355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джон Дербишир » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. » Текст книги (страница 7)
Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике.
  • Текст добавлен: 29 сентября 2016, 00:25

Текст книги "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике."


Автор книги: Джон Дербишир



сообщить о нарушении

Текущая страница: 7 (всего у книги 26 страниц)

Возьмем любые два целых числа и будем последовательно прибавлять одно к другому. Если наши два числа имеют общий делитель, то каждое из получающихся чисел тоже будет иметь этот делитель: например, последовательное прибавление числа 6 к 15 даст числа 15, 21, 27, 33, 39, 45, …, каждое из которых делится на тройку. Но если два исходных числа не имеют общего делителя, то в получающемся списке могут попадаться и простые числа. Например, будем последовательно прибавлять 6 к 35: получим 35, 41, 47, 53, 59, 65, 71, 77, 83, …, где масса простых (вперемешку, разумеется, с массой не простых, таких как 65 или 77). А как много простых? Может ли такая последовательность содержать бесконечно много простых чисел? Другими словами, может ли случиться так, что для любого сколь угодно большого числа Nнам удастся получить более чем Nпростых чисел, достаточно долго прибавляя для этого 6 к 35? А может ли любая подобная последовательность, построенная из двух чисел без общего делителя, содержать бесконечно много простых чисел?

Да. Может. И именно так дело и обстоит. Возьмем любые два числа без общего делителя и будем последовательно прибавлять одно к другому. Получим бесконечно много простых чисел (наряду с бесконечно большим количеством не простых). Гаусс высказал предположение, что так должно быть, – зная мощь Гаусса, хочется сказать, что он это чувствовал интуитивно, – но твердо доказал это Дирихле в той работе 1837 года. Именно в доказательстве, которое привел Дирихле, реализовалась первая часть того самого великого соединения.

На самом деле все даже еще интереснее. Возьмем любое положительное целое число, скажем, 9. Как много чисел, меньших, чем 9, не имеют общего делителя с девяткой (единица не считается за делитель)? Таких чисел шесть – это 1, 2, 4, 5, 7, 8. Будем по очереди брать каждое из них и последовательно прибавлять к нему девятку.

 
1: 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127
2: 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 101, 110, 119, 128…
4: 13, 22, 31, 40, 49, 58, 67, 76, 85, 94, 103, 112, 121, 130…
5: 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131
7: 16, 25, 34, 43, 52, 61, 70, 79, 88, 97, 106, 115, 124, 133…
8: 17, 26, 35, 44, 53, 62, 71, 80, 89, 98, 107, 116, 125, 134…
 

Каждая из этих шести последовательностей содержит не просто бесконечно много простых чисел (выделены жирным), но и одну и ту же долюпростых чисел. Другими словами, представим себе, что последовательности продолжены до окрестности какого-то очень большого числа N, а не просто до окрестности числа 134; тогда каждая последовательность будет содержать примерно одно и то же количество простых чисел, причем если верна Теорема о распределении простых чисел, то около 1/ 6( N∙ln  N) (впрочем, эта теорема еще не была доказана во времена Дирихле). Если N —это 134, то 1/ 6( N∙ln  N) составляет около 4,55983336…. Приведенные выше шесть последовательностей содержат 5, 5, 4, 5, 4 и 5 простых чисел, что дает среднее 4,6666… – на 2,3 процента больше, чем утверждается, что совсем неплохо для такой маленькой выборки.

Для доказательства своего результата Дирихле начал с арифметики в той форме, в какой она была подробно развита Гауссом в Disquisitiones Arithmeticae.Математики называют ее «арифметикой сравнений». Ее можно представлять себе как арифметику циферблата. Временно заменим 12 на циферблате часов на 0. Двенадцать часовых отметок на циферблате теперь имеют вид 0, 1, 2, 3, …, 11. Если времени сейчас восемь часов, а вы прибавите 9 часов, то что получится? Ага, вы получите пять часов. В данной арифметике, таким образом, 8 + 9 ≡ 5. Или, как это выражают математики, 8 + 9 ≡ 5 (mod 12), что читается как «девять плюс восемь сравнимо с пятью по модулю 12». Фраза «по модулю двенадцати» означает «я определяю результаты по циферблату с 12 часовыми отметками, от 0 до 11». Это может показаться тривиальным, но в действительности арифметика сравнений уходит очень глубоко и полна странных и трудных результатов. Гаусс был в ней великим гроссмейстером; ни одна из семи глав Disquisitiones Arithmeticaeне обходится без знака ≡.

Не забудем, что Disquisitionesбыла постоянным спутником Дирихле в его молодые годы. Когда он приступил к упомянутой выше задаче в 1836 или 1837 году, ему было уже тридцать с небольшим лет, и к тому времени он не раз уже проштудировал работу Гаусса по сравнениям. Затем каким-то образом в поле его зрения попал результат Эйлера 1737 года – Золотой Ключ. Это и дало ему подсказку. Он соединил две вещи вместе, применил некоторые элементарные методы анализа и получил свое доказательство.


IX.

Дирихле, таким образом, был первым, кто подобрал Золотой Ключ – связующее звено между арифметикой и анализом – и всерьез воспользовался им. Однако (если продолжить ту аналогию, которую я здесь развиваю) утверждение о том, что он еще и повернул ключ, было бы некоторым преувеличением. Скорее я бы сказал, что он его взял, оценил его красоту и потенциальную мощь, затем отложил его в сторону, но использовал как образец для другого похожего ключа – серебряного, можно сказать, – чтобы отпереть дверь, ведущую к стоявшей перед ним конкретной проблеме. Великое соединение – аналитическая теория чисел – появилось во всем своем великолепии лишь 22 года спустя, в работе Римана 1859 года.

Вспомним, однако, что Риман был одним из учеников Дирихле и, без сомнения, знал о его работах. Действительно, в первом же абзаце своей статьи 1859 года он упоминает Дирихле вместе с Гауссом. Они были двумя его математическими кумирами. Если Риман повернул ключ, то Дирихле сначала показал ему этот ключ и продемонстрировал, что он в самом деле может что-то отпереть; и именно Дирихле заслуженно принадлежит бессмертная слава создания аналитической теории чисел.

Но что же представляет собой этот Золотой Ключ? Что именно оставил Леонард Эйлер, работая в своей комнате наедине со свечой, когда по улицам Санкт-Петербурга пробирались тайные агенты Бирона, что именно оставил он – для того чтобы через сто лет это нашел Дирихле?

Глава 7. Золотой Ключ и улучшенная Теорема о распределении простых чисел
I.

Внимательный читатель уже, должно быть, заметил, что математические главы этой книги развиваются по двум основным колеям. Главы 1 и 5 были целиком посвящены различным бесконечным рядам, приводящим к математическим объектам, которые Риман назвал дзета-функцией. А в главе 3, посвященной простым числам, отталкиваясь от заглавия работы Римана 1859 года, мы рассмотрели Теорему о распределении простых чисел (ТРПЧ). Эти два предмета – дзета-функция и простые числа, – очевидно, связны в силу того интереса, который к ним проявлял Риман. В самом деле, определенным образом связав одну концепцию с другой и повернув Золотой Ключ, Риман открыл целую область аналитической теории чисел. Но как он это сделал? Какова связь? Что именнопредставляет собой Золотой Ключ? В данной главе я намерен ответить на этот вопрос – предъявить вам Золотой Ключ. После этого мы начнем готовиться к повороту Золотого Ключа, рассмотрев улучшенный вариант ТРПЧ.


II.

Начинается все с «решета Эратосфена». Золотой Ключ по существу представляет собой способ, которым Леонард Эйлер сумел выразить решето Эратосфена в терминах анализа.

Эратосфен из Кирены (в настоящее время – городок Шаххат в Ливии) был одним из библиотекарей великой александрийской библиотеки. Около 230 года до P.X. – примерно через 70 лет после Эвклида – он разработал свой знаменитый метод решета для нахождения простых чисел.

Работает этот метод следующим образом. Сначала выпишем все целые числа, начиная с 2. Разумеется, нельзя выписать их все, поэтому остановимся на сотне с небольшим.

  2   3   4   5   6   7   8   9  10  11

 12  13  14  15  16  17  18  19  20  21

 22  23  24  25  26  27  28  29  30  31

 32  33  34  35  36  37  38  39  40  41

 42  43  44  45  46  47  48  49  50  51

 52  53  54  55  56  57  58  59  60  61

 62  63  64  65  66  67  68  69  70  71

 72  73  74  75  76  77  78  79  80  81

 82  83  84  85  86  87  88  89  90  91

 92  93  94  95  96  97  98  99 100 101

102 103 104 105 106 107 108 109 110 111

Теперь, начиная с 2 и сохраняя при этом саму двойку в неприкосновенности, уберем каждое второе число после 2.

  2   3   .   5   .   7   .   9   .  11

  .  13   .  15   .  17   .  19   .  21

  .  23   .  25   .  27   .  29   .  31

  .  33   .  35   .  37   .  39   .  41

  .  43   .  45   .  47   .  49   .  51

  .  53   .  55   .  57   .  59   .  61

  .  63   .  65   .  67   .  69   .  71

  .  73   .  75   .  77   .  79   .  81

  .  83   .  85   .  87   .  89   .  91

  .  93   .  95   .  97   .  99   . 101

  . 103   . 105   . 107   . 109   . 111

Первое выжившее число после двойки – это 3. Сохраняя теперь 3 в неприкосновенности, удалим каждое третье число после 3, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .  25   .   .   .  29   .  31

  .   .   .  35   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .  55   .   .   .  59   .  61

  .   .   .  65   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .  85   .   .   .  89   .  91

  .   .   .  95   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число после тройки – это 5. Сохраняя теперь 5 в неприкосновенности, удалим каждое пятое число после 5, если оно еще не удалено. Получим

  2   3   .   5   .   7   .   .   .  11

  .  13   .   .   .  17   .  19   .   .

  .  23   .   .   .   .   .  29   .  31

  .   .   .   .   .  37   .   .   .  41

  .  43   .   .   .  47   .  49   .   .

  .  53   .   .   .   .   .  59   .  61

  .   .   .   .   .  67   .   .   .  71

  .  73   .   .   .  77   .  79   .   .

  .  83   .   .   .   .   .  89   .  91

  .   .   .   .   .  97   .   .   . 101

  . 103   .   .   . 107   . 109   . 111

Первое выжившее число – это 7. Следующий шаг состоит в том, чтобы, сохраняя теперь 7 в неприкосновенности, удалить каждое седьмое число после 7, если его еще не удалили до этого. Первое число, которое выживает после этого, – 11. И так далее.

Если проводить эту процедуру бесконечно, то оставшимися числами будут все простые числа. В этом и состоит «решето Эратосфена». Если остановиться прямо перед тем, как пришло время обрабатывать простое число p– другими словами, прямо перед тем, как надо будет удалять каждое p-е число, если оно еще не было удалено, – то мы получим все простые числа, меньшие p 2. Поскольку выше мы остановились прямо перед обработкой семерки, у нас имеются все простые до 7 2, т.е. 49. Послеэтого числа остаются и не простые числа, такие как 77.


III.

Решето Эратосфена – вещь достаточно простая. И ему уже 2230 лет. Как же оно перенесет нас в середину XIX века, к глубоким результатам в теории функций? А вот как.

Я собираюсь повторить только что проведенную процедуру. (Именно по этой причине мы разобрали ее столь тщательно.) Но на этот раз я применю ее к дзета-функции Римана, которую мы определили в конце главы 5. Дзета-функция от некоторого аргумента s, большего единицы, записывается как

Стоит заметить, что такая форма записи предполагает выписывание всех положительных целых чисел – в точности как в начале наших действий с решетом Эратосфена (с тем только исключением, что на сей раз включена 1).

Сделаем такое: умножим обе части равенства на . Получим

где мы пользовались 7-м правилом действий со степенями (которое говорит, например, что 2 s умножить на 7 s равно 14 s ). А теперь вычтем второе из этих выражений из первого. В одну из левых частей входит ζ(s)с множителем 1, а в другую – та же ζ(s)с множителем . Вычитая, получаем

Вычитание устранило из бесконечной суммы все члены с четными числами. Остались только члены, в которые входят нечетные числа.

Вспоминая решето Эратосфена, умножим теперь обе части порченного равенства на , руководствуясь тем, что 3 – это первое выжившее число в правой части:

Теперь вычтем это выражение из того, которое мы получили ранее. При вычитании левых частей будем рассматривать  как неделимую штуку, – просто как некоторое число (каковым оно, конечно, и является при любом заданном s). Вся эта штука входит в левую часть одного выражения с множителем 1, а в левую часть другого – с множителем . Вычитая, получаем

Из бесконечной суммы исчезли все члены, содержащие числа, кратные тройке! Первое выжившее число – это теперь 5.

Умножив теперь обе части полученной формулы на , будем иметь

А теперь, вычитая это равенство из предыдущего и рассматривая на этот раз  как неделимую конструкцию, видим, что в левую часть одного выражения она входит с множителем 1, а в левую часть другого – с множителем . Вычитание дает

Все слагаемые с числами, кратными 5, исчезли при вычитании, и первое выжившее число в правой части – это 7.

Замечаете сходство с решетом Эратосфена? Но вы должны заметить и отличие. При работе с исходным решетом мы оставляли сами простые числа в неприкосновенности, удаляя только их кратные – числа, полученные из них умножением на 2, 3, 4, …. Здесь же при вычитании мы устраняем из правой части как само простое число, так и все его кратные.

Если продолжать описанную процедуру до достаточно большого простого числа, скажем, до 997, мы получим

Теперь заметим, что если s– любое число, большее единицы, то правая часть этой формулы совсем ненамного больше чем просто 1. Например, при s= 3 правая часть этой формулы равна 1,00000006731036081534… Поэтому выглядит довольно правдоподобным предположение, что если продолжать указанный процесс до бесконечности, то для любого числа sбольшего 1 получится следующий результат (7.1):

где в левой части содержится ровно одно выражение в скобках для каждогопростого числа, причем эти скобки продолжаются налево без конца. Теперь поделим обе части полученного выражения последовательно на каждую из этих скобок (7.2):


IV.

Это – Золотой Ключ. Чтобы он предстал перед нами во всей красе, давайте немного его почистим. Дроби с дробными знаменателями нравятся мне ничуть не больше, чем вам, а кроме того, есть еще полезные математические приемы, которые позволят нам сэкономить на наборе формул.

Прежде всего вспомним 5-е правило действий со степенями: оно говорит, что a −Nесть 1/ a Nи a −1есть 1/ a.Поэтому выражение (7.2)можно записать поаккуратнее:

 
ζ(s)= (1 − 2 −s ) −1×(1 − 3 −s ) −1×(1 − 5 −s ) −1×(1 − 7 −s ) −1×(1 − 11 −s ) −1×….
 

Есть даже еще лучший способ. Вспомним про обозначение ∑, введенное в главе 5.viii. Когда мы складываем компанию слагаемых единообразной структуры, их сумму можно записать коротко, используя знак ∑; у этого имеется эквивалент для умножения, когда сомножители имеют единообразную структуру: тогда используется знак ∏. Это заглавная греческая буква «пи», используемая в этом качестве из-за слова «product» (произведение). Используя знак ∏, выражение (7.2)можно переписать таким образом:

Читается это так: «Дзета от sравна взятому по всем простым числам произведению от величины, обратной единице минус pв степени минус s». Подразумевается, что маленькое pпод знаком ∏ означает «по всем простым». [55]55
  Математика допускает бесконечные произведения точно так же, как она допускает бесконечные суммы. Как и бесконечные суммы, некоторые из бесконечных произведений сходятся к определенному значению, а некоторые расходятся к бесконечности. Данное произведение сходится, когда sбольше 1. Например, при s= 3 оно равно
8/ 7× 27/ 26× 125/ 124× 343/ 342× 1331/ 1330× 2197/ 2196× 4913/ 4912× 6859/ 6858×….  Сомножители становятся все ближе и ближе к 1, причем делают это очень быстро, так что каждое следующее умножение – это умножение на нечто, лишь на самую малую малость отличающееся от 1, что, конечно, меняет результат очень незначительно. Прибавим к чему-нибудь нуль: никакого эффекта. Умножим что-нибудь на единицу: никакого эффекта. В бесконечной сумме члены должны достаточно быстро приближаться к нулю, чтобы прибавление их сказывалось мало; в бесконечном произведении они должны достаточно быстро приближаться к 1, чтобы умножение них сказывалось мало.


[Закрыть]
Вспоминая определение функции ζ(s)в виде бесконечной суммы, можно подставить эту сумму в левую часть и получить

Золотой Ключ (7.3):

И сумма в левой части, и произведение в правой части простираются до бесконечности. Это, кстати, дает еще одно доказательство того факта, что простые числа никогда не кончаются. Если бы они вдруг кончились, то произведение в правой части содержало бы конечное число множителей, и тем самым мы его немедленно вычислили бы как какое-то число при абсолютно любом аргументе s. [56]56
  Все-таки кроме s= 0. (Примеч. перев.)


[Закрыть]
При s = 1, однако, левая часть представляет собой гармонический ряд из главы 1, сложение членов которого «уводит нас в бесконечность». Поскольку бесконечность в левой части не может равняться конечному числу в правой, количество простых чисел с необходимостью бесконечно.


V.

Что же такого – как вы, должно быть, недоумеваете – замечательного, такого неординарного и вызывающего имеется в выражении (7.3), что оно удостоилось столь высокопарного имени?

Окончательно это прояснится только в одной из последующих глав, когда мы на самом деле повернем Золотой Ключ. На данный же момент главное, что должно производить впечатление (на математиков оно, во всяком случае, производит большое впечатление), – это что в левой части выражения (7.3)мы имеем бесконечную сумму, пробегающую все положительные целые числа 1, 2, 3, 5, 6, …, а в правой его части – бесконечное произведение, пробегающее все простые числа 2, 3, 5, 7, 11, 13, ….

Выражение (7.3)– Золотой Ключ – на самом деле называется «эйлерова формула произведения». [57]57
  Золотой Ключ – это исключительно моя номенклатура. «Эйлерова формула произведения» – стандартное название. Стандартные же названия для двух ее частей – «ряд Дирихле» для бесконечной суммы и «эйлерово произведение» для бесконечного произведения. Строго говоря, левая часть – это некоторыйряд Дирихле, а правая часть – некотороеэйлерово произведение. Но в узком контексте данной книги дополнительные уточнения не требуются.


[Закрыть]
Она впервые увидела свет, хотя и в несколько иной обработке, в статье Variae observationes circa series infinorum, написанной Леонардом Эйлером и опубликованной Санкт-Петербургской академией в 1737 году. (Заглавие переводится как «Различные наблюдения о бесконечных рядах». Прочитайте еще раз оригинальное латинское название и убедитесь в справедливости моего тезиса из главы 4.viii о легкости, с которой читается Эйлерова латынь.) Точная формулировка утверждения о Золотом Ключе в той работе такова.

Theorema 8

Si ex serie numerorum primorum sequens formetur expressio

erit eius valor aequalis summae huius seriei

Латынь означает: «Если из последовательности простых чисел образовать следующее выражение…, то его значение будет равно сумме ряда…» Опять же, если вы знакомы с десятком основных латинских окончаний (-orum – родительный падеж; -etur – пассивный залог сослагательного наклонения настоящего времени и т.п.), то эйлерова латынь вас не отпугнет.

Делая наброски идей, из которых выросла данная книга, я сначала полез в математические тексты у себя на книжной полке, чтобы найти доказательство Золотого Ключа, подходящее для читателей, не являющихся специалистами. Я остановился на одном, показавшемся мне подходящим, и включил его в книгу. На более поздней стадии работы над книгой мне подумалось, что стоит, пожалуй, проявить авторское тщание, и я отправился в научную библиотеку (в данном случае – замечательное отделение по наукам, промышленности и бизнесу Нью-Йоркской публичной библиотеки в центре Манхэттена) и отыскал оригинальную статью в собрании трудов Эйлера. Данное им доказательство Золотого Ключа занимает десяток строк и куда проще и изящнее, чем доказательство, которое я извлек из своих учебников. Поэтому я заменил первоначально выбранное доказательство эйлеровым. Доказательство, приведенное в разделе iii этой главы, по сути и есть эйлерово доказательство. Я знаю, что это писательский штамп, но он от этого не перестает быть верным: нет ничего лучше, чем обратиться к первоисточнику.


VI.

После того как мы увидели, что же собой представляет Золотой Ключ, пришло время готовиться к тому, чтобы его повернуть. Для этого понадобится вспомнить некоторое количество математики, включая кусочек дифференциального и интегрального исчислений. В оставшейся части данной главы я приведу все, что нужно знать из дифференциального и интегрального исчисления, чтобы понять Гипотезу Римана и оценить ее значение. А затем, обратив необходимость в удобство, я воспользуюсь этими сведениями, чтобы представить улучшенный вариант ТРПЧ – вариант, имеющий более непосредственное отношение к работе Римана.

Обучение дифференциальному и интегральному исчислению традиционно начинается с графика. График, с которого мы начнем, – тот же, что и изображение логарифмической функции в главе 5.iii; теперь он воспроизведен на рисунке 7.1. Представьте себе, что вы – очень маленький (бесконечно малый, если получится представить) гомункулус, взбирающийся вверх по графику логарифмической функции слева направо. Если вы начали свое путешествие из какой-го точки, находящейся недалеко от нуля, то сначала путь вашего восхождения очень крутой и вам требуется скалолазное снаряжение. Но по мере продвижения ландшафт становится более пологим. К тому времени, как вы достигнете аргументов в районе 10, вы можете распрямиться и просто шагать, как на прогулке.

Рисунок 7.1.Функция ln  x.

Степень крутизны кривой изменяется от точки к точке. Но в каждой точке наклон кривой имеет определенное численное значение – точно так же, как ваша машина, когда вы разгоняетесь, имеет определенную скорость в каждый данный момент времени – скорость, которую вы фиксируете, бросая взгляд на спидометр. Через мгновение она может слегка измениться, но в каждый определенный момент времени она имеет некоторое определенное значение. Точно так же для любого аргумента в своей области определения (которую составляют все числа, большие нуля) логарифмическая функция имеет некоторый определенный наклон.

Как нам измерить этот наклон и что это такое? Сначала давайте определим «наклон» наклонной прямой линии. Это подъем по вертикали, деленный на смещение по горизонтали. Если, пройдя по горизонтали расстояние в 5 единиц, вы поднялись на 2 единицы вверх, то, значит, наклон равен двум пятым, т.е. 0,4 (рис. 7.2).

Рисунок 7.2.Наклон.

Чтобы найти наклон некоторой кривой в произвольной точке на ней, построим прямую линию, касающуюся кривой в выбранной точке. Ясно, что имеется ровно одна такая прямая. Если я слегка ее «покачаю» (можно представлять себе, что прямая – это стальной стержень, а кривая – стальной обод), то точка касания с кривой слегка сместится. Наклон кривой в данной точке – это наклон этой единственной касательной в этой точке. Для ln  xнаклон при аргументе x= 10, если вы его измерите, равен 1/ 10. Наклон при аргументе 20, конечно, меньше этого; измерение дает 1/ 20. Наклон при аргументе 5 больше – и измерение дает 1/ 5. На самом деле еще одно поразительное свойство логарифмической функции состоит в том, что при любом аргументе xее наклон равен 1/ x– числу, обратному x(обозначаемому еще как x −1).

Если вы когда-нибудь слушали лекции по дифференциальному исчислению, то все это вам хорошо знакомо. Дифференциальное исчисление в действительности начинается с такого утверждения: из любой функции fможно произвести другую функцию g, которая выражает наклон функции fпри любом ее аргументе. Если f– это ln  x, то g– это 1/ x. Произведенная таким образом функция называется, как ни странно, производной функции f. Например, 1/ x– это производная функции ln  x. Если вам дали какую-то функцию f, то процесс нахождения ее производной называется дифференцированием.

Дифференцирование – действие, которое подчиняется некоторым простым правилам. Например, оно прозрачно для нескольких основных арифметических операций. Если производная функции f– это g,то производная функции 7 f —это 7 g.(Так что производная от 7∙ln  xравна 7/ x.) Производная суммы f + g —это производная функции fплюс производная функции g.Правда, все не совсем так для умножения: производная произведения fи g неравна произведению производной функции fна производную функции g. [58]58
  Надо полагать, что автор сознательно (и, скорее всего, после некоторых размышлений) остановился перед формулировкой так называемого правила Лейбницадля производной произведения. Последуем его примеру и не будем приводить это замечательное правило, обладающее глубоким математическим смыслом, выходящим за рамки собственно математического анализа. (Примеч. перев.)


[Закрыть]

Единственные функции, кроме логарифма, производные которых нам понадобятся в этой книге, – это простые степенные функции x N. Приведем без доказательства тот факт, что для любого числа Nпроизводная функции x Nесть функция Nx N−1.Таблица 7.1 дает некоторые производные степенных функций.


x −3 −3 x −4
x −2 −2 x −3
x −1 x −2
x 0 0
x 1 1
x 2 2 x
x 3 3 x 2

Таблица 7.1.Производные функций x N.

Конечно, x 0– это просто единица, а график этой функции – горизонтальная прямая. У нее нет наклона – точнее, нулевой наклон. Дифференцирование любого фиксированного числа дает нуль. А x 1– это просто x, график же представляет собой прямую, идущую по диагонали вверх и покидающую рисунок через правый верхний угол. Наклон ее повсюду равен 1. Заметим, что нет такой степенной функции, производная которой была бы равна x −1, хотя x 0вроде бы стоит на правильном месте, чтобы дать такую производную. Это неудивительно, поскольку мы уже знаем, что производная ln  xесть как раз x −1. Это еще одно свидетельство того, что ln  xкак будто пытается выдать себя за x 0.


VII.

Вы, должно быть, помните мои слова о том, что математики обожают все обращать. Если задано выражение Pчерез Q, то как выразить Qчерез P? Именно так мы исходно и получили логарифмическую функцию – как обращение показательной функции. Если a = e b, тот как найти bчерез a? Как ln  а.

Так вот, предположим, что мы продифференцировали функцию fи получили функцию g.То есть gпредставляет собой производную функции f.А fпредставляет собой… (что именно?!) функции g? В чем состоит обращение дифференцирования? Производная ln  x– это 1/ x, так что ln  x– это… (что?) функции 1/ x? Ответ:  интеграл,вот что. Обращение производной – это интеграл, а обращение дифференцирования – это интегрирование. Поскольку вся эта деятельность прозрачна для умножения на фиксированное число, переворачивание таблицы 7.1 вверх ногами и некоторая ее «доводка» дадут нам обратную операцию, которая и представлена в таблице 7.2. И вообще, если только Nне равно −1, то интеграл от функции x Nравен x N+1 /(N + 1 ).(Взгляд на таблицу еще раз показывает, как функция ln  xизо всех сил старается вести себя как функция x 0, каковой она, конечно, не является).


x −3 1/ 2 x −2
x −2 x −1
x −1 ln  x
x 0 x
x 1 1/ 2 x 2
x 2 1/ 3 x 3
x 3 1/ 4 x 4

Таблица 7.2.Интегралы функций x N.

Если производные годятся для того, чтобы выражать наклон функции – т.е. скорость, с которой функция изменяется в данной точке, – то для чего же годятся интегралы? Ответ: для нахождения площадей под графиками.

Рисунок 7.3.Для чего пригодно интегрирование.

Функция, показанная на рисунке 7.3, а это в действительности функция 1/ x 4, т.е., другими словами, x −4, – ограничивает собой некоторую площадь между аргументами x = 2 и x = 3. Чтобы найти эту площадь, сначала надо найти интеграл от x −4. Согласно приведенному выше общему правилу, этот интеграл равен − 1/ 3 x −3, т.е. −1/(3 x 3). Эта функция, как и всякая другая, имеет значение для каждого xиз своей области определения. Чтобы найти площадь между аргументами 2 и 3, надо вычислить значение интеграла при аргументе 3, затем вычислить значение интеграла при аргументе 2, а потом вычесть второе значение из первого.

При x = 3 значение функции −1/(3 x 3) равно − 1/ 81, при x = 2 оно составляет − 1/ 24. Вычитаем, не забывая, что вычесть отрицательное число – это все равно что прибавить соответствующее положительное: − 1/ 81− (− 1/ 24) = 1/ 241/ 81, что равно 19/ 648, т.е. примерно 0,029321.

У математиков есть специальный способ для записи всей этой процедуры: , что читается как «интеграл от икс в минус четвертой степени по дэ-икс от двух до трех». (Не слишком озадачивайтесь этим самым «по » – назначение этих слов состоит в указании, что именно xявляется основной переменной, с которой мы работаем, и именно ее интеграл надо найти. Если под знаком интеграла окажутся еще другие переменные, то они будут там присутствовать праздно, интегрирование ведется не по ним. В главе 19 у нас появится такой пример.)

Далее. Иногда оказывается возможным отправить правый конец интегрирования на бесконечность, но при этом получить конечную площадь. Это напоминает ситуацию с бесконечными суммами: если значения ведут себя должным образом, такие суммы могут сходиться к конечному значению. То же и здесь. У функций, которые ведут себя должным образом, площадь под кривой может оказаться конечной, несмотря даже на то, что область бесконечно длинная. Интегралы связаны с суммами на глубинном уровне. Даже знак интеграла, впервые использованный Лейбницем в 1675 году, представляет собой вытянутое S, обозначающее «сумму».

Смотрите: предположим, что вместо того, чтобы останавливаться на тройке, мы бы продолжили интегрирование до x = 100. Тогда, поскольку куб числа 100 равен 1 000 000, наше вычисление приобрело бы вид:

 
(− 1/ 3 000 000) − (− 1/ 24) = 1/ 241/ 3 000 000.
 

Ясно, что если бы мы пошли еще дальше, то второе слагаемое стало бы еще меньше. По мере того как мы спешим к бесконечности, оно постепенно угасает, стремясь к нулю, и у нас есть полное право написать:

Стоит заметить, что, когда интеграл используется для вычисления площади, xисчезает из ответа: вместо xподставляются числа и в ответе получается число.

Вот и все. Клянусь, это все, что нам понадобится из дифференциального и интегрального исчисления. И поскольку ничего нового вводиться не будет, пользоваться дифференциальным и интегральным исчислением мы начнем прямо сейчас. С их помощью мы определим новую функцию, которая чрезвычайно важна в теории простых чисел и дзета-функции.


VIII.

Сначала рассмотрим функцию 1/ln  t. Ее график показан на рисунке 7.4. Обозначение для аргумента заменено с xна tпо той причине, что букве xотведена другая роль, чем просто быть бессловесной переменной.

На рисунке затемнена некоторая область под графиком, поскольку мы сейчас устроим небольшое интегрирование. Как только что объяснялось, интегрирование – это способ вычислить площадь под графиком функции. Сначала надо найти интеграл от интересующей нас функции, а потом взять калькулятор. Итак, каков же интеграл от функции 1/ln  t?

К сожалению, в домашнем хозяйстве нет обычной функции, которая позволила бы выразить интеграл от 1/ln  t. Но интеграл этот весьма важен. Он снова и снова появляется в исследованиях, связанных с Гипотезой Римана. Поскольку нежелательно писать всякий раз, как потребуется эта монструозная конструкция, мы попросту определим новую функцию, выражаемую этим интегралом, и выдадим ей свидетельство, что это добропорядочная и уважаемая функция, ни в чем не уступающая другим своим коллегам.


Рисунок 7.4.Функция 1/ln  t.

У этой новой функции есть имя: ее зовут интегральный логарифм. Для нее обычно используется обозначение Li( x). (Иногда пишут li( х).) Она определена как функция, выражающая площадь под кривой – то есть под графиком функции 1/ln  t– от нуля до x. [59]59
  Есть два способа определения Li (x) – к сожалению, оба достаточно распространенные. В данной книге я использую «американское» определение, которое приводят Абрамовиц и Стеган в своем классическом «Справочнике по специальным функциям», опубликованном в 1964 г. Национальным бюро стандартов. В этом определении интеграл берется от 0 до x; в этом же смысле использовал Li( x) и Риман. Но многие математики – среди них великий Ландау (см. главу 14.iv) – предпочитают «европейское» определение, в котором интеграл берется от 2 до x, чтобы избежать неприятностей при x= 1. Два приведенных определения различаются на 1,04516378011749278…. В компьютерной программе Mathematica реализовано американское определение.


[Закрыть]

Здесь не обошлось без некоторой ловкости рук, потому что у функции 1/ln  tнет значения при t = 1 (из-за того что логарифм единицы равен нулю). Я обойду эту сложность, не углубляясь в нее, – просто заверю вас, что имеется некоторый способ привести все в порядок. Надо еще заметить, что при вычислении интегралов области ниже горизонтальной оси считаются отрицательными, так что по мере увеличения tобласть справа от 1 «тратится» на сокращение области слева от 1. Другими словами, Li( x) выражается затемненной областью на рисунке 7.4, причем отрицательный вклад в площадь, набираемый слева от = 1, гасится положительным вкладом от площади справа от t = 1 (когда xлежит справа).


    Ваша оценка произведения:

Популярные книги за неделю