355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Джим Брейтот » 101 ключевая идея: Физика » Текст книги (страница 3)
101 ключевая идея: Физика
  • Текст добавлен: 19 сентября 2016, 13:24

Текст книги "101 ключевая идея: Физика"


Автор книги: Джим Брейтот


Жанры:

   

Физика

,

сообщить о нарушении

Текущая страница: 3 (всего у книги 10 страниц)

ЗАКОН ХАББЛА

При помощи 2,5-метрового телескопа-рефлектора обсерватории Маунт-Вилсон в Калифорнии (США) Эдвин Хаббл установил расстояние до пары десятков галактик с известным красным смещением в радиусе шести миллионов световых лет от Млечного Пути. Результаты этого исследования, опубликованные в 1929 году, показали, что красное смещение усиливается с увеличением расстояния. Составив график такой зависимости, можно установить, что красное смещение, а следовательно, и скорость удаления галактик пропорциональны расстоянию до них. Эту зависимость называют законом Хаббла, а коэффициент пропорциональности H в ней – постоянной Хаббла.

Последующие наблюдения и измерения скоростей большего количества галактик провел Мильтон Хьюмасон. К 1935 году Хаббл и Хьюмасон исследовали более 140 галактик на расстоянии более чем 1000 миллионов световых лет, движущихся со скоростями более 40 000 км/с. Результаты исследований подтвердили выводы Хаббла 1929 года о том, что красное смещение усиливается в зависимости от дальности расстояния до галактики. По оценкам этих ученых, постоянная Хаббла равна 160 км/с на миллион световых лет. Более точные дальнейшие исследования сократили ее приблизительно до 20 км/с на миллион световых лет.

Закон Хаббла – это экспериментальный закон, имеющий силу для ограниченного ряда явлений и исследований. В наше время считается, что он выведен из того, что Вселенная расширяется после первичного, так называемого Большого Взрыва, происшедшего от 10 000 до 15 000 миллиардов лет назад, который послужил началу пространства – времени. Постоянную Н используют для установления возраста Вселенной. Другими словами, скорость дальних галактик не может превышать скорость света с, равную 300 000 км/с, поэтому расстояние до них не может превышать с/Н. Принимая во внимание гравитацию, получаем соотношение 2с/3Н, что составляет приблизительно 12 000 миллионов световых лет.

См. также статьи «Большой Взрыв», «Красное смещение».

ЗАКОНЫ КИРХГОФА

Согласно первому закону Кирхгофа, алгебраическая сумма токов при вхождении в узел (разветвление проводников) равна сумме токов на выходе из узла. Он свидетельствует о сохранении заряда, так как полная сумма заряда, текущего по узлу в данный промежуток времени, равна полной сумме заряда, оставляющего узел в тот же промежуток времени.

Если придерживаться того, что сила тока, выходящего из узла, противоположна по знаку силе тока, входящего в него, то первый закон Кирхгофа можно выразить с помощью уравнения i 1+ i 2+ i 3+ •• = 0, где i 1, i 2, i 3и т. д. – сила тока в отдельных проводниках разветвления.

Согласно второму закону Кирхгофа, ЭДС самоиндукции в замкнутом контуре равна сумме падений напряжений на отдельных участках замкнутого контура. Он свидетельствует о сохранении энергии, поскольку ЭДС возникает там, где заряд получает энергию, а падение напряжения происходит там, где заряд теряет энергию. Таким образом, сумма ЭДС – это общая электрическая энергия, образующаяся в замкнутом контуре на единицу заряда, а сумма падений напряжения – это общая электрическая энергия, потребляемая в замкнутом контуре на единицу заряда.

Для замкнутого контура с ЭДС Е 1Е 2, Е 3и т. д. и сопротивлениями R 1R 2, R 3и т. д. второй закон Кирхгофа можно записать в виде следующего уравнения:

Е 1+ Е 2+ Е 3+… = i 1R 1+ i 2R 2+ i 3R 3+…, где i 1, i 2, i 3и т. д. – силы тока в проводниках с сопротивлением R 1, R 2, R 3и т. д.

Примечания.

1. ЭДС и сила тока имеют отрицательное значение, если они направлены в сторону, противоположную направлению замкнутого контура.

2. Второй закон особенно полезен при анализе цепей с более чем одним узлом. В общем случае для цепи с η узлами нужно рассмотреть η замкнутых контуров, составляя для каждого свое уравнение. Получаем η линейных уравнений для определения силы тока в η узлах.

См. также статьи «Последовательное и параллельное соединение проводников», «Сопротивление».

ЗАКОНЫ ОБРАТНЫХ КВАДРАТОВ

Закон обратных квадратов – закон, согласно которому некая физическая величина, например интенсивность излучения или напряженность поля в определенной точке, обратно пропорциональна квадрату расстояния до этой точки. Так, интенсивность излучения электрической лампы, распространяемого равномерно во всех направлениях, уменьшается в четыре раза, если расстояние до лампы увеличивается в два раза. Суть таких законов в том, что некая физическая величина распространяется из центра равномерно во все стороны. Таким образом, детектор этой величины при удалении от центра регистрировал бы все меньше и меньше ее проявлений. Представьте себе сферу, в центре которой находится источник излучения или поля. На расстоянии rот центра количество излучения или напряженность поля распределяется по поверхности сферы, которая равна 4 πr 2. Таким образом, это количество, приходящееся на единицу площади сферы, обратно пропорционально площади ее поверхности и, следовательно, обратно пропорционально r 2.

Закону обратный квадратов подчиняются следующие физические характеристики.

• Интенсивность излучения точечного источника = k/r 2,где k– постоянный коэффициент, r – расстояние до источника при условии, что излучение не поглощается веществом, окружающим источник. Для источника, испускающего энергию излучения со скоростью W, k = W/4π , поскольку все излучение проходит через поверхность сферы 4 πr 2 на расстоянии rот источника. Следовательно, интенсивность излучения определяется как количество его энергии, проходящее через единицу площади в секунду. Отсюда I= W/4π r 2

• Напряженность электрического поля Ена расстоянии rот точечного заряда Qв вакууме определяется по формуле: Ε = Q/4πε 0r. 2Из Q исходят силовые линии поля. На расстоянии rвлияние заряда Qдолжно распределиться по поверхности 4 πr 2 , поэтому напряженность поля пропорциональна Q/4 πr 2.

• На расстоянии rот центра сферы массой М,сила гравитационного поля g= GM/r 2.Силовые линии вне М направлены к центру М. Обратная пропорциональность r 2свидетельствует о том, что гравитационное поле должно равномерно покрывать поверхность сферы с таким радиусом.

См. также статьи «Гравитационное поле 1», «Электрическое поле 1».

ЗАРЯД И ТОК

Электрический ток – это поток заряженных частиц. В металлах переносчиками заряда служат электроны, перемещающиеся к положительно заряженному концу металлического проводника. Сила электрического тока измеряется в амперах (А). За 1 А принята сила электрического тока, который, проходя по двум параллельным проводникам бесконечной длины и ничтожно малой площади поперечного сечения, расположенным на расстоянии 1 м в вакууме, вызывает между ними силу, равную 2,0 х 10 -7ньютонов на каждый метр длины.

Количество заряда, проходящего через поперечное сечение проводника за определенную единицу времени, выражается произведением силы тока на время. Единицей заряда служит кулон (К), что соответствует заряду, проходящему через поперечное сечение проводника при токе силой 1 А за время 1 с.

Некоторые изолирующие материалы приобретают электрический заряд, если их потереть сухой тканью. Термин «электричество» был предложен в XVI веке Уильямом Гилбертом, взявшим за основу древнегреческое слово, означающее «янтарь». Гилберт исследовал притягивающую силу янтаря и некоторых других материалов, возникающую в результате трения, и определил, что в них накапливается это самое «электричество». Последующие опыты показали, что есть два вида электрических зарядов; теперь мы их называем «положительным» и «отрицательным».

Статическое электричество возникает в результате приобретения или потери электронов изолирующим материалом или изолированным проводником. Некоторые изолирующие материалы легко теряют электроны и с помощью трения их можно зарядить положительно. Другие легко приобретают электроны и, следовательно, их можно зарядить отрицательно. Заряженные предметы притягивают друг друга, если их заряды противоположны, и отталкиваются, если их заряды одинаковы.

Электрический ток возникает в результате перемещения заряженных частиц («переносчиков заряда» в твердых веществах). В металлах и веществах с собственной электропроводностью, а также в полупроводниках р-типа переносчиками заряда служат электроны. В полупроводниках р-типа переносчиками заряда служат дырки. В ионных растворах заряды переносят положительно и отрицательно заряженные ионы. В проводниках электроны движутся от отрицательно заряженного конца к положительно заряженному, так как они обладают отрицательным зарядом. Однако на схемах направление тока обычно показывают от плюса к минусу, поскольку Андре Ампер предложил придерживаться такого условного направления задолго до открытия электронов.

См. также статьи «Последовательное и параллельное соединение проводников», «Электропроводность».

ИДЕАЛЬНЫЕ ГАЗЫ

Экспериментальные законы газов таковы:

• Закон Бойля – Мариотта гласит: произведение давления на объем неизменной массы газа при постоянной температуре – величина постоянная.

• Закон Шарля гласит: увеличение объема газа неизменной массы при постоянном давлении пропорционально увеличению его температуры.

• Закон давления гласит: увеличение давления газа неизменной массы при постоянном объеме пропорционально увеличению температуры.

Идеальный – это такой газ, поведение которого подчиняется закону Бойля – Мариотта. Экспериментальные законы газов можно объединить в одной формуле идеального газа. Она связывает между собой количество молей газа п, давление р, объем V и абсолютную температуру Т идеального газа: pV – nRT, где R – газовая постоянная. Значение R равно 8,31 Дж/(моль К). Формулу идеального газа можно вывести исходя из следующих положений:

• газ состоит из точечных молекул равной массы;

• молекулы сталкиваются друг с другом и со стенками сосуда как упругие тела;

• молекулы находятся в постоянном хаотическом движении;

• молекулы не притягиваются друг к другу;

• время столкновения молекулы со стенкой сосуда значительно меньше времени ее движения между стенками.

Применив законы Ньютона и правила статистики случайных событий, из этих положений получаем формулу молекулярно-кинетической теории: pV = 1/ 3Nmc 2 cp.кв., где N – количество молекул, m – масса молекулы, с ср. кв.– среднеквадратичная скорость молекул газа, равная квадратному корню из суммы квадратов всех скоростей молекул, деленной на число молекул. Исходя из предположения, что средняя кинетическая энергия молекулы газа 1/ 22 ср. кв.= 3/ 2kT, где k = R/N Δ(N Δ– постоянная Авогадро), формула молекулярно-кинетической теории принимает вид pV = nRT.

См. также статьи «Агрегатные состояния вещества», «Давление».

ИНТЕРФЕРЕНЦИЯ

Согласно принципу сложения колебаний, если колебания двух или более волн складываются, то частота результирующего колебания равна сумме частот отдельных колебаний в той же точке в тот же момент времени. Интерференция – явление, наблюдаемое при одновременном распространении нескольких когерентных волн, т. е. имеющих постоянную разность фаз.

Интерференция происходит, когда волны из двух когерентных источников накладываются друг на друга или когда волна из одного источника разделяется на две, а затем снова сходится в одну.

• Интерференцию звуковых волн можно наблюдать с помощью двух динамиков, подключенных к одному генератору частоты. Динамики служат источниками волн с одинаковой частотой и постоянной разностью фаз, следовательно, являются когерентными источниками звуковых волн. Если передвигаться в области распространения звуковых волн, можно заметить точки усиления и ослабления звука, соответствующие положительной и отрицательной интерференции.

• В точке усиления звук становится громким потому, что максимум или минимум волны одного динамика приходит в эту точку одновременно с максимумом или минимумом волны из другого динамика.

• В зоне ослабления звука волны из одного динамика достигают максимума в тот момент, когда волны из другого динамика достигают минимума. Интерференцию света нельзя наблюдать при помощи двух его источников, так как длина волны световых фотонов в разных источниках света меняется случайным образом.

• Интерференцию можно наблюдать, разделив фронт волны из одного источника постоянной частоты. Допустим, в преграде на пути волны на небольшом расстоянии друг от друга имеются две узкие щели, каждая из которых служит как бы источником рассеивающихся волн. В зоне их наложения происходит интерференция. Две щели являются когерентными генераторами волн, поскольку фронт первоначальной волны достигает их через постоянный интервал времени. С помощью этого метода можно наблюдать интерференцию не только звуковых волн, но также микроволн и света.

См. также статью «Дифракция».

ИОНИЗАЦИЯ

Ионизациейназывается процесс образования ионов.

Ионизацией называется процесс образования ионов. Ионы – электрически заряженные атомы или молекулы. Положительные ионы образуются из тех типов атомов, которые легко теряют электроны внешних оболочек, отрицательные – из тех типов атомов, которые легко приобретают дополнительные электроны.

Свободными радикаламиназываются группы атомов, переносящие заряд, обычно отрицательный.

Свободными радикалами называются группы атомов, переносящие заряд, обычно отрицательный. Энергия ионизации атома – энергия, необходимая для превращения атома в ион. Иногда ее измеряют в электронвольтах (эВ): 1 эВ = 1,6 x 10 -19Дж.

Ионизация газа может быть вызвана сильным электрическим полем или нагреванием газа до достаточно высокой температуры, столкновением атомов газа или воздействием излучения с высокой энергией. Когда над молниеотводом проходит заряженное облако, у вершины проводника образуется сильное электрическое поле. Там, где стержень заостряется, создается самое сильное поле, и находящиеся поблизости молекулы воздуха становятся ионами, которые проводят электрический разряд между вершиной молниеотвода и грозовой тучей.

В газоразрядной трубке вследствие большой разности потенциалов между двумя электродами в разряженном газе создается сильное электрическое поле. В результате электроны отрываются от атомов газа и последние становятся положительно заряженными ионами.

Ионизация происходит при нагревании газа до температуры в несколько тысяч градусов вследствие столкновений на большой скорости атомов газа между собой. При этом атомы теряют часть кинетической энергии и один электрон или более отрывается от них. Когда электроны и газовые ионы воссоединяются, излучается свет. Внутри звезд вещество находится в ионизированной форме, поскольку кинетические энергии частиц слишком велики, чтобы они могли воссоединиться.

Высокоэнергическое излучение как поток α-, β-частиц и γ-фотонов ионизирует твердые, жидкие и газообразные вещества. Высокоэнергетические частицы и фотоны, поступающие с Солнца, ионизируют атомы газов в верхних слоях атмосферы Земли. Эти ионы образуют проводящий слой ионосферы, который отражает радиоволны из наземных источников обратно на поверхность на частотах менее 30 МГц.

См. также статьи «Оптические спектры! 1 и 2», «Энергетические уровни атомов».

КВАНТОВАЯ ТЕОРИЯ

Согласно квантовой теории, такие физические величины, как заряд и энергия, могут изменяться только на величину, кратную минимальной величине, которая называется квантом. Квантовую теорию разработал Планк в 1900 году, чтобы объяснить спектр теплового излучения, испускаемого нагретыми телами. Интенсивность излучения нагретого тела изменяется непрерывно при изменении длины волны и достигает пика при определенном ее показателе. Классическая теория излучения, основанная в 1848 году, не могла объяснить образования пика на кривой, так как согласно ей интенсивность стремится к бесконечности при бесконечном уменьшении длины волны. Такое гипотетическое явление было названо ультрафиолетовой катастрофой. Планк объяснил форму кривой, предположив, что энергия каждого атома источника излучения кратна основному показателю, hfгде f – частота колебаний атома. Кроме того, он предположил, что энергия атома может изменяться на один квант энергии (= hf) при поглощении или испускании излучения. Согласно теории Планка, ультрафиолетовой катастрофы не происходит, так как чем короче длина волны излучения, тем выше ее частота и тем выше должны быть энергетические уровни атомов, вибрирующих с этой частотой. Все меньше и меньше таких атомов будет находиться над нижней границей энергетического уровня. Таким образом, интенсивность испускаемого излучения при уменьшении длины волны упадет до нуля.

Теория о квантовой природе электромагнитного излучения получила дальнейшую разработку в трудах Эйнштейна, который с ее помощью объяснил фотоэлектрический эффект. Он предположил, что квант электромагнитного излучения, названный фотоном, равен hf, где h – постоянная Планка, f – частота излучения.

Электрический заряд также квантовая величина. В 1915 году Роберт Милликан продемонстрировал заряд масляных капель, сделав вывод, что он всегда кратен элементарной единице заряда, которым, как предположил ученый, обладает электрон.

См. также статьи «Корпускулярно-волновая двойственность», «Фотон», «Электрон».

КВАРКИ 1

Кварки – «кирпичики», из которых состоят протоны и нейтроны. Существует шесть различных кварков. Три из них имеют заряд + 2/ 3е, а три других – 1/ 3е.

• «Верхний» кварк (u-кварк, + 2/ 3е) и «нижний» кварк (d-кварк, – 1/ 3e) составляют протоны и нейтроны.

• «Очарованный» кварк (с-кварк, + 2/ 3е) и «странный» кварк (s-кварк, – 1/ 3е) тяжелее u – и d-кварков и нестабильны.

• t-кварки (+ 2/ 3е) и b-кварки (– 1/ 3е) самые тяжелые и потому самые нестабильные.

Кварковая модель объясняет существование всех известных барионов, антибарионов и мезонов. Мезоны и барионы вместе называются адронами.

• Барион состоит из трех кварков, антибарион – из трех антикварков. Например, протон состоит из двух u-кварков и одного d-кварка (uud), а нейтрон – из одного u-кварка и двух d-кварков (udd).

• Мезон состоит из кварка и антикварка. Например, пион, или п-мезон, состоит из u– или d-кварка и u– ИЛИ d-антикварка.

Первое доказательство существования кварков было получено, когда обнаружили, что электроны с высокой энергией в пучке отклонялись от неподвижной цели тремя центрами рассеяния внутри каждого протона и нейтрона. В линейном ускорителе Стэнфордского университета для определения внутренней структуры протонов и нейтронов был создан электронный пучок с достаточно высокой энергией. Результаты подтвердили кварковую модель, разработанную Мюрреем Гелл-Манном и Георгом Цвейгом, в качестве объяснения поведения частиц, образующихся при столкновениях на высокой скорости между адронами.

Кварки не существуют изолированно. При столкновениях адронов с большой энергией образуются кварк-антикварковые пары. В результате формируются дополнительные адроны и ни один из кварков или антикварков не остается вне адрона. Внутри последнего кварки движутся относительно свободно при условии, что они не отдаляются друг от друга. Взаимодействие между кварками осуществляется путем обмена глюонами.

См. также статьи «Взаимодействия частиц», «Ускорители частиц».

КВАРКИ 2

Материя состоит из фундаментальных частиц – лептонов (т. е. электронов, позитронов, нейтрино и антинейтрино) и кварков.

Частицы материи первоначально разделяли на три группы согласно их массе:

• легче электрона или такой же массы – лептон;

• тяжелее протона или такой же массы – барион;

• легче фотонов и тяжелее электронов – мезон.

Частицы внутри каждой группы различаются по точной массе, заряду, сроку жизни и странности. Последнее свойство было обнаружено, когда заметили, что определенные частицы рождаются парами в результате сильного взаимодействия и распадаются в результате слабого взаимодействия. Ввели понятие странности как квантовое число, которое сохраняется при процессах сильного взаимодействия.

В результате классификации барионов и мезонов по группам согласно заряду, странности и сроку жизни определили, что каждый барион состоит из трех кварков, каждый антибарион – из трех соответствующих антикварков и каждый мезон – из кварка и антикварка.

Ниже показаны возможные комбинации кварков и антикварков, составляющих барионы и мезоны соответственно. Предполагается, что лептоны являются элементарными частицами, не состоящими из других частиц.

а) барионы

6) мезоны

Сочетания кварков

См. также статьи «Взаимодействия частиц», «Ускорители частиц».


    Ваша оценка произведения:

Популярные книги за неделю