Текст книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."
Автор книги: Джон Дербишир
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 8 (всего у книги 26 страниц)
На рисунке 7.5 показан график функции Li( x). Мы видим, что она принимает отрицательные значения, когда xменьше единицы (поскольку соответствующая площадь на рисунке 7.4дает отрицательный вклад), но по мере того, как xуходит направо от 1, положительный вклад в площадь постепенно сокращает отрицательный, так что Li( x) возвращается из отрицательной бесконечности, достигает нуля (т.е. отрицательный вклад в площадь полностью сокращается) при аргументе x= 1,4513692348828…, а после этого уже постоянно возрастает. Наклон этой функции в каждой точке равен, конечно, 1/ln x. А это, как мы видели в главе 3.ix, есть вероятность того, что целое число в окрестности числа xокажется простым. [60]60
Неплохое приближение к Li (N)можно получить, складывая 1/ln 2, 1/ln 3, 1/ln 4, …, 1/ln N.Если, например, взять такую сумму для N, равного миллиону, то результат будет равен 78 627,2697299…, тогда как значение интегрального логарифма есть 78 627,5491594…. Так что сумма дает приближение, которое недобирает лишь 0,0004 процента. Этот интеграл вполне оправдывает свое обозначение в виде вытянутой буквы S, указывающей на «сумму».
[Закрыть]
Рисунок 7.5.Функция Li (x).
Именно поэтому данная функция так важна в теории чисел. Дело в том, что по мере того, как Nделается все больше и больше, мы имеем Li (N)~ N/ln N.Но ТРПЧ утверждает, что π(N) ~ N/ln N.Секундное размышление показывает, что знак волны транзитивен – т.е. что если P ~ Q, a Q ~ R,то должно быть и P ~ R.Так что если ТРПЧ верна – а мы знаем, что это так, она была доказана в 1896 году, – то должно быть верно и π(N) ~Li (N).
Это не просто верно. Это, в некотором роде, еще вернее.Я хочу сказать, Li (N)дает на самом деле лучшую оценку функции π(N), чем N/ln N.Намного лучшую. Таблица 7.3 показывает, почему Li (x)играет центральную роль в нашем исследовании.
Таблица 7.3.
На самом деле ТРПЧ чаще всего формулируют как π(N) ~Li( N), а не как π(N) ~ N/ln N.Поскольку знак волны транзитивен, два утверждения эквивалентны, как можно видеть из рисунка 7.6. Из работы Римана 1859 года следует и точное, хотя и не доказанное, выражение для π(N), и во главе этого выражения стоит Li (x).
ТРПЧ (улучшенный вариант)
π(N) ~Li (N)
Отметим еще одно обстоятельство, связанное с таблицей 7.3. Для всех приведенных там значений Nфункция N/ln Nдает заниженную оценку для π(N), а функция Li (N) – завышенную. Оставим это замечание без комментариев до тех пор, пока оно нам не понадобится.
Рисунок 7.6.ТРПЧ.
Глава 8. Не лишено некоторого интереса
I.
До сих мы интересовались далекими предпосылками Гипотезы Римана – предысторией Теоремы о распределении простых чисел (ТРПЧ) и работы Римана 1859 года, где Гипотеза и была впервые высказана. В данной главе мы обратимся к непосредственным истокам той работы. Вообще-то здесь переплетены две истории: Бернхарда Римана и Геттингенского университета в 1850-х годах: в придачу к этому мы предпримем короткие путешествия за национальным колоритом в Россию и Нью-Джерси.
Следует держать в поле зрения целостную картину европейской интеллектуальной жизни 1830, 1840 и 1850-х годов. Разумеется, то было время огромных перемен. Колоссальные изменения, произведенные Наполеоновскими войнами, выпустили на свободу новые патриотические и реформаторские силы. Полным ходом шла промышленная революция. Подвижки в мыслях и чувствах, которые мы условно объединяем под названием «движение романтизма», проникали повсюду и уже достигли широких слоев населения. 1830-е годы, годы возрождения духа после истощения долгими войнами, были неспокойным временем, отмеченным Июльской революцией во Франции, Польским восстанием (в то время Польша принадлежала Российской империи [61]61
Большая ее часть. Пруссия и Австрия также удерживали исторически польские земли.
[Закрыть]), мечтами немцев о национальном единстве и великим Биллем о реформе в Британии. [62]62
Речь идет о первом из законодательных актов, сформировавших современную избирательную систему Великобритании. (Примеч. перев.)
[Закрыть]Алексис де Токвиль, посетив Соединенные Штаты, написал книгу, в которой глубоко проанализировал новые любопытные эксперименты с демократической формой правления. [63]63
Алексис де Токвиль(Alexis Charles Henri Clérel de Tocqueville, 1805-1859) – французский историк, социолог и политический деятель, лидер консервативной Партии порядка, министр иностранных дел Франции (1849). Книга, о которой идет речь, произвела сильное впечатление на Пушкина, который писал о ней: «Уважение к сему новому народу и к его уложению, плоду новейшего просвещения, сильно поколебалось. С изумлением увидели демократию в ее отвратительном цинизме, в ее жестоких предрассудках, в ее нестерпимом тиранстве». (Примеч. перев.)
[Закрыть]В течение следующего десятилетия зашевелились темные силы, причем кульминация пришлась на 1848 год, «год революций», перипетии которого, как мы видели в главе 2, на какое-то время нарушили даже сокровенное уединение Бернхарда Римана.
В течение всего этого периода Геттинген был тихой провинциальной заводью, освещаемой главным образом присутствием Гаусса. Момент политической известности университета пришелся, как уже упоминалось, на 1837 год, когда была уволена «геттингенская семерка». Главным результатом этого стала потеря университетом части своего престижа. Великим центром математических исследований оставался Париж, но при этом быстро набирал силу Берлин. В Париже Коши и Фурье произвели пересмотр анализа, заложив основы современного подхода к пределам, непрерывности и дифференциальному и интегральному исчислению. В Берлине новых успехов добились Дирихле в арифметике, Якоби в алгебре, Штайнер в геометрии и Эйзенштейн в анализе. Любой, кто в 1840-х годах желал серьезно заниматься математикой, должен был находиться в Париже или Берлине. Вот почему молодой Бернхард Риман, которому весной 1847 года исполнилось 20 лет, не удовлетворенный уровнем обучения в Геттингене и всеми силами жаждавший заниматься серьезной математикой, отправился в Берлин. Он учился там два года, в течение которых огромное влияние на него оказал Лежен Дирихле – человек, который поднял Золотой Ключ в 1837 году. Дирихле испытывал личную привязанность к застенчивому, задавленному бедностью молодому Риману, выказывая к нему отношение, на которое Риман, выражаясь словами Генриха Вебера, «отвечал почтительной благодарностью».
Вернувшись в Геттинген после пасхальных каникул 1849 года, Риман принялся за свою диссертацию под руководством самого Гаусса. Ясно, что он рассчитывал стать преподавателем в университете. Однако путь к этой цели был неблизкий. Чтобы преподавать в Геттингене, необходимо было не только защитить диссертацию, но и получить еще более высокую квалификацию, так называемую Habilitation– вторую степень, для которой требовалось подготовить текст диссертации и прочитать пробную лекцию. Все вместе – и первая диссертация, и вторая – заняло у Римана более пяти лет – с двадцати двух и почти до двадцати восьми. В течение этих лет ему вообще ничего не платили.
С самого начала вместе с математикой Риман записался на ряд курсов по физике и философии. Эти предметы были обязательными для всех, кто желал преподавать в гимназии, к чему в основном и свелись бы перспективы карьеры для Римана, если бы он не сумел получить должность университетского преподавателя. Выбирая эти курсы, он, надо полагать, хотел подстраховаться. Однако он проявил глубокий интерес к обоим предметам, так что, вероятно, немалую роль при выборе сыграли и его личные склонности. Обстановка в Геттингене к этому времени улучшилась. Физик Вильгельм Вебер – один из членов «геттингенской семерки», уволенный в 1837 году, – вернулся в университет и снова стал там преподавать; в политическом климате наступила заметная оттепель. Старый друг и коллега Гаусса – они вдвоем изобрели электрический телеграф – Вебер читал курс экспериментальной физики, который посещал и Риман. [64]64
Он проработал полтора года в качестве ассистента в физической лаборатории Beбера, за что могли платить кое-какое скромное жалованье, так что, возможно, все же не был совершенно лишен средств.
[Закрыть]
II.
Эти пять лет неоплачиваемой научной работы должны были даться Бернхарду Риману нелегко. Он находился вдали от дома; от Геттингена до Квикборна было 120 миль, что означало двухдневное путешествие, столь же неудобное, сколь и дорогое. Однако он все же не был в полном одиночестве: в 1850 году в университет прибыл Рихард Дедекинд. Дедекинду было 19 лет – на пять меньше, чем Риману, – и он также планировал написать диссертацию. Из биографического очерка, написанного Дедекиндом и включенного в «Собрание трудов» Римана, явствует, что он питал приязнь и симпатию к своему старшему коллеге, а также глубоко восхищался его математическими способностями; несколько труднее решить, каковы в данном случае были чувства самого Римана.
Оба они защитили свои диссертации с интервалом в несколько месяцев – Риман в декабре 1851 года, а Дедекинд на следующий год. Обоих экзаменовал Гаусс, которому к тому моменту шел восьмой десяток, что не помешало ему сохранять исключительную чуткость к редким математическим талантам. По поводу диссертации, представленной молодым Дедекиндом, еще не достигшим своей математической зрелости, Гаусс написал отзыв, который лишь едва выходил за рамки сухого официального одобрения. Но по поводу диссертации Римана он разразился – а Гаусс был человеком, который нечасто расточал похвалы, – таким пассажем: «Существенная и ценная работа, которая не просто удовлетворяет всем требованиям, предъявляемым к докторским диссертациям, но и намного превосходит их».
И Гаусс не ошибся. (В том, что касается математики, он вряд ли вообще когда-либо ошибался.) Докторская диссертация Римана является ключевой работой в истории теории функций комплексной переменной. Я постараюсь подробно рассказать о теории функций комплексной переменной в главе 13, а пока достаточно сказать, что это очень глубокая, мощная и прекрасная ветвь анализа. До настоящего времени практически первое, что изучается в курсе теории функций комплексной переменной, – это условия Коши-Римана, которыми определяются хорошо себя ведущие и заслуживающие дальнейшего изучения функции. Эти уравнения в их современном виде впервые появились в докторской диссертации Римана. Эта работа также содержит первые наброски теории римановых поверхностей, которая представляет собой слияние теории функций с топологией (последний предмет в те времена также был новинкой, в нем не существовало какой бы то ни было связной системы знания, а только разрозненные результаты, восходящие ко временам Эйлера). [65]65
Топология представляет собой «геометрию резинового листа» – изучение тех свойств фигур, которые остаются неизменными при растяжениях, но без разрезов и склеек. Поверхность сферы топологически эквивалентна поверхности куба, но не поверхности бублика или кренделя. Слово «топология» было введено в обиход Йоханом Листингом в 1836 г. в письме к своему старому школьному учителю. В 1847 г. Листинг написал небольшую книгу, озаглавленную «Предварительные наброски по топологии». Он был профессором математической физики в Геттингене в то же время, когда там находился Риман, и Риман, без сомнения, знал и его самого, и его работы. Однако Риман, по-видимому, никогда не использовал слово «топология», всегда употребляя для этой цели латинский термин, который предпочитал Гаусс, analysis situs(«анализ положения»).
[Закрыть]Докторская диссертация Римана была, одним словом, шедевром.
И Риман, и Дедекинд приступили ко второй ступени академического марафона, которому они себя посвятили, – второй диссертации и пробной лекции, которые требовались для занятия преподавательской должности в университете.
III.
Оставим на некоторое время Бернхарда Римана в его комнате в далеком Геттингене за трудами над диссертацией на право чтения лекций и перенесемся назад на год или два во времени и на тысячи миль в пространстве – в Санкт-Петербург. Много воды утекло под мостами этого города с тех пор, как мы побывали здесь в последний раз, наблюдая, как Леонард Эйлер радовался жизни и плодотворно работал, несмотря на старость и слепоту, во времена правления Екатерины Великой. Эйлер умер в 1783-м, а сама императрица – в 1796 году. Екатерине наследовал ее эксцентричный и безответственный сын Павел. Четырех с половиной лет правления Павла оказалось более чем достаточно для знати, чтобы организовать переворот, удушить Павла и посадить на трон его сына Александра.
Вскоре вся нация оказалась поглощена конфликтом с Наполеоном, а ее говорящая по-французски аристократия – блеском светской жизни, как это описано Толстым в «Войне и мире». После войны Александр на какое-то время увлекся «управляемым самодержавием», затем последовал провал восстания группировки, боровшейся за либеральные идеи и известной под именем декабристов, и в 1825 году трон перешел к Николаю I, склонному к более старомодному абсолютизму.
Однако подтверждение и возобновление принципов абсолютизма не могло предотвратить грандиозных социальных перемен, наиболее достопамятная из которых – первый великий расцвет русской литературы (Пушкин, Лермонтов и Гоголь). Университет в Санкт-Петербурге, в то время отделенный от академии, разросся и процветал; кроме того, были основаны новые университеты в Москве [66]66
Московский университет, как мы помним, был основан Ломоносовым и Шуваловым еще в 1755 г. (Примеч. перев.)
[Закрыть], Харькове и Казани. Казанский университет мог похвастаться присутствием великого математика Николая Лобачевского, который занимал должность ректора до своего увольнения в 1846 году. Лобачевский был создателем неэвклидовой геометрии, о которой довольно скоро нам будет что сказать. [67]67
Кроме того, он явился персонажем шуточной песни «Лобачевский», написанной в 1959 г. математиком и музыкантом Томом Лерером. (Нельзя сказать, чтобы содержание этой достаточно известной песни популярного исполнителя добавляло математической славы ее герою. Впрочем, Николай Иванович в этом и не нуждается. – Примеч. перев.)
[Закрыть]
В 1849-1850 годах, через 25 лет после воцарения Николая I, интеллектуальная жизнь в России подверглась еще одному всплеску репрессий, вызванному реакцией Николая на европейские революции 1848 года. Число принимавшихся в университеты было сокращено, а учившиеся за границей россияне получили указание вернуться. В такой обстановке молодой преподаватель Санкт-Петербургского университета выпустил две замечательные статьи о ТРПЧ.
Первое, что необходимо сказать о Пафнутии Львовиче Чебышеве, это что его фамилия – кошмар для всякого, кто занимается поиском по базам данных. В своих изысканиях для данной книги я насчитал 32 различных варианта написания его фамилии: Cebysev, Cebyshev, Chebichev, Chebycheff, Chebychev и т.д., и т.д. [68]68
Русским исследователям по понятным причинам не приходится сталкиваться с этой проблемой, но зато многие (если не все) русскоязычные математики произносятэту фамилию не «Чéбышев», а «Чебышóв». (Примеч. перев.)
[Закрыть]
А если вы обратили внимание и на необычное имя Пафнутий, то вы не одиноки. Примерно в 1971 году на него обратил внимание математик Филип Дж. Дэвис. Дэвис решил исследовать происхождение имени Пафнутий и написал о своих изысканиях исключительно забавную книгу «Нить» (1983). Если очень коротко, то имя Пафнутий имеет коптское происхождение (Papnute – «Божий человек») и проникло в Европу через коптское христианство; такое имя носил один из второстепенных Отцов Церкви в IV столетии. Присутствовавший на Никейском соборе епископ Пафнутий (Paphnutius, как обычно пишется его имя) высказывался против целибата духовенства. К более позднему времени относится вскользь упоминаемый Дэвисом преподобный Пафнутий Боровский, сын знатного татарина; в возрасте 20 лет он удалился в монастырь, где и оставался до своей смерти в 94-летнем возрасте (1478). Вот что говорит агиограф этого Пафнутия: «Он был девственник и аскет и в силу этого великий чудотворец и пророк». (Примерно посередине моей работы над этой главой я получил электронное письмо от читательницы моей веб-колонки с просьбой предложить имя для ее новой собаки. Так что теперь некий Пафнутий гоняет белок где-то на Среднем Западе.)
Наш с вами Пафнутий был также в некотором роде чудотворцем. Он удостоился чести добиться единственных реальных успехов на пути к доказательству ТРПЧ в период между тем, как Дирихле поднял Золотой Ключ в 1837 году, и тем, как Риман повернул его в 1859-м. Занятно, что наиболее оригинальная работа Чебышева оказалась в стороне от основного направления исследований по ТРПЧ и послужила образованию менее значительного бокового течения, которое развивалось само по себе и слилось с главным потоком лишь 100 лет спустя.
Чебышев на самом деле написал две статьи по ТРПЧ. Первая, датируемая 1849 годом, озаглавлена «Об определении числа простых чисел, не превосходящих данной величины» [69]69
В 1849 г. Чебышев написал работу «Теория сравнения», которая была его диссертацией. Работы о простых числах – «Об определении числа простых чисел, не превосходящих данной величины» (1851; первый доклад на эту тему был сделан Чебышевым в 1848) и «О простых числах» (1852). Помимо математических исследований Чебышев занимался конструированием механизмов, среди которых – «стопоходящая машина», имитирующая движение животного при ходьбе. На постановку математической задачи о наилучшем приближении функций его натолкнуло изучение параллелограмма Уатта. Он был избран членом Санкт-Петербургской, Берлинской, Полонской и Шведской академий наук, членом-корреспондентом Парижской академии наук, а также членом Лондонского королевского общества. (Примеч. перев.)
[Закрыть]; стоит отметить схожесть с заглавием статьи Римана, написанной 10 лет спустя. В этой работе Чебышев взял Золотой Ключ Эйлера, поиграл с ним немного, примерно как Дирихле за 12 лет до того, и пришел к следующему интересному результату.
Первый результат Чебышева.
Если π(N) ~ CN/ln Nдля некоторого фиксированного числа C, то Cдолжно быть равным 1.
Вся проблема, конечно, лежала в этом «если». Чебышев не смог преодолеть эту проблему, как, впрочем, в течение полувека не смог и никто другой.
Вторая статья Чебышева, датируемая 1850 годом, значительно более любопытна. Вместо использования Золотого Ключа она начинается с формулы, доказанной шотландским математиком Джеймсом Стирлингом в 1730 году и выражающей приближенные значения факториальной функции для больших чисел. (Факториал числа Nравен 1×2×3×4×…× N. Факториал числа 5, например, равен 120: 1×2×3×4×5 = 120. Обычно для факториала числа Nиспользуется обозначение N!. Формула Стирлинга утверждает, что для больших значений Nего факториал примерно равен ). Чебышев превратил ее в другую формулу, содержащую ступенчатую функцию – функцию, которая имеет одно значение на некотором интервале аргументов, а затем прыгает к другому значению.
Вооруженный только этими средствами и используя ряд вполне элементарных приемов из дифференциального и интегрального исчисления, Чебышев получил два важных результата. Первый состоит в доказательстве «постулата Бертрана», выдвинутого в 1845 году французским математиком Жозефом Бертраном. Постулат гласит, что между любым числом и его удвоением (например, между 42 и 84) всегда найдется простое число. Второй результат Чебышева таков.
Второй результат Чебышева.
π(N)не может отличаться от N/ln Nболее чем примерно на 10% в большую или меньшую сторону.
Вторая статья Чебышева важна в двух отношениях. Прежде всего, использование в ней ступенчатой функции могло вдохновить Римана на использование подобной же функции в его работе 1859 года (об этом будет подробно рассказано ниже). Не подлежит сомнению, что Риман знал о работе Чебышева; имя российского математика появляется в записках Римана (где оно пишется как «Tschebyschev»).
Но большего внимания заслуживает сама идея подхода, развитого Чебышевым во второй статье. Он получил свои результаты без использования теории функций комплексной переменной. У математиков есть короткий способ для выражения этого факта: они говорят, что методы Чебышева «элементарны». Риман в своей работе 1859 года не использовал элементарные методы. Для решения исследуемой им проблемы он привлек всю мощь теории функций комплексной переменной. Полученные результаты оказались столь замечательными, что другие математики последовали его примеру, и в конце концов ТРПЧ была доказана с использованием неэлементарных методов Римана.
Вопрос о том, можно ли доказать ТРПЧ элементарными методами, оставался открытым, но по прошествии нескольких десятилетий общее мнение утвердилось в том, что это невозможно. Так, в тексте Алберта Ингэма 1932 года «Распределение простых чисел» автор сообщает в подстрочном примечании: «Доказательство теоремы о распределении простых чисел „в терминах вещественных переменных“, т.е. доказательство, не вовлекающее, будь то явным или неявным образом, понятие аналитической функции комплексной переменной, никогда не было обнаружено, и теперь понятно, почему так и должно быть».
Ко всеобщему изумлению, такое доказательство было обнаружено в 1949 году Атле Сельбергом – норвежским математиком, работавшим в Институте высших исследований в Принстоне, штат Нью-Джерси. [70]70
Атле Сельберг, великий гуру теории чисел нашего времени, на момент написания этих строк (июнь 2002) все еще работает в институте и не прекращает занятий математикой. Связанная с ним история будет рассказана в главе 22. Он родился в Лангесунде, Норвегия, 14 июня 1917 г. (Атле Сельберг умер 6 августа 2007 г. – Примеч. перев.)
[Закрыть]История получения этого результата неоднозначна, поскольку Сельберг предварительно сообщил о своих, еще неокончательных, идеях эксцентричному венгерскому математику Паулю Эрдешу, который использовал их и получил свое собственное доказательство одновременно с Сельбергом. После смерти Эрдеша в 1996 году были написаны две его популярные биографии, и любознательный читатель может найти полный отчет об этой запуганной истории в любой из них. Доказательство называется «доказательством Эрдеша-Сельберга» в Венгрии и «доказательством Сельберга» за ее пределами. {A2}
В дополнение к своим исследованиям Чебышев был замечательным научным руководителем, умевшим увлечь своими темами. Его ученики несли идеи и методы учителя в другие российские университеты, повсюду пробуждая интерес и поднимая уровень преподавания. Сохраняя активность и на восьмом десятке лет, Чебышев был также оригинальным изобретателем, сконструировавшим несколько арифмометров, которые сохранились до нашего времени в музеях Москвы и Парижа. В его честь назван лунный кратер, расположенный около 135°W 30°S. [71]71
Риман, Гаусс, Дирихле и Эйлер все удостоены этого отличия. Кратер Римана расположен на 87°E 39°N.
[Закрыть]
IV.
Я не могу расстаться с Чебышевым, не упомянув, по крайней мере мимоходом, о его знаменитом отклонении – знаменитом, я хочу сказать, среди специалистов по теории чисел.
Если разделить простое число (отличное от 2) на 4, то остаток должен быть или 1, или 3. Демонстрируют ли простые числа какое-нибудь отклонение? Да: в пределах до p = 101 имеются 12 простых, которые дают остаток 1, и 13 тех, что дают остаток 3. В пределах до p= 1009 счет равен 81 к 87. В пределах до p= 10 007 счет равен 609 к 620. Ясно видно, что остаток 3 встречается не намного, но все же отчетливо чаще, чем остаток 1. Это дает пример чебышевского отклонения, первое замечание Чебышева о котором относится к 1853 году. Отклонение, которое таким образом выказывают остатки, в конце концов нарушается при p= 26 861, когда простые, дающие остаток 1, на короткое время вырывают первенство. Однако это не более чем единовременное отклонение: настоящая первая зона, где происходит нарушение, составлена из 11 простых чисел от p= 616 877 до p= 617 011. Простые с остатком 1 удерживают лидерство только для 1939 из первых 5,8 миллиона простых (предел, до которого я дошел в своих проверках). Они ни разуне вырываются вперед среди последних 4 988 472 из этих простых чисел.
Что касается делителя 3, то для него отклонение выражено даже еще радикальнее. Здесь остаток (для чисел, больших p= 3) может быть или 1, или 2, и имеющееся отклонение – в пользу 2. Оно ни разу не нарушается до p= 608 981 813 029. Вот это вам отклонение! Нарушение выявили в 1978 году Картер Бейс и Ричард Хадсон. Нам еще представится случай упомянуть чебышевское отклонение в главе 14.
V.
Осенью 1852 года – первого года работы над своей диссертацией на право чтения лекций – Риман снова встретил Дирихле. Весь эпизод достаточно трогателен, и я приведу отрывок из биографии, написанной Дедекиндом:
Во время осенних каникул 1852 года Лежен Дирихле ненадолго останавливался в Геттингене. Риман, только что вернувшийся из Квикборна, имел счастливую возможность видеться с ним практически ежедневно. И в первый день, когда он приходил к Дирихле, и на следующий день <…> Риман спрашивал у Дирихле, который считался величайшим из живущих тогда математиков после Гаусса, советов касательно своей работы. Риман так писал своему отцу об их встрече: «Давеча утром Дирихле провел со мной около двух часов. Он дал мне несколько советов относительно моей диссертации на право чтения лекций; замечания его настолько обстоятельны, что моя работа существенно облегчилась. Иначе мне пришлось бы проводить много времени в библиотеке, выискивая кое-какие из этих вещей. Мы вместе с ним просмотрели мою диссертацию, и он был в целом очень ко мне расположен, чего я не вполне ожидал, учитывая огромную разницу в нашем положении. Надеюсь, что он не забудет обо мне в будущем». Несколько дней спустя <…> большая группа сотрудников отправилась на совместную экскурсию – путешествие очень ценное в том отношении, что по прошествии некоторого времени, проведенного в компании, сдержанность Римана заметно уменьшилась. На следующий день Дирихле и Риман снова встретились в доме Вебера. Импульс, который Риман вынес из этого общения, принес ему массу пользы. И тем не менее отцу об этом он пишет так: «Как видишь, я тут оказался не вполне домоседом; однако же на следующее утро я работал еще напряженнее и сделал так много, как если бы я просидел над своими книгами целый день».
Последнее замечание показывает, сколь высокие требования Риман предъявлял к себе, а также говорит о его сильнейшем чувстве долга и твердой решимости оправдать каждую минуту времени, проводимого в Геттингене, в своих глазах, в глазах отца (который, как-никак, обеспечивал его существование) и в глазах Бога.
Процедура получения второй ученой степени состояла в том, что Риману надо было сначала представить написанную диссертацию, а затем подготовить пробную лекцию, которую следовало прочитать перед всем профессорским составом. Сама по себе диссертация – она называлась «О представимости функции тригонометрическим рядом» – является краеугольной работой, в которой миру был представлен интеграл Римана, изучаемый теперь как фундаментальное понятие в институтских курсах дифференциального и интегрального исчисления. И однако, лекция Римана намного превзошла текст диссертации.
Предполагалось, что Риман подготовит для лекции три темы, из которых Гаусс, как его руководитель, выберет одну, на которую лекция и будет прочитана. Три предложения Римана касались двух вопросов по математической физике и одного по геометрии. Гаусс выбрал лекцию, озаглавленную «О гипотезах, лежащих в основами геометрии», и Риман прочитал ее собравшимся профессорам 10 июня 1854 года.
Это одна из десяти лучших математических работ, представленных вообще когда бы то ни было, поистине сенсационное достижение. Ее прочтение, как утверждает Ханс Фрейденталь в «Словаре научных биографий», было «одним из озарений в истории математики». Идеи, содержащиеся там, были настолько передовыми что прошло несколько десятилетий до их полного принятия и 60 лет до того момента, как они нашли свое приложение в физике, в качестве математического аппарата общей теории относительности Эйнштейна. Джеймс Р. Ньюмэн в книге «Мир математики» отзывается об этой работе как об «эпохальной» и «непреходящей» (забыв, правда, включить ее в свою обширную антологию классических математических текстов). При этом потрясает еще и то, что работа практически не содержит математических обозначений. Пролистывая ее, я обнаружил пять знаков равенства, три знака квадратного корня и четыре знака ∑, что в среднем составляет менее одного символа на страницу! Имеется всего одна настоящая формула. Все это было написано с целью быть понятым – или, возможно (см. ниже), непонятым обыкновенным профессором в провинциальном университете средней руки.
Отправной точкой для Римана стал ряд идей, высказанных Гауссом в статье 1827 года, озаглавленной «Общее исследование искривленных поверхностей». В предшествовавшие тому несколько лет Гаусса привлекали к работе по подробной топографической съемке Баварского королевства (в ходе этой работы, между прочим, он изобрел гелиотроп – устройство для наблюдений на больших расстояниях за счет отражения вспышек солнечного света от системы зеркал). Колоссальный ум Гаусса вычленил из материала, с которым он работал, некоторые соображения о свойствах двумерных поверхностей и о том, как эти свойства можно было бы описать математически. Статья Гаусса широко рассматривается в качестве работы, положившей начало новой дисциплине – дифференциальной геометрии.
Риман в своей лекции развил эти идеи и обобщил их на пространства любого числа измерений. Что еще более важно, он привнес совершенно новый взгляд на весь предмет. Гаусс воспринимал его в терминах искривленных двумерных листов, вложенных в обычное трехмерное пространство, из которого их можно разглядывать, – что было естественным обобщением его опыта работы в качестве топографа. Риман переместил точку зрения таким образом, что она стала внутреннейпо отношению к рассматриваемому пространству.
Я полагаю, вы знакомы с идеей, содержащейся в общей теории относительности Эйнштейна, о том, что с тремя пространственными измерениями и одним временным можно математически обращаться как с четырехмерным пространством-временем и что этот четырехмерный континуум изогнут и искорежен за счет присутствия массы и энергии. С точки зрения Гаусса геометрию этого пространства-времени надо было бы развивать, представляя себе, что оно вложено в пятимерный континуум, подобно тому как Гаусс рассматривал двумерные поверхности вложенными в обычное трехмерное пространство. Тем, что современные физики так не думают, мы обязаны Риману. На самом деле, если вы отправитесь в ближайший университет и запишетесь там на курс по общей теории относительности, то названия тем, которые вы будете проходить (по порядку), могут оказаться такими:
• метрический тензор;
• тензор Римана;
• тензор Риччи;
• тензор Эйнштейна;
• тензор энергии-импульса;
• уравнение Эйнштейна G = 8 πT.
Охватив это, вы овладеете основами общей теории относительности.
Хотя цель данной книги состоит в описании открытий Римана в арифметике и великой Гипотезы, которая берет в них свое начало, нельзя сказать, что эти геометрические исследования не имеют никакого отношения к делу. Общий склад ума Римана, а также все его лучшие математические работы родились из напряжений, возникавших между соображениями двух противоположных свойств. С одной стороны, он был великим глобалистом, всегда склонным воспринимать вещи в полном объеме. Для Римана функция не представляет собой просто множество точек; еще менее она передается каким бы то ни было изобразительным способом типа графика или таблицы и еще менее – набором выражений, содержащих алгебраические формулы. (В одном из немногих засвидетельствованных отрицательных отзывов о ком бы то ни было Риман отмечает, что берлинский математик Готхольд Эйзенштейн «остановился на уровне формального вычисления».) Но что же тогда такое функция? Это объект, который без нарушения правил нельзя лишить ни одного из его атрибутов. Риман воспринимал функцию способом, каким, говорят, шахматные гроссмейстеры воспринимают шахматную партию – всю целиком, как единое целое, Gestalt.
Однако в напряженных отношениях с этой тенденцией была противоположная ей, причем также ясно прослеживающаяся в работах Римана тенденция сводить всякий математический предмет к анализу. «Риман <…> всегда мыслил в аналитических терминах», – говорит Лаугвитц. Писатель имеет в виду анализ в его бесконечно-малом аспекте: пределы, непрерывность, гладкость; локальныесвойства чисел, функций и пространств. Если задуматься об этом, то должно показаться довольно странным, что исследование бесконечно малых окрестностей точек и чисел может снабдить нас знанием о глобальных свойствах функций и пространств. Это становится особенно явным в общей теории относительности, где начинают с изучения микроскопических областей пространства-времени, а приходят к осознанию формы Вселенной и рассмотрению предсмертной агонии галактик. Тем, что нам удается рассуждать столь необычным способом и в чистой, и в прикладной математике, мы обязаны главным образом математикам начала XIX века, и более всего – Бернхарду Риману.
Великая лекция Римана была в действительности документом философским в той же мере, что и математическим. В этом смысле много раз отмечавшаяся туманность многих ее мест могла быть сознательным выбором Римана. (Впрочем, см. замечание Фрейденталя ниже.) То, о чем он говорил, касалось природы пространства на самом фундаментальном уровне. А для среднего, довольного собой стареющего профессора того времени – вроде тех людей, что заседали в числе геттингенских слушателей лекции Римана в тот июньский день, – природа пространства была делом решенным. Она была открыта за 70 лет до этого Иммануилом Кантом в его «Критике чистого разума». Пространство представляет собой предсуществующую часть нашего рассудка, посредством которого мы организуем чувственные восприятия, и оно с необходимостью эвклидово, другими словами, плоское – такое, в котором прямая есть кратчайшее расстояние между двумя точками, а сумма углов треугольника равна 180 градусам.
Неэвклидова геометрия, описанная Лобачевским в 1830-х годах, с этой точки зрения воспринималась как философская ересь. Работа Римана была куда большей ересью; в этом могла состоять причина, по которой он представил свои мысли на уровне столь большой общности, что их связь с неэвклидовой геометрией должна была ускользнуть от всех, кроме наиболее математически подкованных людей в сидевшей перед ним аудитории. (Но, конечно, не от Гаусса. Гаусс на самом деле еще ранее сам изобрел неэвклидову геометрию, но не опубликовал своих результатов из опасений, как он писал, «что болваны поднимут шум и гам». В XIX столетии немцы относились к своей философии весьма серьезно.)