Текст книги "200 знаменитых головоломок мира"
Автор книги: Генри Эрнест Дьюдени
Жанр:
Математика
сообщить о нарушении
Текущая страница: 14 (всего у книги 15 страниц)
132. Как отмечалось, при данных условиях поместить все изображенные на рисунке буквы в ящик невозможно, но головоломка состояла в том, чтобы поместить максимально возможное количество таких букв.
Здесь требуется слегка раскинуть мозгами и внимательно исследовать задачу, иначе мы придем к поспешному заключению, что сперва следует расставить все 6 букв одного типа, затем – все 6 букв другого типа и т. д. Поскольку существует лишь один способ (вместе с его поворотами), с помощью которого 6 одинаковых букв удается расставить так, чтобы никакие две не оказались на одной прямой, читатель обнаружит, что, расположив 4 типа букв по 6 экземпляров каждого типа, он займет все ячейки, кроме 12, расположенных вдоль двух больших диагоналей. Следовательно, он не сумеет разместить еще более чем по две буквы двух оставшихся типов, так что всего останется 8 пустых ячеек (см. рисунок I).
Секрет состоит, однако, в том, что не следует пытаться размещать все 6 букв каждого типа. Можно выяснить, что если мы ограничимся лишь 5 буквами каждого типа, то это количество (всего 30) можно разместить в ящике, и при этом останется лишь 6 пустых ячеек. Однако правильное решение состоит в том, чтобы разместить по 6 букв каждого из двух типов и по 5 букв оставшихся четырех типов. Исследование рисунка 2 покажет, что здесь присутствует по 6 С и D и по пять А, В, Е и F. Следовательно, остаются лишь 4 пустые ячейки, и никакие 2 одинаковые буквы не располагаются на одной прямой.
133. Решение данной головоломки приведено на рисунке. На доске можно расположить только 8 ферзей или 8 ладей так, чтобы они не атаковали друг друга, тогда как соответствующее максимальное число для слонов равно 14, а для коней – 32. Но поскольку всех этих коней нужно поместить на клетки одинакового цвета, тогда как ферзи уже занимают по 4 клетки каждого цвета, а слоны – по 7 клеток каждого цвета, то в результате мы можем поместить на клетки одинакового цвета лишь 21 коня. На пустой доске можно расположить более 21 коня, но мне не удалось это сделать на доске, где «царит теснота». Я думаю, что приведенное решение содержит максимальное число шахматных фигур, однако возможно, что какому-нибудь изобретательному читателю удастся поместить на доску еще одного коня.
134. Фишки можно расположить в следующем порядке:
135. На рисунке показано, как можно наклеить 16 марок на карточку при заданных условиях, причем общая сумма составит 50 пенсов, или 4 шиллинга 2 пенса.
Если, наклеив 4 марки по 5 пенсов, читатель попытается наклеить также 4 марки по 4 пенса, то он сможет затем наклеить лишь по 2 марки каждого из трех оставшихся достоинств, потеряв при этом 2 пенса. Таким образом, общая сумма марок составит лишь 40 пенсов, или 4 шиллинга. Именно на эту ловушку и рассчитана данная головоломка. (Сравни с задачей 43.)
136. Фишки можно расположить в следующем порядке:
137. Число различных расположений овец по загонам, при которых каждый загон либо оказывается занятым, либо находится на одной вертикали, горизонтали или диагонали по крайней мере с одной овцой, равно 47.
В таблице указаны все эти расположения, разобраться в которых поможет ключ из рисунка 1.
Это, разумеется, означает, что если вы поместите овец в загоны А и В, то существует 7 различных загонов, куда вы сможете поместить третью овцу, что дает 7 различных решений. Мы помним, что повороты и отражения не приводят к новым решениям.
Если потребовать, чтобы по крайней мере один загон не находился на одной прямой ни с какой овцой, то число решений окажется равным 30. Если мы в каждом из этих 47 и 30 случаев соответственно будем считать новыми решения, получающиеся с помощью поворотов и отражений, то получим общее число решений, равное 560, что совпадает с числом способов, которыми овец можно разместить по трем загонам вообще без всяких условий. Я хочу отметить, что существуют три способа, какими можно двух овец расположить так, чтобы каждый загон либо оказался занятым, либо находился на одной прямой по крайней мере с одной овцой (см. рисунки 2, 3 и 4), но при этом в каждом случае овцы располагаются на одной прямой. Существуют лишь 2 расположения, при которых каждый загон оказывается либо занят, либо на одной прямой по крайней мере с одной овцой, но никакие две овцы не располагаются на одной прямой друг с другом (см. рисунки 5 и 6). Наконец, существует лишь один способ, при котором три овцы располагаются таким образом, что по крайней мере один загон не находится ни на какой прямой ни с одной овцой и никакая овца не находится на одной прямой с другой овцой. Поместите овец в клетки С, Е и L. Этим практически исчерпывается все, что следовало бы сказать по поводу такого приятного пасторального сюжета.
138. На рисунке показаны 4 фундаментально различных решения. В случае А мы можем изменить порядок так, чтобы одиночная собака оказалась внизу, а остальные отстояли от нее на 2 клетки вверх. Точно так же мы можем использовать следующую справа вертикаль и обе из двух центральных горизонталей. Таким образом, случай А порождает 8 решений. Далее, решение В можно повернуть на 180° и расположить вдоль любой диагонали, что дает 4 решения. Аналогично случай С дает 4 решения. Расположение на прямой в случае D симметрично, так что повороты на 180° ничего нового не дадут, но собак можно помещать вдоль 4 различных прямых. Таким образом, мы получаем всего 20 различных решений.
139. Если бы древний архитектор расположил 5 своих полумесяцев так, как показано на рисунке, то каждая плитка оказалась бы под наблюдением (то есть на одной прямой) по крайней мере одного полумесяца и, кроме того, осталось бы место для квадратного ковра, занимающего ровно половину всего данного участка пола. Весьма удивительно, что, хотя существуют 2 или 3 решения, при которых ковер, если соблюдаются все прочие условия, занимает площадь приблизительно в 29 плиток, это единственно возможное решение, дающее ровно половину всей площади, что является максимумом.
140. Слон находится на клетке, занятой первоначально ладьей, а 4 ферзя расположены таким образом, что каждая клетка либо занята, либо оказывается под угрозой нападения одной из фигур (см. рисунок а).
Если 4 ферзя расположены, как показано на рисунке б, то пятого ферзя можно поместить на любую из 12 клеток, помеченных буквами a, b, с, d и е; либо можно поставить ладью на две клетки с; либо слона на 8 клеток а, b и е; либо пешку на клетку b; либо короля на четыре клетки b, с и е. Единственное известное расположение четырех ферзей и коня, принадлежащее Дж. Уоллису, приведено на рисунке в.
Я нашел большое число решений для случая четырех ферзей и ладьи или слона, но единственным решением, как я полагаю, с тремя ферзями и двумя ладьями, при котором все фигуры защищены, будет решение (см. рисунок г), впервые опубликованное доктором К. Плэнком. Однако с тех пор я нашел дополнительное решение для случая трех ферзей, ладьи и слона, хотя фигуры и не защищают друг друга (см. рисунок д).
141. Мои читатели привыкли к тому, что требуется по меньшей мере 5 планет, дабы атаковать каждую из 64 звезд, расположенных в виде квадрата, а потому многие из них, быть может, полагают, что в случае большего квадрата потребуется увеличить число планет. Именно с целью изменить это ошибочное мнение, а также предостеречь читателей от еще одного из тех многочисленных подводных камней, которыми полон мир головоломок, я и придумал эту новую задачу со звездами. Позвольте мне сразу же заметить, что в случае квадратного расположения 81 звезды существует несколько искомых расположений. На рисунке приведено решение головоломки «Южный Крест».
Стоит вспомнить, что в условии говорилось: «Разумеется, после перестановки они закроют 5 новых звезд, отличных от тех, которые закрыты сейчас». Это было сделано для того, чтобы исключить более простое решение, в котором передвигаются лишь 4 планеты.
142. Передвижения ферзей ясны из приведенных здесь рисунков 1—4, которые показывают положение на доске после каждого перемещения. В итоге все клетки оказываются либо занятыми, либо под ударом, но ни один ферзь не угрожает другому ферзю. На последнем шаге ферзя в верхнем ряду можно было бы передвинуть еще на одну клетку дальше влево. Это, как я полагаю, единственное решение данной головоломки.
143. На рисунке можно заметить, что только 3 ферзя передвинуты с их первоначального положения на краю доски и что в результате 11 клеток (отмеченных черными точками) не находятся под угрозой нападения. Я рискну утверждать, что 8 ферзей нельзя расположить на шахматной доске таким образом, чтобы остались неатакованными более чем 11 клеток. И хотя строгое доказательство этого факта отсутствует, я полностью уверен в справедливости данного утверждения. Существует по меньшей мере 5 различных расположений, при которых остаются неатакованными 11 клеток.
144. Шестнадцать пешек можно расположить таким образом, чтобы никакие три из них не оказались на одной прямой, идущей в любом направлении (см. рисунок). Как и требовалось в условии, мы рассматриваем пешки просто как точки на плоскости.
145. Существует 6480 способов, которыми можно разместить человека и льва при единственном ограничении, что они располагаются в разных местах. Это очевидно, ибо человека можно поставить на любое из 81 места, и в каждом случае остается 80 мест для льва; следовательно, 81 х 80 = 6480. Далее: если мы вычтем отсюда число способов, при которых человек и лев оказываются на одной тропе, то в результате получится число способов, при которых они не располагаются на одной тропе. Число способов, при которых они оказываются на одной тропе, равно, как можно установить без особых затруднений, 816. Следовательно, искомый ответ равен 6480 – 816 = 5664.
Решением в общем случае будет n(n – 1)(3n2 – n + 2).
Это, разумеется, эквивалентно тому, как если бы мы сказали, что при условии, что на стороне шахматной доски расположено n клеток, на ней можно разместить двух слонов указанным числом способов, при которых они не атакуют друг друга. Только в таком случае ответ нужно было бы уменьшить вдвое, поскольку два слона не отличаются друг от друга, и, поменяв их местами, мы не получим нового решения.
146. Наименьшее возможное число коней при данных условиях равно 14. Иногда полагают, что существует очень много различных решений. Кстати, существуют лишь 3 расположения, если не учитывать повороты и отражения. Довольно удивительно, что, по-видимому, никому в голову не пришло следующее простое доказательство и никто не догадался действовать с белыми и черными клетками по отдельности.
Семь коней можно расположить на белых клетках так, чтобы они атаковали каждую черную клетку лишь двумя способами. Они показаны на рисунках 1 и 2. Обратите внимание, что в обоих случаях 3 коня занимают одинаковые положения.
Следовательно, ясно, что если вы повернете доску так, чтобы в левом верхнем углу оказалась черная клетка, и поставите коней на те же самые места, то у вас получатся два похожих способа атаки всех белых квадратов. Я предположу, что читатель выполнил два последних описанных рисунка на кальке, и обозначу их 1а и 2а. Теперь, наложив рисунок 1а на рисунок 1, вы получите решение на рисунке 3, наложив рисунок 2а на рисунок 2, вы получите рисунок 4, а наложив рисунок 2а на рисунок 1, получите рисунок 5.
Вы можете теперь перебрать все возможные комбинации этих двух пар рисунков, и при этом вы получите лишь те 3 решения, которые я привел, а также решения, получающиеся из них с помощью поворотов и отражений. Следовательно, существуют только эти 3 решения.
147. Два единственно возможных минимальных решения приведены на двух рисунках, где, как можно заметить, требуется лишь 16 ходов. Для большинства окажется трудным сделать число ходов меньше 17.
148. Путь показан на рисунке. Можно заметить, что десятый ход приводит нас в клетку, отмеченную числом 10, а последний, 21-й ход заканчивается в клетке 21.
149. Пунктирная линия показывает путь, состоящий из 22 прямолинейных отрезков, которым рыцарь добрался до девы. Необходимо, войдя в первую камеру, немедленно вернуться назад, прежде чем войти в другую камеру. Иначе вам не удастся найти решение.
150. Если узник выберет путь, показанный на рисунке, где для простоты не изображены двери, то он посетит каждую камеру по одному разу, пройдя 57 прямо линейных участков. Ни при каком пути ладьи по шахматной доске нельзя превзойти это число.
151. Прежде всего наименьшее число прямолинейных участков в каждом случае равно 22, и, дабы ни одну ячейку не посетить дважды, совершенно необходимо, чтобы каждый зашел в первую камеру, а затем немедленно «посетил» ту, из которой отправился; после этого он должен следовать вдоль пути, указанного на рисунке. Путь человека обозначен сплошной линией, а путь льва – пунктиром. Можно следовать вдоль каждого пути с двумя карандашами в руках и заметить, что человек и лев ни разу не встретились, хотя есть одно место, где они «мелькали в поле зрения друг друга». Далее мы обнаружим, что, двигаясь с постоянной скоростью, они никогда не окажутся в поле зрения друг друга. Однако на рисунке можно заметить, что лев и человек оказываются в камерах, обозначенных буквой А, одновременно и, следовательно, могут увидеть друг друга через открытые двери. То же происходит, когда они оказываются в камерах В, причем верхние буквы в обоих случаях показывают положение человека, а нижние – положение льва. В-первом случае лев устремляется прямо к человеку, тогда как человек, кажется, пытается зайти ко льву с тыла. Второй случай несколько более подозрителен, ибо похоже, что они здесь удирают друг от друга!
152. Я показал на рисунке, каким образом слон может посетить каждое из намеченных мест за 17 ходов. Очевидно, что мы должны начать с одного углового квадрата и закончить в диагонально противоположном. Головоломку нельзя решить за меньшее число ходов.
153. Передвигайте шашки следующим образом: 2—3, 9—4, 10—7, 3—8, 4-2, 7—5, 8—6, 5—10, 6—9, 2—5, 1—6, 6—4, 5—3, 10—8, 4—7, 3—2, 8—1, 7—10. Теперь белые шашки поменялись местами с красными за 18 ходов при соблюдении заданных условий.
154. Играйте следующим образом, используя обозначения, основанные на нумерации клеток на рисунке А.
На рисунке Б показано положение после девятого хода. Слоны на клетках 1 к 20 еще не ходили, но 2 и 19 уже двигались вперед, а затем вернулись назад. В конце 1 и 19, 2 и 20, 3 и 17, 4 и 18 поменяются местами. Обратите внимание на позицию после тринадцатого хода.
155. На приведенном рисунке показан второй вариант турне ферзя. Если вы прервете линию в точке J и уберете более короткий участок этой прямой, то получите искомый путь для любой клетки J. Если вы прервете линию в I, то получите невозвратное решение, начинающееся из любой клетки I. А если вы прервете линию в G, то получите решение для любой клетки G. Ранее приведенное турне ферзя можно также прервать в трех различных местах, однако я воспользовался возможностью привести второе турне.
156. Рисунок говорит сам за себя. Все звезды вычеркиваются за 14 прямолинейных движений, причем путь начинается и заканчивается белой звездой.
157. Решение вы видите на рисунке. Числа показывают направления прямых в их правильном порядке.
Можно заметить, что седьмой курс заканчивается у буя с флажком, как и требовалось.
158. В данном случае мы выходим за границы квадрата. Кроме того, все наши движения производятся ходом ферзя. Существуют 3 или 4 решения задачи.
Здесь приводится одно из них.
Можно заметить, что конькобежец вычеркивает все звездочки за один непрерывный путь, состоящий из 14 прямолинейных участков и возвращающийся в исходную точку. Чтобы проследить этот путь, нужно всегда двигаться по прямой как можно дальше до поворота.
159. На рисунке показано, каким образом все звездочки можно вычеркнуть за 12 прямолинейных движений, начиная и заканчивая черной звездой.
160. Правильное решение головоломки показано на рисунке сплошной линией. За 5 ходов ферзь проходит наибольшее возможное для него при заданных условиях расстояние. Пунктирная линия на исходном рисунке показывает путь, который предлагает большинство читателей, однако он короче первого. Допустим, что расстояние между центрами соседних клеток, расположенных на одной горизонтали или вертикали, равно 2 дюймам и что ферзь движется из центра исходной клетки в центр той клетки, где он останавливается; тогда в первом случае путь превосходит 67,9 дюйма, а во втором – не превышает 67,8 дюйма. Разница не велика, но достаточна для того, чтобы выделить более длинный путь. Все другие пути короче.
161. Выберем в качестве решения этой головоломки один из самых красивых рисунков, какие можно получить, представляя каждый ход отрезком прямой, соединяющим центры соответствующих клеток. Для большей наглядности окраска клеток на рисунке не указана.
Таким образом, святой Георгий настигает дракона в строгом соответствии с условиями и в той элегантной манере, какую мы и могли ожидать от него.
162. Существует много решений этой небольшой сельскохозяйственной задачи. Вариант, который я привел здесь на рисунке, довольно удивителен в том отношении, что содержит длинные участки параллельных прямых, образованных ходами.
163. Имеется ряд интересных моментов, связанных с этой задачей. Прежде всего если на положение двух концов пути не накладывается никаких условий, то совершенно невозможно составить такой путь, если только мы не будем начинать и заканчивать его в верхнем и нижнем рядах конур. Мы можем начинать в верхнем ряду, а заканчивать в нижнем (или, разумеется, наоборот), или же мы можем начинать в одном из этих рядов и заканчивать в нем же. Но мы не можем начинать или заканчивать путь в одном из двух центральных рядов. Однако начало и конец пути фиксированы условиями задачи. И все же первая половина нашего пути должна целиком ограничиваться теми клетками, которые на рисунке отмечены кружками, тогда как вторая половина пути должна, следовательно, ограничиваться клетками без кружков. Можно заметить, что клетки, обведенные для двух полупутей, расположены симметрично.
Следующий момент состоит в том, что первый полупуть должен заканчиваться в одном из центральных рядов, а второй полупуть обязан начинаться в одном из этих рядов. Теперь это очевидно, поскольку полупути должны быть связаны друг с другом, дабы образовать целый путь, а каждая клетка внешнего ряда связана ходом коня лишь с квадратами своего типа (то есть либо с кружками, либо без кружков). Следовательно, полупути могут соединиться лишь в двух центральных рядах.
Далее: существует 8 различных первых полупутей и соответственно столько же вторых полупутей. Можно заметить, что из них удается составить 12 полных путей, а это и есть число различных правильных решений нашей головоломки. Я не собираюсь их здесь полностью перечислять, однако приведу ответ в такой форме, чтобы читатель сам без труда смог их все найти. Следующие числа соответствуют клеткам рисунка с теми же номерами.
Восемь первых полупутей – это от 7 до 6 (2 пути); от 1 до 8 (1 путь); от 1 до 10 (3 пути); от 1 до 12 (1 путь) и от 1 до 14 (1 путь). Восемь вторых полупутей: от 7 до 20 (1 путь); от 9 до 20 (1 путь); от 11 до 20 (3 пути); от 13 до 20 (1 путь) и от 15 до 20 (2 пути). Каждый новый способ, каким вы сумеете связать один полупуть с другим, даст новое решение задачи. Можно определить, что эти связи таковы: с 6 на 13 (2 случая); с 10 на 13 (3 случая); с 8 на 11 (3 случая); с 8 на 15 (2 случая); с 12 на 9 (1 случай) и с 14 на 7 (1 случай). Следовательно, существует 12 различных способов соединения и соответственно 12 различных решений нашей головоломки. Можно показать, что путь, приведенный на рисунке в условии задачи, состоит из одного из трех полупутей, идущих от 1 до 10, и полупути от 18 до 20. Стоит отметить, что 10 решений порождены пятью различными путями и их обращениями; другими словами, если вы отметите на рисунке эти 5 путей линиями, а затем перевернете рисунок вверх ногами, то получите 5 новых путей. Остальные два решения симметричны (в этих случаях 12 связано с 9, я. 14 – c 7), и, следовательно, не порождают новых решений с помощью поворотов.
164. Изящное симметричное решение этой головоломки показано на рисунке. Каждый из четырех кенгуру совершает свою небольшую экскурсию и возвращается в свой угол, ни разу не прыгнув в клетку, посещавшуюся другим кенгуру, и не пересекая центральной прямой. Читателю сразу же придет в голову возможность улучшить головоломку, разделив квадрат вертикальной прямой и потребовав, чтобы кенгуру не пересекали также и ее. Это означало бы, что каждый кенгуру ограничен квадратом 4 х 4, но это невозможно, как я покажу в решении следующих двух головоломок.
165. Пытаясь решить эту задачу, сначала необходимо взять два различных отсека соответственно из 20 и 12 клеток и проанализировать, где могут находиться здесь места входа и выхода. В случае большего отсека можно определить, что, желая совершить на нем полное турне, мы должны начать и закончить на двух внешних клетках длинных сторон. Но, хотя вы можете начинать на любой из этих 10 клеток, выбор конечной клетки ограничен, либо (что то же самое) вы можете заканчивать где угодно, но тогда обязаны начинать путь на некоторых определенных клетках. В случае меньшего отсека вам придется начинать и заканчивать на одной из шести клеток, принадлежащих узким концам, а остальные ограничения такие же, как и в предыдущем случае. Небольшое размышление покажет, что в случае двух малых отсеков вы должны начинать и заканчивать в прилегающих друг к другу концах, а отсюда следует, что и в больших отсеках турне должно начинаться и заканчиваться на прилегающих сторонах.
На рисунке, где показано одно из решений, можно заметить 8 мест, в которых мы можем начинать это конкретное турне; но в каждом случае существует лишь один путь, ибо мы должны закончить визиты в том отсеке, где находимся, прежде чем перейти в другой. Мы обнаружим, что в клетках, отмеченных звездочками, должны располагаться точки входа или выхода, но соображения, связанные с поворотами, наводят нас на мысль сделать другие соединения в местах, отмеченных либо ромбиками, либо кружочками. В решении, приведенном на рисунке, выбраны ромбики, но встречаются другие решения, где вместо них используются кружочки. Я думаю, что эти замечания поясняют все существенные моменты данной головоломки, которая весьма интересна и поучительна.
166. На рисунке показано, как шахматную доску можно разделить на 4 части одинаковых размеров и формы, чтобы на каждой из них можно было совершить турне конем. Для каждого коня существуют только один путь и его обращения.
167. Если бы читатель вырезал приведенную здесь диаграмму, сложил ее в форме куба и склеил с помощью полосок вдоль ребер, у него получилась бы довольно любопытная вещица. Ее можно выполнить в большем масштабе. Если мы представим себе, что на каждой грани куба расположена шахматная доска, то, как удается показать, мы можем начать в любой из 384 клеточек и совершить полное турне по кубу, вернувшись в конце в исходную точку. Метод перехода с одной грани на другую понять легко, но трудность, разумеется, состоит в том, чтобы определить нужные точки входа и выхода на каждой доске, порядок, в котором следует брать различные доски, и найти расположения, удовлетворяющие требуемым условиям.
168. Наименьшее возможное число ходов, считая каждый ход по отдельности, равно 16. Но головоломку можно решить за 7 перемещений, если действовать следующим образом (любое число последовательных ходов одной лягушки считается одним перемещением). Все ходы, содержащиеся в одних скобках, образуют одно перемещение: (1—5), (3—7, 7—1), (8—4, 4—3, 3—7), (6—2, 2—8, 8—4, 4—3), (5—6, 6—2, 2—8), (1—5, 5—6), (7—1).
Это хорошо известная старая головоломка Гуарини, предложенная в 1512 г., и я привел ее здесь, дабы объяснить мой метод «пуговиц и веревочек» для решения этого класса задач с передвигающимися шашками. В случае А показана старая форма головоломки Гуарини, где требуется поменять местами черных коней с белыми. В задаче о «четырех лягушках» возможные направления ходов показаны прямыми линиями, дабы избавиться от необходимости объяснять неискушенным читателям природу ходов коня на шахматной доске. Но сразу же ясно, что две задачи эквивалентны. Центральной клеткой, разумеется, можно пренебречь, поскольку ни один конь не сможет в нее попасть. Теперь будем рассматривать грибки как пуговицы, а соединяющие их прямые как веревочки (см. случай Б). Тогда, расцепив веревочки, мы представим диаграмму в форме, показанной в случае В, где связи между пуговицами такие же, как и в случае Б, любое решение В приложимо к Б и А. Поставьте ваших белых коней на 1 и 3, а ваших черных – на 6 и 8 в диаграмме В, и простота решения станет совершенно очевидной. Вам нужно просто передвинуть коней по кругу в одном или в другом направлении. Сделайте приведенные выше ходы, и вы увидите, что не осталось ни малейших затруднений.
В случае Г я привел другую известную головоломку, впервые появившуюся в книге «Маленькие приключения Жерома Шарпа», изданной в Брюсселе в 1789 г. Поместите 7 шашек на 7 из 8 кружков следующим образом. Вы должны всегда ставить шашку на свободный кружок, а затем оттуда передвигать ее вдоль прямой, ведущей из этого кружка, в следующее свободное место (в любом направлении), где и оставлять шашку. Продолжайте действовать таким образом, пока все шашки не будут размещены. Помните, что вы ставите шашку на свободный кружок, а затем передвигаете ее на другой кружок, который тоже должен оказаться свободным. Теперь с помощью метода «пуговиц и веревочек» мы можем преобразовать нашу диаграмму, как в случае Д, после чего решение становится очевидным. «Всегда ходите на кружок, с которого вы передвигали шашку на предыдущем ходу». Это, конечно, не единственный способ, но простейшее решение, которое приходит на ум.
Существует несколько головоломок в этой книге, при решении которых данный метод может оказаться полезным.
169. Наиболее трудное место, которое должен выяснить для себя читатель, приступая к данной головоломке, состоит в том, чтобы решить, являются ли заштрихованные шашки (те, что находятся на правильных местах) просто «пустышками», не имеющими существенного отношения к делу. Из ста человек девяносто девять придут к выводу, что совершенно бесполезно передвигать какую-то из этих шашек, но здесь-то они и окажутся не правы.
Наикратчайшее решение в случае, если не передвигать заштрихованные шашки, состоит из 32 ходов. Однако головоломку удается решить всего за 30 ходов. Трюк состоит в том, чтобы передвинуть 6 (или 15) на втором ходу и вернуть ее на место на девятнадцатом. Полное решение таково: 2, 6, 13, 4, 1, 21, 4, 1, 10, 2, 21, 10, 2, 5, 22, 16, 1, 13, 6, 19, 11, 2, 5, 22, 16, 5, 13, 4, 10, 21. Всего 30 ходов.
170. Существует 80 различных расположений, образующих правильный путь коня, но только 40 из них можно достичь без того, чтобы два человека одновременно оказывались в одной камере. Наибольшее число людей, не участвующих в перемещениях, равно 2, и хотя путь коня можно устроить таким образом, чтобы оставить в исходных положениях 7 и 13, 8 и 13, 5 и 7 или 5 и 13, следующие четыре расположения, где неподвижными остаются 7 и 13, – единственные, которых можно достичь при заданных условиях. Следовательно, нужно найти наименьшее число ходов, приводящее к одному из этих расположений. Это, разумеется, нелегко сделать, и нельзя предложить никаких четких правил, приводящих к нужному ответу. Во многом здесь дело сводится к личному мнению, терпеливому экспериментированию и острому глазу по отношению к расположению и поворотам!
Кстати сказать, расположения В можно добиться за 66 ходов, действуя следующим образом: 12, 11, 15, 12, 11, 8, 4, 3, 2, 6, 5, 1, 6, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 3, 2, 5, 10, 15, 8, 4, 12, 11, 3, 2, 5, 10, 15, 6, 1, 8, 4, 9, 8, 1, 6, 4, 9, 12, 2, 5, 10, 15, 4, 9, 12, 2, 5, 3, 11, 14, 2, 5, 14, 11 = 66 ходов. Хотя это самое короткое решение, которое мне удалось найти, и я думаю, что более короткого не существует, я не могу это утверждать со всей определенностью. Наиболее привлекательным выглядит, конечно, расположение А, но вещи не таковы, какими кажутся, и достигнуть В оказывается легче всего.
Если бы можно было оставить свободной левую нижнюю камеру, то подошло бы следующее решение в 45 ходов, принадлежащее Р. Эрлику: 15, 11, 10, 9, 13, 14, 11, 10, 7, 8, 4, 3, 8, 6, 9, 7, 12, 4, 6, 9, 5, 13, 7, 5, 13, 1, 2, 13, 5, 7, 1, 2, 13, 8, 3, 6, 9, 12, 7, 11, 14, 1, 11, 14, 1. Но при этом передвигается каждый человек.
171. Сначала следует остановить свой выбор на наиболее обещающем пути коня, а затем попытаться достичь данного расположения за наименьшее число ходов. Я твердо держусь того мнения, что наилучшим будет расположение, представленное на рисунке, где, как можно заметить, каждое последующее число получается из предыдущего ходом коня, а пять собак (1, 5, 10, 15 и 20) никогда не покидают свои первоначальные конуры.
К этому расположению можно прийти за 46 ходов: 16—21, 16—22, 16—23, 17—16, 12—17, 12—22, 12—21, 7—12, 7—17, 7—22, 11—12, 11—17, 2—7, 2—12, 6—11, 8—7, 8—6, 13—8, 18—13, 11—18, 2—17, 18—12, 18—7, 18—2, 13—7, 3—8, 3—13, 4—3, 4—8, 9—4, 9—3, 14—9, 14—4, 19—14, 19—9, 3—14, 3—19, 6—12, 6—13, 6—14, 17—11, 12—16, 2—12, 7—17, 11—13, 16—18 = 46 ходов. Я, конечно, не могу категорически утверждать, что не существует решения с меньшим числом ходов, но думаю, что отыскать такое решение будет чрезвычайно трудно.
172. Назовем одну пешку А, а другую В. Далее, учитывая, что первый ход можно делать на одну или две клетки, мы получаем, что каждая пешка достигает восьмой клетки за 5 или б своих ходов. Следовательно, нужно рассмотреть четыре случая: (1) А и В делают по 6 ходов; (2) А делает 6, а В – 5 ходов; (3) А делает 5, а В – 6 ходов; (4) А и В делают по 5 ходов. В случае (1) делается 12 ходов, и мы можем отдать А любые 6 из них. Следовательно, 7×8×9×10×11×12, деленное на 1×2×3×4×5×6[39], дает нам число комбинаций в этом случае, равное 924. Аналогично в случае (2) 6 ходов из 11 возможных дадут нам 462 варианта, в случае (3) 5 ходов из 11 возможных также дадут 462 варианта, а в случае (4) 5 ходов из 10 возможных дадут 252 комбинации. Складывая эти числа, мы получим 2100, что и является правильным ответом для данной головоломки.