Текст книги "200 знаменитых головоломок мира"
Автор книги: Генри Эрнест Дьюдени
Жанр:
Математика
сообщить о нарушении
Текущая страница: 9 (всего у книги 15 страниц)
165. Доска, разбитая на отсеки. Нельзя разбить обычную шахматную доску на 4 равных квадратных отсека и описать конем полное турне или даже только путь в каждом из них. Однако, разделив доску на 4 части, как это показано на рисунке (две части по 12 клеток, а две другие – по 20), можно получить интересную головоломку. Вам предлагается проделать полное турне на этой доске, начав с любой клетки, но переходя из одного отсека в другой не прежде, чем посетив все клетки данного отсека и сделав последний ход конем в исходную клетку. Это сделать нетрудно, но головоломка окажется весьма занимательной и небесполезной.
Возможно ли турне или полный путь коня на прямоугольной доске заданных размеров, зависит не только от размеров доски, но и от ее формы. Турне, очевидно, невозможно на доске, содержащей нечетное число ячеек, такой, как 5×5 или 7×7, и вот почему. Каждый последовательный скачок коня должен совершаться с белой клетки на черную и с черной на белую поочередно. Но если число клеток, или ячеек, нечетно, то число клеток одного цвета на 1 больше числа клеток другого цвета. Следовательно, путь должен начинаться с клетки того цвета, которого больше, и заканчиваться тем же цветом, а поскольку ход конем между клетками одинакового цвета невозможен, то путь не может быть возвратным. Однако правильное турне можно совершить на прямоугольной доске любых размеров, содержащей четное число клеток, если число клеток на одной ее стороне не меньше 6, а на другой – не меньше 5. Другими словами, наименьшей прямоугольной доской, на которой возможно турне, будет доска 6×5.
Полный путь коня (не возвратный) по всем клеткам доски невозможен на доске, у которой размер одной из сторон равен всего лишь 2 клеткам, а также на квадратной доске меньше 5×5. Так что на доске 4×4 мы не сможем совершить конем ни турне, ни даже полного пути; одну клетку придется оставить непосещенной. И все же на доске 4×3, содержащей на 4 клетки меньше, полный путь удается совершить 16 различными способами. Читатель, быть может, захочет отыскать их сам. Каждый путь, начинающийся или заканчивающийся на других клетках, здесь считается другим решением, так же как и путь, получающийся с помощью поворота.
166. Турне четырех коней. Я повторяю, что если разбить шахматную доску на 4 равных части, как показано на рисунке жирными линиями, то на одной из частей невозможно осуществить турне коня. На рисунке вы видите лучшую из попыток такого турне, при которой конь дважды вынужден выйти за пределы своего участка. Попробуйте разбить доску на 4 части одинаковых размеров и формы так, чтобы на каждой из них оказалось возможным осуществить турне коня. Разрезы вдоль пунктирных линий не подходят, ибо тогда 4 центральные клетки оказались бы отделены либо просто висели бы на ниточке.
167. Кубическое турне коня. Несколько лет назад я где-то прочитал, что Абни Вандермонд, известный математик, который родился в 1736 г., а умер в 1793 г., большое внимание уделял турне коня. Я не уверен относительно точных результатов его исследований, но один момент привлек мое внимание: он поставил вопрос о турне коня на шести гранях куба, каждая из которых представляет собой шахматную доску. Нашел ли он решение или нет, я не знаю, но я нигде не встречал опубликованного решения, а поэтому сразу же сел за изучение этой интересной задачи. Может быть, читатель захочет ею заняться?
168. Четыре лягушки. На рисунке показано восемь грибков, на 1-м и 3-м из них сидят белые лягушки, а на 6-м и 8-й – черные. Головоломка состоит в том, чтобы, передвигая за один раз по одной лягушке в любом порядке вдоль прямых линий от одного грибка до другого, поменять лягушек местами, то есть черные лягушки должны занять грибки 1 и 3, а белые – 6 и 8. Воспользовавшись четырьмя шашками и приведенной схемой, вы найдете эту задачу совсем простой, но несколько труднее будет сделать это за 7 перемещений, где любое число последовательных ходов одной лягушки считается одним перемещением. Разумеется, на одном грибке одновременно может сидеть лишь одна лягушка.
169. Головоломка мандарина. Следующая головоломка обладает особой пикантностью, так как ее правильное решение позволило одному молодому китайцу добиться руки своей возлюбленной. Хи-Чум-Чоп был богатейшим мандарином во всей округе на сотню миль от Пекина, не счесть было числа поклонников его прекрасной дочери Пики-Бо. Самым пылким из них оказался Винки-Хи. Когда он попросил у старого мандарина руки его дочери, тот предложил ему головоломку, пообещав свое согласие, если юноша принесет ему правильный ответ в течение недели. Вин-ки-Хи, следуя обычаю, принятому среди некоторых любителей головоломок и до сего дня, предложил головоломку всем своим друзьям, а затем, сравнив решения, лучшее выдал за собственное. Мандарин выполнил свое обещание. Для свадебного пира был заколот откормленный щенок, и когда Хи-Чум-Чоп передал Винки-Хи, согласно китайскому обычаю, кусок печенки, то гости расценили это как пожелание вечного благополучия.
У мандарина был стол, разделенный на 25 квадратов, как показано на рисунке. На каждом из 24 квадратов находилась шашка с номером, это показано на рисунке. Головоломка состоит в том, чтобы расставить шашки в правильном порядке, передвигая по одной шашке за один раз способом, который мы называем ходом коня. Шашку 1 следует поставить туда, где стоит 16, 2 – туда, где 11, 4 – где 13 и т. д. Можно заметить, что все шашки на заштрихованных квадратах стоят там, где и положено. Разумеется, на один квадрат нельзя ставить одновременно две шашки. Сумеете ли вы решить головоломку за наименьшее возможное число ходов?
Дабы сделать способ передвижения шашек совершенно ясным, я отмечу, что первый ход конем можно сделать лишь шашками 1, 2 или 10. Предположим, что я пошел шашкой 1, тогда следующий ход .я должен сделать шашками 23, 4, 8 или 21. Поскольку каждый раз свободным оказывается лишь один квадрат, то порядок ходов можно указывать следующим образом: 1—21—14– 18—22 и т. д. Чтобы попрактиковаться, вам следует набросать рисунок в большем масштабе, использовав вместо шашек кусочки картона.
170. Упражнение для узников. На рисунке вы видите план северного крыла некой тюрьмы, где имеется 16 камер, соединенных между собой открытыми дверьми. Пятнадцать заключенных разместили по этим камерам, присвоив им номера. Узникам разрешается менять камеры, как они пожелают, но если когда-либо двое заключенных окажутся в одной камере, их ждет суровая кара.
И вот, дабы уменьшить растущее ожирение и сочетать физические упражнения с развлечением для ума, узники решили по предложению одного из собратьев, который интересовался турне шахматного коня, перестроиться таким образом, чтобы каждый номер располагался в одном ходе коня от предыдущего, не нарушив при этом тюремных правил и оставив в конце правую нижнюю камеру свободной, как и в начале. Самое смешное состояло в том, что в итоге они расположились следующим образом:
8
3
12
1
11
14
9
6
4
7
2
13
15
10
5
Надзиратели проглядели важное обстоятельство: узники не могли так расположиться без того, чтобы иногда двое из них не оказались в одной камере. Возьмите перенумерованные фишки, набросайте укрупненно схему, и вы обнаружите, что дело обстоит именно так. Во всем остальном данное решение вполне корректно, поскольку каждый заключенный оказывается в одном ходе от предыдущего, а угловая камера остается свободной.
Головоломка состоит в том, чтобы, начиная с указанного на рисунке расположения, добиться желаемого за наименьшее число перемещений, оставив неподвижными как можно большее число узников.
Поскольку каждый раз оказывается свободной лишь одна камера, нужно просто выписать подряд номера тех заключенных, которые в нее переходят. Ясно, что лишь малое число узников не будет участвовать в передвижениях, но я предоставляю читателю самостоятельно определить, чему оно равно, так как это очень важный момент в данной головоломке.
171. Головоломка с конурами. У одного человека было 25 собачьих конур, связанных между собой проходами, как показано на рисунке. Он хотел разместить в них 20 собак, чтобы они образовали непрерывный путь коня от 1-го до 20-го номера, причем 5 нижних конур должны были, как и ранее, остаться пустыми. Это следовало сделать путем перемещения в свободную конуру за один раз одной собаки. Собаки были хорошо вышколены, так что можно было не сомневаться, что каждая останется в той конуре, куда ее посадят, но следует помнить, что, если в одну конуру попадут две собаки, между ними возникнет смертельная схватка. Как можно решить головоломку за наименьшее число перемещений, избежав того, чтобы две собаки в какой-то момент оказались в одной конуре?
172. Две пешки. Вот небольшая приятная головоломка на комбинаторику. Сколькими различными способами две данные пешки (см. рисунок) можно продвинуть на восьмую клетку? Вы можете передвигать их в любом порядке, образуя при этом различные последовательности ходов. Так, вы можете пойти первой пешкой на а3 или а4, а потом второй на h3 либо передвигать первую пешку сколько хотите, не касаясь второй. Любая последовательность ходов допустима, но только в данной головоломке пешка, достигнув восьмой клетки, погибает, а не превращается в другую шахматную фигуру, как в обычной игре. Можете ли вы подсчитать число различных последовательностей? На первый взгляд это выглядит весьма трудным, но я покажу, что при правильном подходе все гораздо проще.
Смешанные задачи
173. Расстановка шахматных фигур. У меня есть единственная шахматная доска и единственный набор шахматных фигур. Сколькими различными способами можно правильно расставить фигуры перед началом игры?[25] Я обнаружил, что в большинстве своем при подсчете все делают ошибку в одном и том же месте.
174. Подсчет прямоугольников. Можете ли вы сказать, сколько квадратов и других прямоугольников содержит шахматная доска? Другими словами, сколькими способами можно обозначить квадрат или другой прямоугольник с помощью линий, отделяющих клетки друг от друга?
175. Мат ладьей. Белые ладьи не могут выйти за пределы малого квадрата, в который они заключены, за исключением последнего хода, когда они делают шах и мат. Головоломка состоит в том, чтобы выяснить, как можно сделать мат черным за наименьшее число ходов ладьей 8, причем остальные ладьи должны располагаться вдоль сторон малого квадрата в правильном числовом порядке с разрывом между 7 и 7.
176. Пат. Несколько лет назад была предложена головоломка, где требовалось построить воображаемую шахматную игру, в которой белым ставился бы пат за наименьшее возможное число ходов при наличии всех 32 фигур. Сможете ли вы добиться такой позиции менее чем за 20 ходов?
177. Охота за королем. Постройте позицию, указанную на рисунке. Теперь белые должны сделать мат в 6 ходов. Несмотря на сложности, я покажу, как игру можно сконцентрировать на небольшом числе линий, а здесь отмечу лишь, что первые два хода белых менять нельзя.
178. Крестоносец. Вот призовая головоломка, которую я предложил несколько лет назад. Придумайте шахматную партию, где после 16 ходов все 16 фигур белых оказываются на своих исходных позициях, а у черных остается лишь король (не обязательно в исходной позиции). После этого белые обязаны сделать мат в три хода.
179. Неподвижные пешки. Какое наименьшее число ходов потребуется для того, чтобы, начиная со стандартного исходного расположения фигур, прийти к позиции, изображенной на рисунке? Разумеется, обе стороны должны ходить в строгом соответствии с правилами игры, хотя в результате получится весьма странная шахматная позиция.
180. Тридцать шесть матов. Расположите 8 оставшихся белых фигур (см. рисунок) так, чтобы белые смогли в один ход сделать любой из 36 возможных матов. Каждый ход, дающий мат и приводящий к новому расположению, считается новым матом. Фигуры, изображенные на рисунке, трогать нельзя.
181. Поразительная дилемма. Мистер Блэк[26] и мистер Уайт[27] сели за шахматы. Мистер Блэк попал в затруднительное положение, и, как это часто бывает, оказалось, что ему надо спешить на поезд. Он предложил Уайту закончить игру в его отсутствие, но при условии, что он не будет делать ходов за Блэка, а станет ходить только своими белыми фигурами. Мистер Уайт согласился, однако, к своему смущению, обнаружил, что при таких условиях совершенно невозможно выиграть. Как он ни старался, ему не удалось поставить мат своему противнику. На какой клетке оставил мистер Блэк своего короля? Другие фигуры на рисунке изображены в своих истинных позициях. Уайт может ставить шах Блэку сколько угодно раз, ибо это не играет роли, так как он все равно не сумеет добиться матовой позиции[28].
182. Шах и мат! Забредя в одну из комнат некоего лондонского клуба, я обратил внимание на позицию, оставленную на доске двумя ушедшими игроками. Эта позиция показана на рисунке. Очевидно, что белые поставили черным мат. Но как им удалось это сделать? Вот в чем головоломка.
183. Странные шахматы. Можете ли вы расположить на доске 2 белые ладьи и белого коня так, чтобы черный король (который должен находиться на одной из четырех центральных клеток) оказался под шахом и ему некуда было ходить? «Другими словами, – скажет читатель, – черному королю будет поставлен мат». Хорошо, если хотите, пользуйтесь этим термином, хотя я сознательно не употребил его сам. Достаточным основанием для этого служит, например, то обстоятельство, что на доске отсутствует белый король.
184. Древняя китайская головоломка. Считается, что головоломка, которую я вам сейчас представляю, родилась в Китае много сотен лет назад и интерес к ней никогда не ослабевал. В ситуации, показанной на рисунке, белые ходят и ставят мат, сделав каждой из трех фигур только по одному ходу.
185. Шесть пешек. Сколькими различными способами я могу расположить 6 пешек на шахматной доске так, чтобы на каждой горизонтали и вертикали оказалось четное число незанятых клеток? Мы здесь вовсе не рассматриваем диагонали, а также не исключаем отражения и повороты; каждые 6 различных клеток дают новое решение.
186. Солитер с шашками. Вот небольшая игра – солитер[29]. Она довольно проста, но не настолько, чтобы сделаться неинтересной. Вы можете либо нарисовать клетки на листе бумаги или картона, либо воспользоваться частью шахматной доски. На рисунке я снабдил шашки номерами, дабы облегчить решение, но вы можете пользоваться шахматными пешками или обычными шашками без номеров.
Головоломка состоит в том, чтобы удалить все шашки, кроме 1. Вы перепрыгиваете какой-нибудь шашкой через другую на расположенную за ней свободную клетку, но не разрешается прыгать по диагонали. Следующие ходы сделают все совершенно ясным: 1—9, 2—10, 1—2 и т. д. Здесь 1 перепрыгивает через 9, и вы удаляете 9 прочь с доски; затем 2 перепрыгивает через 10, и вы удаляете 10, далее 1 прыгает через 2, и вы удаляете 2. Таким образом, при каждом ходе вы убираете по одной шашке, пока на доске не останется лишь шашка под номером 1.
187. Солитер на шахматной доске. Вот дальнейшее развитие предыдущей головоломки. Вам нужна только шахматная доска да 32 фигуры или такое же число шашек или фишек. На рисунке изображены пронумерованные шашки. Головоломка состоит в том, чтобы удалить все шашки, за исключением двух, и эти две должны первоначально находиться на одной стороне доски, то есть обязаны обе принадлежать либо к группе с номера 1 по 16, либо к группе с номера 77 по 32. Как и в предыдущей головоломке, одна шашка перепрыгивает через другую на расположенную непосредственно за ней свободную клетку, но не разрешается прыгать по диагонали. Следующий набор ходов пояснит правила игры: 3—11, 4—12, 3—4, 13—3. Здесь 3 перепрыгивает через 11, и вы удаляете 77; 4 перепрыгивает через 12, и вы удаляете 12 и т. д. Эта маленькая игра окажется занимательной, но она требует терпения, а для ее решения потребуется проявить изобретательность.
188. Нелепость. Однажды в рождественский вечер я ехал на поезде в небольшое местечко, расположенное в одном из южных графств. Купе было переполнено, и пассажиры сидели, тесно прижавшись друг к другу. Мой сосед в углу пристально изучал позицию на одной из тех миниатюрных шахматных досок, которые умещаются в кармане. Я не смог удержаться от того, чтобы тоже не посмотреть на нее. Эта позиция показана здесь на рисунке.
Внезапно повернув голову, спутник поймал мой озадаченный взгляд.
– Вы играете в шахматы? – спросил он.
– Да, немного. А что это? Задача?
– Задача? Нет, игра.
– Невозможно! – воскликнул я довольно невежливо. – Эта позиция – сущая нелепость!
Он вынул из кармана почтовую открытку и протянул ее мне. На одной стороне открытки был написан адрес, а на другой – Kpf2 – gl.
– Это игра по почте, – объяснил он. – Здесь написан последний ход моего друга, а я обдумываю свой ответ.
– Вы меня извините, но позиция кажется совершенно невозможной. Как, например, скажите на милость...
– А! – прервал он меня, улыбаясь. – Я вижу, вы новичок; вы играете, чтобы выигрывать.
– Но не хотите же вы сказать, что стремитесь к поражению или ничьей!
Он громко рассмеялся:
– Вам следует еще многому научиться. Мой друг и я играем не ради результатов того, древнего, образца. Мы ищем в шахматах все удивительное, причудливое, сверхъестественное. Видели вы когда-нибудь подобную позицию?
Я про себя порадовался, что нет.
– Эта позиция, сэр, материализует извилистое развитие и синкретическую, синтетическую и синхронную конкатенацию двух церебральных индивидуальностей. Это продукт амфотерического и интерколейторного обмена, который...
– Вы читали вечерний выпуск, сэр? – вмешался человек, сидевший напротив, протягивая мне газету. Я заметил на полях рядом с его пальцем несколько слов, написанных карандашом. Поблагодарив его, я взял газету и прочитал: «Безумен, но совершенно безвреден. Находится под моим наблюдением».
После этого я предоставил бедняге самому предаваться своим диким мыслям до тех пор, пока они оба не вышли на следующей станции.
Но странная позиция запечатлелась в моей памяти вместе с последним ходом черных: Kpf2 – gl; а спустя непродолжительное время я обнаружил, что к такой позиции действительно можно прийти за 43 хода. Сможет ли читатель построить такую партию? Как белые умудрились привести свои ладьи и королевского слона в такую позицию, если черные ни разу не ходили своим королевским слоном? Здесь не применялось никаких недозволенных трюков и все ходы совершались строго по правилам.
ВЕЧЕР ПАРАДОКСОВ
А РАЗВЕ САМА ЖИЗНЬ НЕ ПАРАДОКС? Л. Кэрролл. Полуночные задачи
– Удивительный век! – воскликнул мистер Олгуд, и все за столом повернулись к нему, ожидая, что он скажет дальше.
Это был обычный рождественский ужин в семействе Олгудов, на котором присутствовало и несколько соседей. Никто и не подозревал, что приведенное выше замечание повлечет за собой целую серию удивительных головоломок и парадоксов, к которым каждый присутствующий добавит что-то интересное. Маленький симпозиум был совершенно не подготовлен, так что мы не должны подходить слишком критично к кое-каким задачам, о которых речь впереди. Разнообразный характер вкладов каждого из присутствующих – это именно то, что и следовало ожидать в подобном случае, ибо собравшиеся были обыкновенными людьми, а не профессиональными математиками или логиками.
– Удивительный век! – повторил мистер Олгуд. – Один человек совсем недавно разработал проект квадратного дома, причем сделал это столь изобретательно, что все окна на всех четырех сторонах смотрят на юг.
– Это бы мне подошло, – сказала миссис Олгуд. – Терпеть не могу окон, выходящих на север.
– Не могу понять, как это можно сделать, – признался дядя Джон. – Допустим, он сделал окна-фонари па западной и восточной сторонах, но как, скажите на милость, ему удалось направить на юг окно с северной стороны? Может быть, он использовал зеркала или что-нибудь в этом роде?
– Нет, – ответил мистер Олгуд, – ничего подобного. Все окна не выступают за уровень стен, и все-таки все они выходят на юг. Видите ли, придумать проект такого дома совсем не трудно, если выбрать подходящее место для его постройки. А этот дом как раз и предназначался для джентльмена, который решил обосноваться на Северном полюсе. Если вы чуть-чуть подумаете, то поймете, что, находясь в этой точке, смотреть вы можете только на юг! Там просто нет таких направлений, как север, восток или запад. Все направлено на юг.
– Боюсь, мама, – заметил сын миссис Олгуд Джордж после того, как смолк смех, – что, как бы ты ни любила окна, выходящие на юг, жизнь в таком доме вряд ли оказалась бы для тебя здоровой.
– О да! – ответила она. – Твой дядя Джон тоже попал в ловушку. Я не сильна в головоломках и не способна схватывать их на лету. Думаю, что мой мозг устроен не так, как надо. Может быть, кто-нибудь объяснит мне вот что. Не далее как на прошлой неделе, я заметила своему парикмахеру, что в мире больше людей, чем волос на голове у каждого из них. На что он ответил: «Отсюда следует, мадам, что по крайней мере у двух людей должно быть одинаковое число волос на голове». Честно говоря, я не могу этого понять.
– Как лысые люди влияют на ответ? – спросил дядя Джон.
– Если существуют такие люди, – ответила миссис Олгуд, – на голове которых не удается разглядеть ни единого волоса даже с помощью наилучшей лупы, то мы не будем их учитывать вовсе. И все же я не вижу, как вы сможете доказать, что по крайней мере у двух человек совершенно одинаковое число волос.
– Думаю, что мне удастся разъяснить, в чем дело, – сказал мистер Филкинс, который тоже зашел вечером к Олгудам на огонек. – Допустим, что вся человеческая популяция на земном шаре состоит ровно из одного миллиона человек. Конечно, с равным успехом можно взять и другое число. Тогда ваше утверждение сводится к тому, что ни у кого число волос на голове не превосходит девятисот девяноста девяти тысяч девятисот девяноста девяти волос. Не так ли?
– Позвольте мне подумать, – сказала миссис Олгуд. – Да-да, вы правы.
– Очень хорошо. Поскольку существует только девятьсот девяносто девять тысяч девятьсот девяносто девять различных способов ношения волос, то ясно, что среди миллиона человек один из этих способов должен повториться. Понимаете?
– Да, я это понимаю, во всяком случае мне кажется, что я это понимаю.
Следовательно, по крайней мере у двух человек должно быть одинаковое число волос на голове; а поскольку число людей на Земле намного превосходит число волос на голове любого человека, то количество таких совпадений должно быть огромным.
– Но, мистер Филкинс, – сказал маленький Билли Олгуд, – почему миллионный человек не может иметь, скажем, десять тысяч волос с половиной?
– Это уже вопрос расщепления волос, Билли, который не имеет отношения к данному вопросу.
– Вот еще любопытный парадокс, – сказал Джордж. – Если выстроить полк солдат на плоскости, – присутствующие подумали, что речь идет о ровном участке земли, – то лишь один солдат окажется стоящим вертикально.
Никто не смог понять, почему так происходит. Тогда Джордж объяснил, что, согласно Евклиду, плоскость может касаться сферы только в одной точке, и тот, кто стоит в той точке, и будет стоять по отношению к центру Земли вертикально.
– По той же причине, – заметил он, – если бы бильярдный стол представлял собой правильную плоскость, то все шары должны были бы собраться в центре.
Хотя Джордж и попытался пояснить свою мысль, положив визитную карточку на апельсин и растолковывая закон всемирного тяготения, миссис Олгуд отказалась признать этот факт. Она не могла понять, что крышка настоящего бильярдного стола теоретически должна иметь сферическую форму подобно кусочку кожуры апельсина, который чистил Джордж. Разумеется, стол настолько мал по сравнению с поверхностью Земли, что кривизну невозможно обнаружить, но тем не менее теоретически она присутствует. Поверхность, которую мы называем плоской, не идентична идеальной математической плоскости.
– Дядя Джон, – снова вмешался в разговор Билли. Олгуд, – между Англией и Францией есть один остров, и все же этот остров расположен от Франции дальше, чем Англия. Что это за остров?
– Это выглядит абсурдным, мой мальчик; ибо если я приму этот бокал за остров и поставлю его между двумя тарелками, то кажется совершенно невозможным, чтобы бокал отстоял от любой из тарелок дальше, чем они друг от друга.
– А разве Гернси не расположен между Англией и Францией? – спросил Билли.
– Да, конечно.
– Ну так вот я думаю, дядя, вы сумеете определить, что Гернси расположен примерно в двадцати шести милях от Франции, а расстояние между Францией и Англией в районе Дувра и Кале равно только двадцати одной миле.
– Мой учитель математики, – сказал Джордж, – пытался внедрить в мое сознание аксиому, что если равные величины умножить на равные, то снова получатся равные величины.
– Это само собой очевидно, – вставил мистер Филкинс. – Например, если три фута равны одному ярду, то дважды по три фута равно двум ярдам. Не правда ли?
– Но, мистер Филкинс, – спросил Джордж, – не равен ли этот бокал, наполовину наполненный водой, такому же сосуду, но наполовину пустому?
– Конечно, Джордж.
– Тогда из этой аксиомы следует, что полный бокал равен пустому. Правильно ли это?
– Нет, разумеется, нет. Я никогда не задумывался над этим в таком плане.
– Может быть, – предположил мистер Олгуд, – это правило не применимо к жидкостям.
– Но было бы совсем нелепо, – сказал с улыбкой Джордж, – если бы мы должны были исключить и твердые тела. Например, возьмем участок земли. Одна миля в квадрате равна одной квадратной миле. Следовательно, две мили в квадрате должны равняться двум квадратным милям. Не так ли?
– Постойте-ка. Ну конечно, нет, – сказал мистер Филкинс, – поскольку две мили в квадрате равны четырем квадратным милям.
– Тогда, – сказал Джордж, – если аксиома не справедлива в этих случаях, когда же она справедлива?
Мистер Филкинс обещал подумать над этим вопросом, и, может быть, читатель тоже поразмыслит об этом на досуге.
– Послушайте-ка, Джордж, – сказал его кузен Реджинальд Вули, – на сколько четыре четвертых превосходят три четвертых?
– На одну четвертую! – воскликнули все одновременно.
– Спроси еще что-нибудь, – предложил Джордж.
Некоторые из присутствующих не смогли понять, что правильным ответом будет «одна треть», хотя Реджинальд пытался объяснить, что если три каких-нибудь предмета увеличить на одну треть, то получится четыре предмета.
– Может ли кто-нибудь из вас быстро записать с помощью цифр число «двенадцать тысяч двенадцать сотен двенадцать»? – спросил мистер Олгуд.
У его старшей дочери, миссис Милдред, у единственной оказался под рукой карандаш.
– Это невозможно сделать, – заявила она после нескольких попыток на белоснежной скатерти; но мистер Олгуд показал ей, что можно записать «£ 13 212».
– Теперь моя очередь, – сказала Милдред. – Я хочу всем задать вопрос. При царе Ироде во время избиения младенцев много бедных малюток закопали в песок, так что лишь их ножки торчали наружу. Как смогли бы вы отличить мальчиков от девочек?
– Я думаю, – сказала миссис Олгуд, – что здесь какой-то подвох, что-нибудь связанное с их бедными маленькими душами.
После того как все сдались, Милдред напомнила всей компании, что избиению подвергались лишь мальчики.
– Когда-то давным-давно, – начал Джордж, – Ахиллес состязался в беге с черепахой...
– Стоп, Джордж! – вмешался мистер Олгуд. – Мы не станем здесь касаться этого вопроса. Я знал в молодости двух человек, которые были закадычными друзьями, но поссорились из-за этой дьявольской выдумки Зенона так, что уже не разговаривали друг с другом до конца своей жизни. Я подвожу черту под ней да еще под одной глупой шуткой Зенона, касающейся летящей стрелы. Я не думаю, чтобы кто-нибудь их понимал, поскольку сам я никогда их не мог понять.
– Очень хорошо, отец. Вот кое-что другое. Почтовое ведомство решило провести линию телеграфных столбов через высокий холм между Термитвилем и Верцльтоном, но оказалось, что железнодорожная компания прокладывает путь в том же направлении, делая глубокую выемку грунта. Поэтому решили ставить столбы вдоль этого пути, который шел на постоянном уровне. Далее: столбы должны располагаться на расстоянии ста ярдов друг от друга, длина линии через холм равна пяти милям, а длина соответствующего участка железнодорожного пути составляет лишь четыре с половиной мили. Сколько столбов сэкономили, решив проводить линию вдоль железнодорожного пути?
– Это очень просто подсчитать, – сказал мистер Филкинс. – Определим, сколько раз сто ярдов укладывается в пяти милях и сколько в четырех с половиной. Затем вычтем из одного другое и получим число сэкономленных столбов.
– Совершенно верно, – подтвердил мистер Олгуд. – Нет ничего проще.
– Именно это сказали и работники почтового ведомства, – заметил Джордж, – но это совершенно неверно. Если вы посмотрите вот на этот рисунок, который я здесь набросал, то заметите, что нет вовсе никакой разницы. Если столбы должны располагаться на расстоянии в сто ярдов, то их потребуется при проводке линии вдоль поверхности холма ровно столько же, сколько и при проводке ее вдоль железнодорожного пути.
– Ты, конечно, ошибаешься, Джордж, – сказала миссис Олгуд, – ведь если столбы располагаются друг от друга на расстоянии в сто ярдов, а путь увеличивается на полмили, то на эти полмили потребуются дополнительные столбы.
– Посмотри-ка на рисунок, мама. Ты можешь заметить, что расстояние между столбами не совпадает с расстоянием между их основаниями, измеренными вдоль поверхности земли. Когда я стою на ковре, то нахожусь от тебя ровно на таком же расстоянии, как если бы я, не сходя с этого места, залез сейчас на стул.
Но миссис Олгуд все же осталась не удовлетворенной таким объяснением.
В этот момент мистер Смусли, помощник приходского священника, сидевший в конце стола, сказал, что он хотел бы задать присутствующим один небольшой вопрос.
– Предположим, что Земля – правильная гладкая сфера и что железный пояс охватывает ее вдоль экватора, касаясь его в каждой точке.
– «Весь шар земной готов я облететь за полчаса», – пробормотал Джордж, цитируя эльфа Пэка из шекспировского «Сна в летнюю ночь».
– Так вот, если увеличить длину пояса на шесть ярдов, то на каком расстоянии от Земли окажется пояс, если считать это расстояние всюду одинаковым?
– При такой огромной длине, – сказал мистер Олгуд, – я не думаю, чтобы стоило даже упоминать о нем.
– А что вы скажете, Джордж? – спросил мистер Смусли.