать в виде точек и тире на подвижной ленте, но не прослушать, так как в головных телефонах будет услышан просто треск. Для слухового приема телеграфных сигналов они должны быть «промодулированы» еще и звуковым тоном в передатчике (тональный телеграф), но можно это сделать и в приемнике.
Рис. 85. Прием телеграфного радиосигнала:
а – схема виртуального приемника; б-г – субблоки ФНЧ, контура и детектора; д – структурная схема приемника; е – осциллограммы сигналов
Добавим в приемный контур ВЧ-сигнал от дополнительного местного генератора (своеобразного гетеродина). Частоту генератора G2 выберем на 500 Гц выше частоты G1 несущей у передатчика, т. е. равной 136,25 кГц, и подключим этот генератор в приемный контур. Полная схема передатчика и приемника показана на рис. 86, а.
Сложение колебаний двух близких частот в приемнике приводит к низкочастотным биениям на разностной частоте, выделяемой детектором и ФНЧ. Это хорошо видно на осциллограмме, показывающей демодуляцию начала передачи «тире» (луч В рис. 86, б).
Отсчет по курсорам дает для десяти периодов 20 мс, что соответствует звуковой частоте 500 Гц. Если теперь к выходу приемника подключить наушники, то в них раздастся настоящее пение морзянки.
Рис. 86. Модель передачи и приема телеграфного радиосигнала:
а – структурная схема; б – осциллограммы сигналов
Однако созданный нами приемник является виртуальным, а в моделирующей программе практически отсутствует возможность связи с реальными входами и выходами (ключами и аудиоустройствами). О неприемлемости механической манипуляции с клавиатуры мы уже говорили, а единственное звуковое сопровождение 200 Hz в виде компонента Buzzer (зуммер, пищик) включается в включается виртуальной модели при подаче на него сигналов в виде постоянного напряжения. В принципе его можно подключить в схеме по рис. 85, д, так как звуковая модуляция в нем предусмотрена программно, и ее частота может быть изменена по желанию другой, и тогда в компьютерном динамике раздадутся соответствующие звуки. Однако, замедление процесса моделирования не позволяет насладиться музыкой морзянки и при таком устройстве системы. Не будем об этом особо сожалеть: принцип действия радиотелеграфа показан, а для его реализации есть множество других вариантов. О принципах построения и конструкциях реальной связной аппаратуры см. работы В. Т. Полякова.
Для изучения азбуки Морзе используем набор Мастер КИТ NM5036, предназначенный для начинающих радиолюбителей.
Генератор Морзе из набора Мастер КИТ NM5036
Если вы страшный радиолюбитель или бойскаут, стремящийся получить награду на конкурсах по телеграфированию или радиосвязи, – вам пригодится эта схема, которую легко собрать. Схема не дорогая.
Ньютон С. Брага. «Проекты и эксперименты с КМОП микросхемами»
Виртуальная модель генератора Морзе, выполненная в программе EWB в соответствии с прилагаемым к набору описанием, показана на рис. 87, а.
В основе генератора – универсальная схема несимметричного мультивибратора на биполярных транзисторах VT1 и VT2. Нумерация узлов 1–5 в модели соответствует нумерации выводов на печатной плате А503, предназначенной для монтажа реального устройства. Рабочая частота мультивибратора определяется номиналами резисторов R1, R2, R3, R4 и конденсатором С1. Регулируя величину сопротивления «подстроечного» резистора R3 (в модели с помощью управляющей клавиши R), можно изменять частоту тонального заполнения сигналов, получаемых манипуляцией телеграфного ключа SA1. Выходным устройством служат головные телефоны. Питание устройства осуществляется от источника постоянного напряжения 3…9 В.
Для работы с генератором рекомендуется использовать телеграфный манипулятор «Эклипс» Мастер КИТ МК328 (см. рис. 29, б).
Образцы воспроизведения сигналов азбуки Морзе можно прослушать и записать в Интернет на сайте http://www.masterkit.ru
Освоение практической работы на телеграфе удобно проводить со своими товарищами или в специальных кружках. Дальнейшие шаги заключаются в прослушивании радиоэфира. К сожалению, даже самые хорошие радиовещательные приемники, имеющие коротковолновые диапазоны, нельзя использовать для успешного наблюдения за работой любительских КВ и УКВ радиостанций по многим причинам. Это, прежде всего, различие диапазонов, видов модуляции, чувствительности и избирательности. Простейший выход из этой ситуации, на первых порах, представляется в построении конвертора, представляющего собой преобразователь частотного спектра принимаемых радиосигналов, переносящий их диапазон в диапазон частот, имеющийся в радиоприемниках.
Рис. 87. Генератор Морзе Мастер КИТ NM5036:
а – виртуальная модель; б – осциллограмма телеграфного сигнала; в, г – печатная плата А503 (внешний вид и токоведущие проводники); д – собранное устройство
Конвертор 100…200 МГц Мастер КИТ NK139
Это устройство позволяет с помощью обычного радиоприемника, имеющего диапазон 64…108 МГц принимать радиостанции любительского диапазона 144…146 МГц и звуковое сопровождение ряда телевизионных каналов. Конвертор подключается непосредственно между специальной антенной (см. ниже) и антенным входом радиоприемника.
Принципиальная схема устройства показана на рис. 88, а. Монтажная схема расположения компонентов и общий вид конвертора показаны на рис. 88, б, в.
Технические характеристики конвертора
Напряжение питания устройства… 9 В
Частотный диапазон… 100–200 МГц
Чувствительность… 0,8 мкВ
Соотношение: сигнал/шум… 10 дБ
Размеры печатной платы… 100x110 мм
Рис. 88. Конвертор 100…200 МГц Мастер КИТ NK139:
а – принципиальная электрическая схема; б – монтажная схема; в – общий вид
Монтажная схема расположения компонентов и общий вид конвертора показаны на рис. 88, б, в.
Порядок сборки и настройки конвертора:
• проверьте комплектность набора согласно приведенной спецификации;
• отформуйте выводы компонентов и установите их в соответствии с монтажной схемой (рис. 88, б), сверяясь с принципиальной схемой (рис. 88, а);
• подключите потенциометры Р1 и Р2 к плате, как показано на рис. 88, б;
• подключите провода от источника питания, соблюдая полярность, в соответствии со схемой на рис. 88, б;
• подключите приемную антенну к контактам 1 и 2;
• к контактам 3 и 4 подключается антенный вход радиоприемника, при этом выводы 2 и 3 необходимо заземлить;
• проверьте правильность монтажа;
• включите питание;
• настройте радиоприемник на свободную частоту диапазона 98…104 Мгц;
• «подстроечным» конденсатором С10 и переменным резистором Р2 настройте конвертор на принимаемую станцию (грубая настройка);
• произведите точную настройку переменным резистором Р1;
• чувствительность конвертора регулируется «подстроечным» конденсатором С2, а конденсатором С10 устанавливается диапазон в пределах регулировки Р2.
Примечания.
1. Параметры, регулируемые с помощью С2, С10 и Р2 – взаимосвязаны, поэтому при неудовлетворительной работе конвертора описанную выше процедуру настройки необходимо повторить.
Вращение движков С2 и С10 надо производить «неметаллической отверткой» (ее можно изготовить самостоятельно, закрепив крошечный металлический шлиц на длинном цилиндрическом стержне, например корпусе шариковой ручки).
2. Простейшую антенну типа симметричного полуволнового вибратора (см. рис. 27, а) можно изготовить из двух металлических трубок (старые лыжные палки) общей длиной 96…94 см (при диаметре трубок 15…20 мм). Соединение вибраторов с конвертором осуществляется коаксиальным кабелем с волновым сопротивлением 75 Ом. Антенна имеет диаграмму направленности в виде петель восьмерки, поэтому для лучшего приема определенных станций ее придется ориентировать на них, поворачивая конструкцию в горизонтальной плоскости. Для согласования антенны с фидером, на мачте перед соединением кабеля с вибраторами, он пропускается коаксиально через отрезок тонкостенной металлической трубки, диаметром 3…4 внешнего диаметра кабеля и длиной около 0,5 м. Более подробные сведения об антеннах любительской радиосвязи см. в статье Ю. Жомова (UA3FG) или на радиолюбительских сайтах в Интернет.
При отсутствии УКВ ЧМ радиоприемника на диапазон 64…108 МГц или в дополнение к изложенному материалу, можно рекомендовать сборку одного из радиоприемников Мастер КИТ NS065, NK096 или NK116.
Си-Би радиосвязьКаждый человек имеет право на свободу убеждений и на свободное выражение их; это право включает свободу беспрепятственно…искать, получать и распространять информацию и идеи любыми средствами и независимо от государственных границ.
Всеобщая декларация прав человека. Статья 19
Радиолюбительская связь является одним из средств укрепления дружбы между народами и борьбы за мир во всем мире.
С. Бунимович, Л.Яйленко. «Техника любительской однополосной радиосвязи»
Развитие различных средств беспроводной связи (пейджинговой, сотовой и т. п.) не сняло потребности в средствах общения в виде традиционной личной радиосвязи.
В США, начиная с 1958 г… для гражданской радиосвязи был открыт диапазон 27 МГц, названный по-английски СВ (Си-Би) от Citezen Band (гражданский поддиапазон). В России соответствующее решение опоздало примерно на 30 лет. Теперь и наши граждане тоже могут свободно приобретать трансиверы (приемопередатчики) Си-Би и пользоваться ими, ну а радиолюбители (как всегда) заняться их совершенствованием, конструированием и изготовлением.
В отличие от этих реальных устройств, на виртуальные, в принципе, не было, да и не может быть никаких ограничений! (За исключением интеллектуального права.) Правда, по виртуальному устройству нельзя даже послать сообщение своему реальному другу, если не сделать «шлюз» в Интернет, но тогда оно «материализуется». Зато можно детально разобраться с его устройством систем и принципом их действия. Потом можно сделать самому радиостанцию – и как бы пройти путь первооткрывателей Радио. Приемник на первых порах можно использовать и стандартный.
Вначале посмотрим на эту диковинку изнутри.
Модель передатчика 27 МГц
В наборах для радиолюбителей радиопередатчики Си-Би встречаются весьма часто. Схема одного из вариантов (КИТ NK127) в виде виртуальной модели в программе EWB показана на рис. 89.
Рис. 89. Модель передатчика Мастер КИТ NK127 в программе EWB
Передатчик состоит из двух каскадов, собранных на биполярных транзисторах. Реальный источник входного сигнала (микрофон) в схемной модели заменен генератором прямоугольных импульсов Е1. Установки этого генератора показаны на рис. 90.
Рис. 90. Установки генератора Е1 модели передатчика Мастер КИТ NK127 в программе EWB
Первый каскад, выполненный на транзисторе VT1, является предварительным усилителем модулирующего сигнала генератора Е1. Второй – на транзисторе VT2 – является LC-генератором колебаний высокой (несущей) частоты, равной 27 МГц.
Картину колебаний на несущей частоте в программе EWB можно получить в режиме Transient (рис. 91), снимая сигнал с антенного выхода ANT (в расчетной части программы в данном случае он имеет номер 10).
Рис. 91. Окно установки режима анализа переходных процессов в программе EWB
Из полученного графика (рис. 92) видно, что период колебаний составляет 40 ns. Следовательно, частота равна 25 МГц.
Рис. 92. График сигнала несущей частоты модели передатчика в программе EWB
Для точной настройки частоты служит конденсатор [С]. В программе это выполняется последовательными нажатиями на управляющую клавишу С – емкость будет уменьшаться и частота расти, или на Shift+C – емкость будет увеличиваться и частота падать. Картина модулирующих прямоугольных импульсов и результирующие колебания на антенном выводе даны на экране осциллоскопа (рис. 93).
Рис. 93. Осциллограммы сигналов модели передатчика в программе EWB
Передатчик 27 МГц Мастер КИТ NK127
Передатчик собирается на печатной плате размером 50x50 мм. показанной на рис. 94, а. Общий вид монтажа устройства показан на рис. 94, б.
Рис. 94. Передатчик Мастер КИТ NK127:
а – печатная плата; б – монтаж
Если собрать такой реальный передатчик согласно приложенным инструкциям, то он будет иметь выходную мощность до 0,2 Вт. Это может при излучающем антенном диполе в четверть длины волны и чувствительности УКВ-приемника 10 мкВ обеспечить дальность устойчивой связи около 100 м (для начала – неплохо).
В каталоге Мастер КИТ можно выбрать подходящий стабилизированный источник питания для стационарного использования: за батарейками-то и даже аккумуляторами, как известно, не набегаешься. Можно и самостоятельно изготовить источник питания. Об этом будет рассказано дальше. Кроме того, передатчик желательно поместить в корпус, например, BOX-GOI В.
Правильное питание – залог успехаЖивотное насыщается, чеповек ест, умный человек умеет питаться.
Брилья-Саварен, французский ученый-физиолог
Не в коня корм
Термин-метафора «питание» применительно к обеспечению радиоэлектронной аппаратуры электроэнергией для ее нормального функционирования имеет глубокий физический смысл. Достаточно вспомнить то, как был установлен закон сохранения и превращения энергии графом Румфордом еще в 1778 г. Граф в мастерских Мюнхенского цейхгауза наблюдал за сверлением жерл пушек с помощью конной тяги, вращающей гигантские сверла, которые при этом сильно нагревались, и их охлаждали, поливая водой.
Делая нехитрые фуражные расчеты, граф обнаружил соответствие между выделяемым при этом количеством теплоты и теплотой, получаемой при сгорании овса, равного по количеству тому, которым кормили лошадей за время работы. Для этого он просто один раз развел из овса костерок под жерлом, заполненным водой, и нашел, что одно и то же количество воды испаряется при одной и той же норме овса, выделяемой лошадям («сгораемой» внутри организма; животное – это тепловая машина!). Не случайно поэтому, люди следят «за своими калориями», кроме того, наш организм нуждается не просто в питании, а в питании сбалансированном, содержащем белки, витамины и соли.
Так и различная радиоэлектронная аппаратура требует для своего питания источники с различными характеристиками. Если их не удовлетворить, то последствия могут быть самыми различными; от не качественной работы, до выхода из строя. Так сказать, «не в коня корм». (Правда, последнее говорится иносказательно, как правило, о пище духовной.) Развитие переносной аппаратуры (ноутбуков, радиостанций Си-Би диапазона, аудиотехники, мобильников, цифровых камер) требует автономных источников, обеспечивающих их длительную работу при потребляемом токе 1…3 А и напряжении 12…30 В. При возможности питания от бортовой автомобильной электросети подобные устройства, снабженные стандартными сетевыми адаптерами AC/DC («переменное/постоянное»), можно было бы питать от дополнительных преобразователей-инвертеров DC/AC («постоянное/переменное»). Однако такое «лобовое» решение проблемы вряд ли оправдано.
Альтернативным является использование одного DC/DC («постоянное/постоянное») преобразователя или так называемого «электронного трансформатора постоянного тока».
Подобные устройства можно собрать из наборов Мастер КИТ. Например, к таковым относится набор NK131. Для ознакомления с ним смоделируем его работу в виртуальном виде в программе EWB.
Моделирование преобразователя постоянного напряжения
Схема преобразователя (рис. 95) представляет собой автогенератор на биполярном транзисторе VT1, усилительный каскад на транзисторах VT2 и VT3 по схеме Дарлингтона, выпрямитель на диодах VD1 и VD2, а также стабилизирующую обратную связь на стабилитронах VD3 и VD4.
Рис. 95. Виртуальная модель в EWB преобразователя Мастер КИТ NK131
Сборку этой виртуальной модели начинаем с выбора транзисторов. Как и прежде, приходится констатировать, что в библиотеке компонентов данной версии программы отсутствуют необходимые номиналы. В силу этого выбраны другие типы. С диодами такой проблемы не возникло и, войдя в библиотеке диодов в строку Моtorol 1, выбираем Model D1N5402. Аналогично в качестве стабилитронов выбираем Zener Diod и далее, general Model GLL4743 и GLL4748, соответственно с напряжениями стабилизации 13 и 22 В.
Наибольшие проблемы, однако, возникают при выборе модели трансформатора. Дело в том, что какие-нибудь его характеристики нам неизвестны. В программе EWB предусмотрена возможность двух разновидностей трансформаторов: линейного и нелинейного. Для последнего требуется указать около 40 неизвестных параметров, что заведомо не реально (или требует специального исследования, которое оставляем для «любителей трансформаторов»). Поэтому выбираем линейный трансформатор, в модели которого надо указать только 5 величин (см. рис. 96).
Рис. 96. Окно редактирования свойств трансформатора
Первой из них является коэффициент трансформации, равный отношению чисел витков первичной и вторичной обмоток – Primary-to-secondary turns ratio (N). Оценку этой величины можно провести из следующих соображений. В так называемых Т-образных схемах замещения трансформаторов принимается, что приведенное активное сопротивление вторичной обмотки трансформатора R2 равно активному сопротивлению его первичной обмотки R1, т. е. R2 = R1. Кроме того, приведенное активное сопротивление вторичной обмотки трансформатора R2 связано с коэффициентом трансформации N и не приведенным активным сопротивлением вторичной обмотки простым соотношением: R1 = N2·R2.
Откуда следует, что N = (R1/R2)1/2. Таким образом, необходимо знать лишь активные сопротивления обмоток, а их нетрудно измерить омметром. Наши измерения для приложенного в комплект трансформатора КЕМО Switching Transformer NR.TR.B.065 приближенно составили: R1 = 0.45 Ом, R2 = 0.15 Ом и, следовательно, N ~= 1.7.
Далее необходимо оценить индуктивность рассеяния – Leakage inductance (LE) и индуктивность магнитопровода – Magnetizing inductance (LM), которые примем равными: 0.00001 Генри и 0.0001 Генри, соответственно. Последние две позиции в параметрах модели трансформатора (см. рис. 96) – это активные сопротивления его обмоток: активное сопротивление первичной обмотки – Primary winding resistance (RP) и активное сопротивление вторичной обмотки – Secondary winding resistance (RS). Эти сопротивления мы уже нашли ранее, что и позволяет полностью охарактеризовать применяемый трансформатор (см. рис. 96).
При сборке модели, как и реального устройства, обратите внимание на правильную «фазировку» соединения выводов трансформатора: в модели «генераторные выводы» А и F отмечены условным знаком + (в русскоязычной документации их обычно обозначают жирными точками или звездочками).
Таким образом, виртуальная модель может быть составлена по приложенной схеме, но в силу сделанных приближений ее возможности ограничены. Дополним виртуальную схему-модель измерительными приборами на входе (V1 и А1) и выходе (V2 и А2). В качестве нагрузки включим на выходе переменный резистор R4 = 30 0 м, регулируемый клавишей R. Аккумуляторную батарею представим идеальным источником напряжения с ЭДС Е1 = 12В. Кроме того, предусмотрим возможность осциллографирования сигналов (см. рис. 95).
Теперь запускаем моделирование и наблюдаем за показаниями вольтметров и амперметров при различных значениях нагрузки R4 (а при желании и за видом осциллограмм). При этом надо иметь в виду, что программа рассчитывает переходные процессы, поэтому отсчеты по приборам надо делать, выждав некоторое время.
Преобразователь Мастер КИТ NK131
Устройство представляет собой «электронный трансформатор постоянного тока», позволяющий питать приборы, требующие повышенного напряжения 12…30 В (мощные усилители, радиоприемники, акустические системы) от источника 6…12 В, например, от автомобильного аккумулятора.
Внешний вид печатной платы преобразователя представлен на рис. 97, а его общий вид – на рис. 98.
Рис. 97. Внешний вид печатной платы преобразователя
Рис. 98. Общий вид преобразователя Мастер КИТ NK131
Технические характеристики преобразователя
Входное напряжение, В… 6-12
Выходное напряжение, В… 12-30
Ток нагрузки, А… 1–1,5
Размеры печатной платы, мм… 5x55
Собрав преобразователь по прилагаемой инструкции, включаем его при различных нагрузках, измеряя напряжения и токи. Помимо описанных в инструкции отказов может случиться, что преобразователь выдает на выходе практически то же напряжение, что и на входе. Это, при правильной сборке и исправных деталях, означает, что отсутствует генерация. Поскольку использована индуктивная связь, то, чтобы добиться генерации, надо поменять местами (перепаять при выключенном питании) два вывода трансформатора (проще А и В, так как они тоньше). Эту неисправность легко имитировать и на виртуальной модели (рис. 95), где не случайно знаками «+» показаны генераторные выводы обмоток. Если выходное напряжение преобразователя не будет соответствовать требуемому, то на модели можно, изменяя параметры, установить необходимые регулировки или замены компонентов. Не забудьте укомплектовать радиатором выходной транзистор VT3 (закон (^охранения и превращения энергии и работоспособности систем применим не только к лошадям!).
Заключите преобразователь в подходящий корпус и укомплектуйте его необходимыми проводами и разъемами, например, как для «прикуривателя» автомобиля. Теперь можно подключать к нему имеющиеся устройства, не забывая о полярности. В случае, если потребуется преобразователь большей мощности, можно предварительно просмотреть на виртуальной модели вариант параллельной работы двух и более рассмотренных преобразователей на общую нагрузку.