355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джон Дербишир » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. » Текст книги (страница 20)
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Текст добавлен: 29 сентября 2016, 00:25

Текст книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."


Автор книги: Джон Дербишир



сообщить о нарушении

Текущая страница: 20 (всего у книги 26 страниц)

Операторы, применяемые в математической физике, разумеется, действуют на значительно более сложных пространствах, чем в нашем примере. Эти пространства не двумерны и даже не трехмерны (подобно обычному пространству, которое окружает нас в быту), и даже не четырехмерны (как пространство-время, возникающее в теории относительности). Они представляют собой абстрактные математические пространства с бесконечнымчислом измерений. Каждая точка в таком пространстве является функцией. Операторы преобразуют функции в другие функции, а на языке пространств и точек это выражается как отображение одной точки в другую.

Чтобы получить первое представление о том, каким образом функцию можно отождествить с точкой в пространстве, рассмотрим один простой класс функций – квадратичные многочлены p + qx + rx 2. Семейство всех таких многочленов можно представить в трехмерном пространстве, если многочлену p + qx + rx 2поставить в соответствие точку с координатами (p, q, r).В том же духе, четырехмерное пространство будет моделировать кубические многочлены; пятимерное пространство – многочлены четвертой степени и т.п. Далее, поскольку некоторые функции можно записать в виде рядов, а ряд выглядит как бесконечный многочлен (например, e xзаписывается в виде 1 + x+ 1/ 2 x 2+ 1/ 6 x 3+ 1/ 24 х 4+ …), становится понятно, как бесконечное число измерений может пригодиться при описании функций. На этом языке e xстанет точкой в пространстве, заданной бесконечным набором координат (1, 1, 1/ 2, 1/ 6, 1/ 24, …).

Функции, с которыми имеет дело квантовая механика, – это волновые функции, которые определяют вероятность того, что частицы, составляющие описываемую систему, занимают определенные положения и имеют определенные скорости в данный момент времени. Другими словами, каждая точка в пространстве функций представляет некоторое состояние системы. Используемые в квантовой механике операторы кодируют наблюдаемые свойства системы; наибольшую известность имеет оператор Гамильтона, который кодирует энергию системы. Собственные значения оператора Гамильтона представляют собой уровни энергии в системе. Далее, каждое собственное значение определенным образом связывается с вполне определенной точкой (т.е. функцией) в бесконечномерном пространстве, называемой собственной функцией; она служит для представления состояния системы при заданном уровне энергии. Эти собственные функции играют ключевую роль при описании состояний системы. Всякое возможное состояние системы, любое ее физическое проявление дается некоторой линейной комбинацией собственных функций, в точности так же, как всякую точку в трехмерном пространстве можно записать в виде (x, y, z),т.е. в виде линейной комбинации точек (1, 0, 0), (0, 1, 0) и (0, 0, 1).

Ален Конн построил довольно своеобразное пространство, на котором предстояло действовать его риманову оператору. Простые числа встроены в это пространство некоторым способом, заимствованным из понятий алгебраической теории чисел. Дадим краткий обзор работы Конна.


V.

B основе построения всей классической физики лежат вещественные числа, такие как 22,45915771836…; поскольку такие числа не имеют замкнутого вида, требуется бесконечная последовательность десятичных разрядов, чтобы теоретически достичь полной точности. Реальные физические измерения, однако, носят приближенный характер, давая что-то вроде 22,459. Это рациональное число, равное 22 459/ 1000. Все, что есть в физическом эксперименте, можно, таким образом, выразить с помощью рациональных чисел – элементов из Q. Чтобы перейти от мира эксперимента к миру теории, надо пополнитьполе Q(см. главу 11.v). Другими словами, требуется его расширить таким образом, чтобы для всякой имеющей предел бесконечной последовательности чисел из Qэтот предел лежал бы или в самом Q, или в поле-расширении. Обычный и естественный способ такого пополнения приводит к вещественным числам Rи комплексным числам С.

Однако в алгебраической теории чисел имеются и другие возможности для пополнения Q. В 1897 году прусский математик Курт Хензель [183]183
  Курт Хензель(Гензель) (1861-1941) – еще один представитель семейного древа Мендельсонов. Его бабушка Фанни была сестрой композитора, а его отец Себастьян Хензель – ее единственным сыном. Себастьяну было 16 лет, когда Фанни умерла, а его отправили жить с семейством Дирихле (глава 6.vii), где он и оставался до своей женитьбы. Большая часть карьеры Курта прошла в Магдебургском университете в центральной Германии; он вышел на пенсию в 1930 г. Несмотря на свое еврейское происхождение, он, по-видимому, не пострадал при нацистах. «В целом Мендельсоны не испытали на себе весь ужас нюрнбергских антисемитских законов, поскольку большинство представителей семейства были крещены несколько поколений назад» ( Купферберг X.Мендельсоны). В 1942 г. невестка Хензеля принесла его обширную математическую библиотеку в дар только что подвергшемуся нацификации Страсбургскому университету в оккупированном Эльзасе – университет заново открылся в ноябре того года под немецкой вывеской Reichsuniversität Strassburg (сейчас он снова во Франции). (Курт Хензель выступил также соавтором известного конспекта лекций Т. Моммзена о римских императорах; в течение двух зимних и одного летнего семестра эти лекции были «оазисом души» Себастьяна Хензеля, которому «было трудно примириться с тем, что Моммзен не написал истории римских императоров». – Примеч. перев.)


[Закрыть]
, работая над определенной задачей в теории алгебраических полей, ввел целое новое семейство объектов, подобных полю чисел вида а +  b√2, которое мы рассматривали в главе 17.ii. Эти объекты называются p-адическими числами. Для каждого простого числа pимеется по одному из этих экзотических созданий, содержащих бесконечно много элементов. Кирпичики, из которых строится такое поле, – это обсуждавшиеся в главе 17.ii «циферблатные» кольца размера p, p 2, p 3, p 4и т.д. В моих обозначениях это кольца CLOCK p , CLOCK p2, CLOCK p3, …. Например, поле 7-адических чисел построено из CLOCK 7, CLOCK 49, CLOCK 343, CLOCK 2401, …. Помните приводившуюся ранее иллюстрацию того, как конечное поле можно использовать для построения бесконечного поля? Так вот, здесь используется бесконечное число конечных колец для построения нового бесконечного поля!

Поле p-адических чисел обозначается символом Q p . Таким образом, имеются поле Q 2, поле Q 3, поле Q 5, поле Q 7, поле Q 11и т.д. Каждое из них – полное поле: Q 2есть поле 2-адических чисел, Q 3есть поле 3-адических чисел и т.д.

Как можно догадаться уже из обозначений, p-адические числа чем-то похожи на обычные рациональные числа. Однако поле Q p богаче и устроено более сложно, чем поле Q, и в некоторых отношениях скорее напоминает поле вещественных чисел R. Как и R, поле Q p можно использовать для пополнения поля Q.

Здесь вы можете высказать определенное недоумение: «Все отлично, но ведь было сказано, что поле Q p этих странных новых объектов – р-адических чисел – существует для всякого простого числа pи что любое Q p позволяет пополнить поле Q; так какое же из них надо предпочесть? Q 2? Q 3? Q 11? Q 45827? Какое простое число должен выбрать профессор Конн, чтобы устроить свой фокус – перекинуть мост между простыми числами и физикой динамических систем?»

Ответ таков: их все!Дело в том, что имеется алгебраическое понятие, называемое аделем, которое охватывает в свои широкие объятия все Q p для всех простых чисел 2, 3, 5, 7, 11, …. И там же оказываются и вещественные числа! Адели построены из Q 2, Q 3, Q 5, Q 7,… и Rспособом, напоминающим тот, каким p-адические числа построены из CLOCK p , CLOCK p2, CLOCK p3, …. Если угодно, адели находятся на один уровень абстракции выше p-адических чисел, которые сами располагаются на один уровень абстракции выше, чем рациональные числа.

Если от всего этого у вас кружится голова, то достаточно сказать, что имеется класс суперчисел, являющихся одновременно 2– адическими, 3-адическиими, 5-адическими, … и при этом еще и вещественными. В каждое из этих суперчисел вложены все простые числа.

Без сомнения, адель – довольно заумное понятие. Однако нет на свете ничего настолько заумного, чтобы оно рано или поздно не пробило себе дорогу в физику. В 1990-х годах математические физики взялись за создание адельной квантовой механики, где реальные измерения в эксперименте, приводящие к рациональным числам, воспринимаются как проявление этих причудливых созданий, вытащенных из темных глубин математической бездны.

Пространство такого типа – адельное пространство – и построил Ален Конн в качестве площадки, где может резвиться его риманов оператор. Из-за того что оно адельное, в него, так сказать, встроены все простые числа. Действующие на этом пространстве операторы по необходимости основаны на простых числах. Теперь, я надеюсь, стало немного понятнее, как же можно построить риманов оператор, собственные значения которого являются в точности нетривиальными нулями дзета-функции, а в пространство, на котором он действует, простые числа встроены тем способом, который я пытался описать, но которое при этом имеет отношение к реальным физическим системам – реальным наборам субатомных частиц.

Доказательство Гипотезы Римана (ГР) в этом случае сводится к доказательству определенной следовой формулы – т.е. формулы типа формулы Гутцвиллера, которая связывает собственные значения оператора, действующего на конновском адельном пространстве, с периодическими орбитами в некоторой аналоговой классической системе. Поскольку простые числа уже встроены в одну часть формулы, все должно получиться без труда. Некоторым образом так и происходит, и конструкция Конна элегантна до блеска – уровни энергии в ней суть в точности нули дзета-функции на критической прямой. К сожалению, из нее до сих пор не последовало даже намеков на то, почему же нули дзета-функции не могут оказаться внекритической прямой!

Спектр мнений о ценности построения Конна довольно широк. Вовсе не будучи уверенным, что я сам ее понимаю, я опросил нескольких настоящих математиков, работающих в этой области. Сейчас мне надо продвигаться вперед с крайней осторожностью. Насколько мне известно, Ален Конн, возможно, заявит о доказательстве Гипотезы Римана в тот день, когда эта книга выйдет из печати, и мне не хотелось бы никого вводить в заблуждение. Приведу две цитаты из того, что мне сказали профессионалы:

Математик X:«Колоссально важная работа! Конн не только докажет ГР, но заодно и предложит нам Единую теорию поля!»

Математик Y:«То, что по сути сделал Конн, сводится к замене одной нерешаемой задачи на другую задачу, которая равным образом не решается».

У меня недостаточно подготовки, чтобы выбрать, какая из точек зрения правильна. Но с учетом высокого положения и способностей математиков Xи Yя сильно подозреваю, что одна из них наверняка верна… [184]184
  И как минимум один математик в письменном виде выразил сдержанный скептицизм. В рецензии на статью Конна 1999 г. «Следовые формулы в некоммутативной геометрии и нули дзета-функции Римана» Питер Сарнак (не являющийся ни математиком X, ни математиком Y) заметил: «Аналогии и вычисления в статье и в приложениях к ней многозначительны, симпатичны и замысловаты, и по этой причине представляется, что предложено нечто большее, чем просто еще одна эквивалентная переформулировка ГР. Однако рецензенту не очевидно, удастся ли на самом деле использовать развитые здесь идеи, в частности пространство X, для получения каких-нибудь новых результатов о нулях функции L(s, λ)». Функция L(s, λ), о которой пишет Сарнак, представляет собой один из тех аналогов дзета-функции Римана, которые упоминались в главе 17.iii.


[Закрыть]


VI.

Разумеется, активно развиваются и другие подходы к ГР. Алгебраический подход с помощью конечных полей, упомянутый в главе 17, никуда не делся. И, как мы мельком видели в разделе V, этот подход демонстрирует интересные связи с физическим направлением исследований ГР. Аналитическая теория чисел также остается активной областью, способной выдавать сильные результаты.

Имеются два непрямых подхода. Например, есть наша теорема 15.2о функции M, получаемой накапливанием значений мебиусовой функции μ. Эта теорема, как было сказано, в точности эквивалентна Гипотезе. Специалист по аналитической теории чисел Деннис Хеджхал из университета Миннесоты использует этот подход, чтобы познакомить с Гипотезой Римана нематематическую аудиторию и при этом избежать введения комплексных чисел. Вот как, по его словам (я пересказываю, а не цитирую), выражается ГР.

Выпишем все натуральные числа, начиная с 2. Под каждым числом запишем его простые делители. Затем, игнорируя всякое число, среди делителей которого есть квадрат (или любая более высокая степень, которая по необходимости содержит в себе и квадрат), будем двигаться вдоль чисел, отмечая как «орел» каждое число с четным числом простых делителей и как «решку» – с нечетным. Получаем бесконечную строку из орлов и решек – нечто вроде того, что возникает в опыте по подбрасыванию монеты:

Далее, из классической теории вероятностей хорошо известно, чего ожидать от подбрасывания монеты большое число раз N.В среднем будет 1/ 2 Nорлов и 1/ 2 Nрешек. Но, разумеется, далеко не всегда будут получаться в точностиэти значения. Предположим, мы вычли число орлов из числа решек (или наоборот, в зависимости оттого, какое из них больше). Что мы ожидаем по поводу величины этого избытка? В среднем это будет √N,т.е. N 1/2. Это было известно уже 300 лет назад, во времена Якоба Бернулли. Если подбрасывать «честную» монету миллион раз, то в среднем получится избыток в тысячу орлов (или решек). Может выйти больше или меньше – но в среднем, коль скоро вы продолжаете подбрасывать монету, т.е. при стремлении Nк бесконечности, – величина избытка растет в определенном темпе: не быстрее, чем N 1/2+ εдля любого сколь угодно малого числа ε. Прямо как у нас в теореме 15.2!

На самом деле теорема 15.2, которая эквивалентна ГР, утверждает, что функция Mрастет точно так же, как избыток в опыте по подбрасыванию монеты. По-другому утверждение теоремы можно выразить так: свободное от квадратов число является орлом или решкой – т.е. имеет четное или нечетное число простых делителей – с вероятностью 50:50. Такое положение дел выглядит довольно правдоподобным и может на самом деле оказаться верным. Если вы сможете доказать, что это утверждение действительно верно, то вы тем самым докажете и ГР. [185]185
  Официально этот подход называется «вероятностная интерпретация Данжуа», по имени французского аналитика Арно Данжуа (1884-1974). Данжуа был профессором математики в Парижском университете с 1922 по 1955 г.


[Закрыть]


VI.

Менее прямой вероятностный подход касается так называемой «модели Крамера». Харальд Крамер (Cramér), несмотря на букву «é» в своей фамилии, был шведом, причем еще одним служащим страховой компании – актуарием в Svenska Livförsöakringsbolaget [186]186
  Это длинное шведское название буквально и означает: «Шведская компания по страхованию жизни». (Примеч. перев.)


[Закрыть]
, но одновременно и талантливым лектором, выступавшим с популярными рассказами о математике и статистике. [187]187
  «Прикасаясь к скучным формулам своей волшебной палочкой, он превращал их в поэзию», – вспоминал Гуннар Блом в своем очерке, включенном в собрание трудов Крамера. Крамер (1893-1985) – еще один «бессмертный». Он умер спустя несколько дней после своего 92-летия.


[Закрыть]
В 1934 году он опубликовал статью, озаглавленную «О простых числах и вероятности», в которой выдвинул идею, что простые числа распределены настолько случайным образом, насколько это вообще возможно.

Одно из следствий, вытекающее из Теоремы о распределении простых чисел (ТРПЧ), которое было продемонстрировано в главе 3.ix, состоит в том, что в окрестности некоторого большого числа Nдоля простых чисел составляет ~1/ln  N.Например, логарифм триллиона равен 27,6310211…, так что в окрестности триллиона примерно одно из каждых 28 чисел простое. Модель Крамера утверждает, что помимо этого ограничения на среднюю частоту их появления простые числа распределены полностью случайно.

Один из способов понять, что это означает, состоит вот в чем. [188]188
  Я позаимствовал этот мысленный эксперимент из главы 3 книги «Простые числа и их распределение», которую написали Джеральд Тененбаум и Мишель Мендес-Франс ( American Mathematical Society publications, 2000).


[Закрыть]
Представим себе длинный ряд горшков из обожженной глины, на которых написаны натуральные числа: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … до бесконечности (или до какого-нибудь очень большого числа). В каждый горшок положим некоторое количество деревянных шаров. Число шаров в горшке с номером Nдолжно быть равно ln  N(или ближайшему целому числу). Таким образом, первые несколько горшков содержат 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, … этих шаров. Более того, в каждом горшке должен быть по крайней мере один черный шар; все остальные шары в каждом горшке белые. Следовательно, в горшках с написанными на них числами 2, 3 и 4 имеется только черный шар; в горшках с числами от 5 до 12 лежит один черный и один белый; в горшках с 13 по 33 – один черный и два белых и т.д.

Теперь возьмем планшет и большой (желательно бесконечный) лист бумаги и отправимся на прогулку вдоль ряда из горшков. Случайным образом вытащим по шару из каждого горшка. Если это черный шар, запишем номер данного горшка. В конце такой прогулки у нас получится длинный список, начинающийся как 2, 3, 4, …. Шансы, что в списке окажется число 5, распределены как 50:50, поскольку в горшке 5 имеется один белый шар и один черный. Шанс, что там будет число 1 000 000 000 000, – один из 28.

Что же можно сказать о таком списке? Это, конечно, не список простых чисел. Например, в него входит много четных чисел, но лишь одно простое число, 2, является четным. Так вот, если модель Крамера верна, то список будет статистически неотличим от списка простых чисел. Любое общее статистическое свойство, которым обладают простые числа, – скажем, сколь много их мы ожидаем найти в интервале определенной длины или степень их кластеризации (о которой Гильберт в формулировке восьмой проблемы говорил как о «конденсации») – будет присуще и полученному случайному списку.

Чтобы развить некоторую аналогию, рассмотрим десятичные разряды числа π.Насколько вообще известно, их последовательность совершенно случайна. [189]189
  Хорошая статья на эту тему – «Нормально ли π?» Стена Вейгена ( Mathematical Intelligencer.Vol. 7. № 3).


[Закрыть]
Они никогда не повторяются. И цифры, и пары цифр, и тройки цифр, и четверки цифр появляются с точно такой же частотой, которую даст чистый случай. Никому никогда не удавалось обнаружить какой-нибудь закон в миллиардах десятичных знаков числа π, которые в настоящее время доступны изучению. Десятичные знаки числа π– это случайная последовательность цифр… за тем единственным исключением, что они представляют именно число π! Так же обстоит дело и с простыми числами в модели Крамера. Они неотличимы от любой другой последовательности с частотой появления 1/ln  N, и в этом смысле они полностью случайны… за исключением, конечно, того обстоятельства, что они простые!

В 1985 году Хельмут Майер доказал, что модель Крамера в том простом виде, как я ее обрисовал, не дает полной картины распределения простых чисел. Но некоторый модифицированный вариант модели приводит к правильным предсказаниям распределения простых чисел и при этом связан с Гипотезой Римана довольно хитрым и непрямым образом. Имеется скромная надежда, что дальнейшие исследования этого вопроса приведут к прогрессу в понимании ГР. [190]190
  У меня имеется распечатка недавней статьи Хью Монтгомери и Каннана Сундарараджана «За пределами парных корреляций», которая наносит еще один удар по модели Крамера. Статья заканчивается такими словами: «…по-видимому, здесь происходит нечто такое, что еще предстоит понять». (Эта статья доступна по адресу:
  http://arxiv.org/abs/math.NT/0003234 – Примеч. перев.)


[Закрыть]


VIII.

И наконец, я не могу не упомянуть самый непрямой подход – подход в рамках недедуктивной логики. Строго говоря, это не математическая тема. Математика требует строгих логических доказательств для обоснования своих результатов. Однако большая часть мира устроена иначе. В обычной жизни мы действуем, исходя главным образом из вероятностей. В суде, на приеме у врача, при оформлении страховых полисов мы учитываем именно баланс вероятностей, а вовсе не исходим из железной определенности. Временами, конечно, для количественного выражения подобных вопросов мы пользуемся настоящей математической теорией вероятностей – именно по этой причине страховые компании берут на работу актуариев. Но гораздо чаще мы ее не используем, да и не можем использовать – представим себе хотя бы судебное разбирательство.

Математики порой бросали заинтересованный взгляд на эту сторону жизни. Джордж Пойа даже написал по этому поводу двухтомник [191]191
  Математика и правдоподобные рассуждения (1954). (Русский пер. под ред. С.А. Яновской. М.: Наука. 1975. – Примеч. перев.)


[Закрыть]
, в котором он делает довольно неожиданное заявление, что недедуктивная логика больше ценится в математике, чем в естественных науках. Эту линию рассуждений совсем недавно продолжил австралийский математик Джеймс Фрэнклин. Его статья 1987 года «Недедуктивная логика и математика», опубликованная в British Journal for the Philosophy of Science,содержит раздел, озаглавленный «Свидетельства в пользу Гипотезы Римана и других гипотез».

Фрэнклин подходит к ГР так, как если бы она представляла собой дело, рассматривающееся в суде. Он приводит свидетельства в пользу справедливости Гипотезы Римана.

• Результат Харди 1914 года о том, что на критической прямой лежит бесконечно много нулей.

• Из ГР следует ТРПЧ, о которой известно, что она верна.

• «Вероятностная интерпретация Данжуа» – другими словами, рассмотренное выше рассуждение, основанное на подбрасывании монеты.

• Еще одна теорема 1914 года, которую доказали Ландау и Харальд Бор, согласно которой большинство нулей – все, кроме бесконечно малой доли, – очень близки к критической прямой. Стоит заметить, что коль скоро число нулей бесконечно, один триллион считается бесконечно малой долей.

• Алгебраические результаты Артина, А. Вейля и Делиня, упомянутые в главе 17.iii.

А теперь свидетельства со стороны обвинения.

• У самого Римана не было внятных причин для подкрепления своего утверждения в статье 1859 года о том, что ГР «очень правдоподобна», а полупричины, которые могли бы послужить мотивировкой его утверждения, с тех пор были опровергнуты.

• В 1970-х годах компьютерные расчеты показали, что на большой высоте вдоль критической прямой дзета-функция демонстрирует весьма своеобразное поведение (по-видимому, Фрэнклин не знает о работе Одлыжко).

• Результат Литлвуда 1914 года об остаточном члене Li (x) − π(x). Фрэнклин пишет: «Значимость открытия Литлвуда для Гипотезы Римана далеко не очевидна. Но оно в самом деле дает некоторые основания подозревать, что к Гипотезе Римана могут найтись очень крупные контрпримеры, хотя малые контрпримеры и отсутствуют». Насколько я понимаю, Фрэнклин рассуждает здесь по аналогии. «Для некоторых исключительно больших чисел остаточный член ведет себя плохо. Но он связан с нулями дзета-функции [см. главу 21 в этой книге]. Так что, вероятно, для очень больших Tдзета-функция ведет себя плохо и имеет нули вне критической прямой».

Конечно, все это косвенные свидетельства. Однако их не следует сбрасывать со счетов просто как псевдофилософскую игру слов. Выводы, основанные на свидетельствах, могут способствовать получению весьма убедительных результатов, порой вопреки строго аргументированным математическим непреложностям. Рассмотрим, например, очень нематематическую ситуацию, когда гипотезу можно значительно ослабить с помощью подтверждающих ее свидетельств. Гипотеза: ни одно человеческое существо не может быть ростом выше девяти футов. Подтверждающее свидетельство: человек, рост которого 8 футов и 11 3/ 4дюйма. Обнаружение такого индивида подтверждает гипотезу… и, однако, в то же время бросает на нее серьезную тень сомнения! [192]192
  Фрэнклин написал в 2001 г. прекрасную книгу о нематематической теории вероятностей под названием «Наука догадок». Я рецензировал ее для журнала The New Criterionв июне того же года. (См.:
  http://www.newcriterion.com/articles.cfm/franklin-derbyshire-2175– Примеч. перев.)


[Закрыть]


    Ваша оценка произведения:

Популярные книги за неделю