Текст книги "Психология критического мышления"
Автор книги: Дайана Халперн
Соавторы: А. Нафтульев
Жанр:
Психология
сообщить о нарушении
Текущая страница: 36 (всего у книги 42 страниц)
Подсказки
Подсказки – это дополнительная информация, которая сообщается человеку после того, как он начал работать над задачей. Часто подсказка содержит важные дополнительные сведения, необходимые для принятия решения. Иногда она может потребовать от вас изменить намеченный путь решения задачи. Распространенным примером использования подсказок служит детская игра в «холодно-горячо». В помещении спрятан какой-то предмет. Ребенок, который «водит», бродит по комнате, а другие дети кричат «теплее», если он приближается к спрятанному предмету, и «холоднее», если он от него удаляется. В этой ситуации «водящему» нужно продолжать двигаться небольшими шажками в одном направлении, пока дети кричат подсказку «теплее», и попытаться незначительно изменить направление, когда они подсказывают «холоднее». Исследования воздействия подсказок на процесс принятия решений показали, что общие слова-подсказки типа «подумай о других способах использования предметов» не способствуют поиску решения (Duncan, 1961). Чем определеннее и точнее подсказка, тем больше пользы можно из нее извлечь.
Рис. 9.17. Задача о двух веревках. Как ухватить две веревки одновременно? (Maier, 1930)
Одной из любимых задач психологов является так называемая задача о двух веревках. Представьте себе, что вы входите в комнату, в которой с потолка свешиваются две веревки. Они расположены достаточно далеко друг от друга, чтобы вы могли одновременно дотянуться до обеих, но ваша задача состоит именно в этом. Эта ситуация изображена на рис. 9.17.
Наилучшим решением этой задачи является раскачивание одной из веревок с предварительно привязанным к ее свободному концу тяжелым предметом – так, чтобы человек, перед которым возникла такая задача, смог ухватить конец качающейся веревки, когда она приближается к нему. После того как исследователи дают подсказку, предложив отгадывающему представить, что он случайно задел веревку и привел ее в колебательное движение, он чаще всего быстро справляется с задачей, правда, лишь немногие при этом отчетливо осознают, что воспользовались подсказкой (Maier, 1931).
Чтобы выяснить, как люди пользуются подсказками, было проведено экспериментальное исследование, в ходе которого участники должны были заучить пары слов – так чтобы, когда экспериментатор произнесет одно слово, они были готовы назвать его пару (это называется парно-ассоциативное заучивание). Одной из таких заученных пар слов была пара «свеча-коробка». После заучивания всего перечня словесных пар тестируемым была предложена задача Дункера (Duncker, 1945) о свече, которую требуется прикрепить к стене при помощи коробки (см. рис. 1.1). Помогла ли эта подсказка решить задачу? В большинстве случаев, после того как экспериментатор посоветовал тестируемым вспомнить пары заученных слов, они справились с этой задачей гораздо легче (Weisberg, Bransford, Franks, 1978). Они непроизвольно воспользовались этой подсказкой для решения задачи – скорее всего, так и не распознав ее. Проведенное недавно исследование подтвердило такой эффект и в случаях с другими задачами (Perfetto, Bransford & Franks, 1983). В целом, можно считать, что подсказка полезна только тогда, когда занятый решением задачи человек воспринимает ее как один из возможных путей решения.
Люди, успешно решающие задачи, как правило, ищут подсказки. Сбор дополнительной информации можно рассматривать как такой поиск. Практически всегда полезно получить максимум возможной информации по интересующей вас задаче. Дополнительные данные помогут реорганизовать пространство задачи и укажут направление, в котором проще искать пути решения.
Метод деления пополам
Метод деления пополам является прекрасной стратегией поиска, когда заранее не существует причин для выбора путей решения из последовательно организованного множества. Предположим, что из-за засорения водопровода у вас на кухне из крана не течет вода. Засорение произошло где-то между местом подсоединения ваших труб к магистральному водопроводу и кухонным краном. Как вы найдете место засорения в трубе, сделав при этом минимальное количество отверстий?
В этом случае решение (место образования пробки) надо искать по всей длине трубы. Наилучшим способом решения такой задачи является метод деления пополам. Поскольку задача предполагает, что вы будете сверлить трубу в каждом выбранном месте, надо максимально эффективно выбирать эти места. Начните с середины пути между отводом от главной трубы и кухонным краном. Если вы обнаружите, что до этого места вода свободно поступает, то место засорения трубы находится где-то между этой точкой и вашей раковиной. После этого разбейте пополам уже этот участок. Если вода течет и здесь, то вам станет ясно, что пробка находится где-то ближе к раковине, и вам следует разбить пополам оставшийся участок.
Допустим, в результате первой попытки вы обнаружили, что вода не доходит до просверленного места. Тогда засорение должно быть между главной трубой и этой точкой. Следующий поиск вы должны вести именно на этом участке. Таким способом вы будете продолжать поиск, пока место засорения трубопровода не будет найдено. Это очень удобный метод решения подобных задач – например, при решении задачи поиска места разрыва электропроводки в вашем доме или автомобиле.
Вы можете воспользоваться методом деления пополам в игре под названием «Угадай возраст» (я ее сама придумала). Ваши друзья могут «прикинуться» людьми любого возраста. Вы можете угадать возраст любого из них от 0 до 100 не более чем за семь высказанных догадок. Как это проделать? Начните с возраста, лежащего посередине между 0 и 100 – т. е. с 50. Игрок должен будет ответить, старше или моложе 50 лет задуманный возраст. Ответ будет «старше» или «моложе». Положим, он отвечает, что «моложе». Какой возраст вы назовете следующим? Вам следует выбрать возраст посередине между 0 и 50 – т. е. 25. Предположим, теперь он ответит «старше». Ваша третья догадка должна лежать посередине между 25 и 50. Поскольку мы имеем дело только с целыми числами, то следующим должно быть названо число 38. Если теперь он ответит «моложе», вы называете 32, т. е. число, лежащее посередине между 25 и 38. Если ответ «старше», вы выбираете 35 (середина между 32 и 38). Если ответ «моложе», вы называете 33. Теперь вы точно знаете, что игрок загадал себе возраст либо 33, либо 34. Таким образом, любой возраст может быть определен не более чем за семь высказанных предположений. Попробуйте проделать это с некоторыми из своих друзей. Это будет для вас хорошей практикой использования стратегии деления пополам. Вспоминайте об этой стратегии в ситуациях, когда задача имеет несколько возможных равновероятных решений.
Мозговая атака
Лучший способ иметь хорошие идеи – это иметь много идей.
Линус Паулинг
Мозговая атака – это весело. Первоначально она была предложена Осборном (Osborn, 1963) как метод группового решения задачи, но оказалась полезной и для индивидуальной работы над задачей. Мозговая атака нужна для поиска дополнительных путей решения и может быть призвана в помощь всегда, когда возникают трудности с их нахождением. Ее целью является выработка как можно большего числа решений. Она призвана подтолкнуть людей, занятых решением задачи, к выдвижению самых безумных, невероятных и фантастических идей. Все эти идеи заносятся в список – причем независимо от того, насколько глупыми они кажутся. Принцип, заложенный в основу этой стратегии, заключается в том, что чем больше количество высказанных идей, тем больше вероятность, что, по крайней мере одна из них окажется удачной. Чтобы поощрить творческую силу воображения, правила этой стратегии исключают всякую критику и высмеивание идей, даже если они совершенно бредовые. Вынесение решения о ценности идей переносится на последующие стадии работы над задачей. Иногда различные идеи частично комбинируются в целях усовершенствования. Мозговая атака может быть предпринята большой или маленькой группой людей, а также в одиночку. После проведения мозговой атаки перечень возможных решений должен быть тщательно изучен, чтобы найти решения, выполненные с учетом наложенных на данную задачу ограничений – чаще всего финансовых, временных и этических.
Мозговая атака была эффективно использована одним из производителей пищевых продуктов, который столкнулся с задачей улучшения упаковки картофельных чипсов. Работников корпорации попросили придумать способ упаковки – лучше всех тех, какие они когда-нибудь видели. Один из них предложил упаковывать мокрые чипсы и уверял, что это будет наилучшим решением. Когда вы пытаетесь сложить в пакетик сухие чипсы, они крошатся и плохо укладываются, но если смочить их перед упаковкой, то можно использовать пакеты меньше размером и облегчить их наполнение – пустот в таком пакете будет меньше. Следуя этому совету, работники попробовали сначала смочить чипсы, а затем наполнять ими пакеты. Результат оказался плачевным – чипсы высыхали и превращались в безвкусные крошки. Но эта идея в конце концов привела к широко популярным картофельным чипсам, которые аккуратно, один на другой, уложены в коробку. Эти чипсы изготавливаются из жидкого картофельного пюре, которое запекается в специальных формах. Таким образом, непродуманная и не очень хорошая затея (смачивание картофельных чипсов) вылилась в довольно удачное решение.
Противоречие
Лучшие решения многих задач нередко должны сочетать противоположные свойства. Например, рассмотрим задачу безупречной коробки для пиццы – такой, которая сохраняет пиццу горячей, но при этом не позволяет скапливаться внутри пару, чтобы корочка не становилась влажной. Здесь присутствуют два противоречивых условия – хранить пиццу закрытой, чтобы она оставалась горячей, и не давать конденсироваться пару и увлажнять корочку. Когда вы в следующий раз закажете пиццу, изучите коробку, в которой ее доставили. Большинство коробок для пиццы представляет собой компромисс между двумя упомянутыми выше условиями – крышка закрыта, чтобы сохранить пиццу горячей, но при этом она имеет маленькие вентиляционные отверстия, позволяющие некоторому количеству пара выходить наружу. Это пример компромиссного решения. Пицца остывает быстрее, поскольку через вентиляционные отверстия проникает холодный воздух, но при этом корочка на ней лишь слегка увлажняется, так как благодаря наличию отверстий количество конденсирующейся влаги ограничено.
Одним из соблазнов при решении любой задачи, включающей в себя противоречие, является отказ от компромисса – т. е. хочется придумать такое решение, которое удовлетворяет всем заданным условиям задачи. Это, конечно, хорошо, но как этого добиться? Что касается задачи упаковки пиццы, то Вальдман и Цуриков (цит. по: Raia, 1994) разработали коробку с «впадинками» (рельефными углублениями) на дне, которые заставляют пар конденсироваться внизу, а не на корочке пиццы – при этом удержанный под пиццей горячий воздух создает дополнительную теплоизоляцию.
Вальдман и Цуриков разработали компьютерную программу, предлагающую бескомпромиссные способы удовлетворения противоречивых условий при решении любых задач. Они просмотрели файлы Патентного бюро США и обнаружили свыше 200 основных принципов решения широкого круга задач, которые могут быть использованы как по отдельности, так и в комбинации друг с другом. Программа начинается с запроса четкого определения типа задачи, которая решается. Это своего рода поиск основных принципов (например, необходимость изоляции и исключение конденсата, безотносительно к пицце). Варианты решений поступают из банка данных, составленного на базе решения других задач, включавших противоречия того же типа – т. е. вызывается нужный алгоритм (те шаги, которые были использованы для решения) теории изобретательного решения задачи. И хотя реклама этого доступного пользователям программного продукта сулит фантастические успехи, необходимо проведение дополнительных исследований беспристрастными специалистами – и вот тогда мы по праву оценим его эффективность. Воспользовавшись основной идеей, мы сможем создать оптимальное решение любой задачи, а затем, по-видимому, начнем думать, как же приспособить ее к конкретным условиям.
Приведем другой пример задачи, включающей в себя противоречия. Рассмотрим задачу сбора помидоров. Механические сборщики томатов сами по себе дешевые и довольно быстрые, но они мнут плоды. Компромиссным решением было бы применение мягких прокладок в устройстве механической сборки или замедление этого процесса, чтобы снизить количество раздавленных помидоров. Но кардинальным правилом теории изобретательного решения задачи является отказ от компромиссов. Лучшей идеей, которая не потребует снижать скорость работы механического сборщика, оставляя при этом плоды целыми, является выращивание помидоров с более толстой кожицей, которая не позволит им быть раздавленными неуклюжими и быстро перемещающимися механическими сборщиками (The Cognition and Technology Group at Vanderbilt, 1993). Итак, очевидное противоречие (быстрый сбор томатов с помощью машин без их повреждения) было разрешено без компромисса.
Переформулировка задачи
Переформулировка задачи оказывается наиболее полезной стратегией при решении нечетко поставленных задач. В четко поставленных задачах цель обычно определена однозначно в недвусмысленных терминах, которые практически не оставляют свободного пространства для переформулировки – хотя, как показано ранее, четко поставленная задача, по-видимому, могла бы фактически иметь много возможных модификаций, если бы мы были в состоянии изменить ее формулировку и цель. Эта стратегия была описана выше.
Рассмотрим задачу, с которой сталкивается фактически каждый взрослый человек, с которым мне приходилось встречаться. «Как накопить деньги?» Многочисленные семьи по всему миру, пытаясь решить эту задачу, совершают покупки на оптовых рынках, едят бутерброды с арахисовым маслом и проводят субботние вечера дома. Предположим, вы переформулировали задачу, и она стала звучать так: «Как мне стать богаче?» Дополнительные решения этой задачи теперь будут включать в себя поиски более высокооплачиваемой работы, переезд на квартиру подешевле, поиск богатого мужа (жены), инвестиции в высокодоходное предприятие, выигрыш в ирландском тотализаторе и т. д. Как только вы сталкиваетесь с нечетко поставленной задачей, постарайтесь переформулировать цель. Очень часто это оказывается весьма действенным способом, поскольку другая цель будет иметь и другие пути решения. Чем больше в вашем распоряжении окажется путей решения задачи, тем с большей вероятностью вы достигнете цели.
Аналогии и метафоры
Едва ли мы сможем вообразить абсолютно новую задачу, не похожую и не связанную ни с одной ранее решенной; но если такая задача могла бы существовать, она была бы неразрешимой. Действительно, при решении задачи нам всегда следует извлекать уроки из ранее решенных задач, используя их результаты, методы и опыт, приобретенный при их решении.
Полья (Роlуа, 1945, р. 92)
Гик и Холиок (Gick & Holyoak, 1980) задали вопрос: «Откуда возникают новые идеи?» Многие ученые и математики отвечают, что их идеи или решения задач приходят из осознания аналогий и метафор, извлеченных из различных академических дисциплин (Hadamard, 1954). На деле же оказывается, что большинство общих выводов сделано при обнаружении подобия (аналогий и метафор) между двумя или более ситуациями. Подобно подсказке, аналогия должна восприниматься как составная часть решаемой задачи, в соответствии с которой ее и надо преобразовать.
Решим следующую задачу.
Маленькая страна попала под жестокую диктатуру. Диктатор правил страной, находясь за мощными стенами крепости. Крепость была расположена в центре страны и окружена деревнями и фермами. От нее отходило по радиусам множество дорог, подобно спицам на колесе. И тут появился храбрец-генерал. Он собрал большую армию на границе и поклялся захватить крепость и освободить страну от диктатора. Генерал знал, что если вся его армия одновременно пойдет в атаку, крепость будет захвачена. Когда его войска, готовые к атаке, уже выстроились в начале одной из дорог, ведущих к крепости, вдруг прискакал разведчик и вручил генералу сообщение, которое внесло заминку. Безжалостный диктатор заминировал все дороги. Мины были установлены таким образом, что небольшие группы людей могли спокойно преодолевать их, поскольку диктатору необходимо было иметь воинов и слуг, постоянно передвигающихся из крепости и обратно. Однако при прохождении целого войска сработают взрыватели. Это не только разрушит дорогу и сделает ее непроходимой, но и послужит поводом диктатору в отместку разорить соседние деревни. Поэтому прямая атака на крепость всем войском казалась невозможной (Gick & Holyoak, 1980, p. 351).
Чтобы помочь вам справиться с этой задачей, я сделаю подсказку. Решение аналогично одному из рассмотренных ранее в этой главе, хотя контекст совершенно другой. Прервитесь на несколько минут и попытайтесь поработать над задачей. Вспомните о задачах, рассмотренных ранее. Может, вам будет проще найти решение, если вы нарисуете схему.
Решение этой задачи аналогично решению, которое было принято в случае наличия неоперабельной опухоли в желудке. В той ситуации (Duncker, 1945) наилучшим решением было облучение всего тела направленными со всех сторон слабыми лучами с тем» чтобы они фокусировались в месте нахождения опухоли. Подобным образом армия могла бы быть разбита на несколько небольших групп, которые атаковали бы крепость со всех сторон. Осознали ли вы, что эти задачи похожи и могут решаться одинаково?
Гордон (Gordon, 1961), основатель группы под названием «Синектика», составил руководство пользования аналогиями при решении задач. Термин «Синектика» заимствован из греческого языка. Он означает соединение вместе различных и не имеющих видимых связей элементов. Гордон предложил рассматривать четыре типа аналогий, которые встречаются в задачах.
1. Личная аналогия.
Если вы хотите разобраться в сложном явлении, представьте себя составной частью этого явления. Например, если вы хотите понять молекулярное строение смеси, представьте себя молекулой. Как бы вы повели себя? Как поступили бы другие молекулы, к которым вы намерены прицепиться? Старайтесь не искать научного объяснения, а действительно ощутите себя молекулой, беспорядочно толкающейся в смеси. Может, вы увидите с этой точки зрения те неуловимые связи, которые были закрыты от вас как от ученого.
Использование личных аналогий особенно эффективно при решении широкого круга конфликтных ситуаций. Если бы каждая из конфликтующих сторон могла взглянуть на задачу и ее цель с точки зрения противоположной стороны, то, вероятно, возникли бы новые решения. Обе стороны могут обнаружить общие интересы и, воспользовавшись этим, найти приемлемый для всех выход (Bernstein, 1995; Fisher & Ury, 1991).
2. Прямая аналогия.
Сопоставьте задачу, над которой вы работаете, с рядом задач из совсем других областей. Как указывает Гордон (Gordon, 1961), этот метод был использован Александром Грехэмом Беллом: «Меня осенило: ведь на самом деле хрящи человеческих ушей слишком массивны по сравнению с нежной тонкой мембраной, которая управляет ими, и если такая тонкая мембрана может заставить двигаться относительно громоздкие хрящи, то почему бы моей более толстой и плотной мембране не заставить двигаться стальную пластинку. Так был придуман телефон».
Поистине плодородным источником аналогий является биология, где с момента зарождения первых форм жизни в процессе эволюции было решено множество задач. Когда члены «Синектики» столкнулись с необходимостью придумать эффективный способ закупоривания бутылок с клеем или лаком для ногтей, то они воспользовались биологической аналогией смыкания прямой кишки. Действительно, это решение сработало превосходно. (Вы можете поразмыслить об этом, когда будете пользоваться бутылкой клея ЛеПейдж.)
3. Символическая аналогия.
Эта стратегия решения задач требует зрительного воображения. Ее цель – оторваться от ограничений, накладываемых словами или математическими символами. У студентов, которые подключили воображение для создания визуальной картины в задаче с опухолью и крепостью, самопроизвольно возникло понимание того, что эти две задачи являются аналогичными. Если вы пытаетесь создать четкий зрительный образ задачи, то можете увидеть и решение, просвечивающее сквозь этот образ.
4. Фантастическая аналогия.
Какое решение приходит вам на ум в ваших самых безумных мечтах? Например, вы можете вообразить двух маленьких насекомых, которые будут автоматически застегивать вашу куртку, или гусеницу-шелкопряда, которая начнет быстро прясть шелк, чтобы вы не замерзли при резком похолодании. Это примеры фантастических аналогий. Как и в случае мозговой атаки, фантастические аналогии могут выражаться в безумных, далеких от реальности идеях, которые, весьма вероятно, затем будут преобразованы в практические и выполнимые решения.
Хотя совершенно ясно, что аналогии оказывают существенную помощь в решении задач, большинству людей редко удается самостоятельно выявить потенциальную аналогию (VanLehn, 1989). Если вы в состоянии изобразить внутренние связи, как в предыдущей задаче, или установить основные правила, как это было в задачах с противоречиями, то, вероятнее всего, вы уясните себе структуру решаемой задачи и найдете подходящую аналогию.
Консультация специалиста
Если у вас не получается сразу, пробуйте снова и снова. Затем отступите. Что толку ощущать себя полным болваном.
У. С. Филдс (цит. по: Teger, 1979, р. XIV)
В жизни часто случается, что мы не можем решить задачу в одиночку. Иногда лучшим способом решения задачи является привлечение специалиста. Люди обращаются к бухгалтерам для решения вопросов платежей, к адвокатам по правовым вопросам, к врачам при возникновении проблем со здоровьем. Мы выбираем чиновников, которые будут решать задачи нашей страны, а ведение войны поручаем военным специалистам. Эти люди стали высококлассными экспертами в своей области благодаря приобретению соответствующих знаний и неоднократному применению этих знаний для решения задач на практике. Поэтому часто консультации специалистов становятся отличным способом решения задачи. Их опыт и знания, превышающие ваши собственные, позволят решать задачи, относящиеся к их специальности, намного эффективнее, чем это сделает новичок. Если вы решили проконсультироваться у специалиста, то задача приобретает вид: а) как узнать, является ли данный человек специалистом, и б) как выбрать, к какому из специалистов следует обратиться. Решением этих вопросов дело не закончится. Вам нужно быть уверенными, что привлеченный к работе специалист имеет в руках все факты и рассмотрел все возможные альтернативы. Внимательно выслушайте его анализ возможного риска и альтернативных путей, но окончательное решение – за вами. Специалист – это только помощь в решении задачи, но не само решение. Некоторые советы по выбору нужного специалиста вы можете найти у Карлсона (Carlson, 1995) или в разделе о компетенции в главе 4.
Крок. Авторы Билл Речин и Дон Уайлдер
Выбор наилучшей стратегии
Всего в этой главе было представлено 13 различных стратегий, способных оказать помощь при решении задач. Как узнать, какой из них воспользоваться, столкнувшись с конкретной задачей? Важно постоянно помнить, что эти стратегии не являются взаимоисключающими. Часто оказывается полезной их комбинация. Выбор наилучшей стратегии или комбинации стратегий зависит от сути задачи. Например, когда вы сдаете экзамен, вас могут просто попросить покинуть аудиторию, если вдруг обнаружится, что в качестве «консультанта» вы выбрали конспект своего соседа.
Описывая каждую из стратегий, я пыталась дать некоторые советы по ее использованию. В целом же более высокий уровень знаний – «стратегия выбора стратегии» – включает в себя следующее:
1. Если задача является нечетко поставленной, представьте ее цель и условие в нескольких различных формулировках.
2. Если задача имеет несколько (но небольшое количество) возможных решений, имеет смысл воспользоваться методом проб и ошибок.
3. Если задача слишком сложна, попытайтесь применить упрощение, анализ целей и средств, обобщение и специализацию.
4. Если от конечной цели отходит меньше путей, чем от исходного положения, примените стратегию решения с конца.
5. Если у вас есть возможность собрать дополнительную информацию, сделайте это. Поищите подсказки, посоветуйтесь со специалистом.
6. Если исходные данные задачи представляют собой упорядоченную последовательность или массив либо задача имеет равновероятные альтернативные решения, попробуйте воспользоваться методом деления пополам или отыскать правило, по которому построен массив данных.
7. Если количество возможных путей решения задачи слишком мало, то, для того чтобы генерировать дополнительные решения, примените мозговую атаку.
8. Проектные и инженерные задачи чаще других задач требуют поиска решений, которые должны будут удовлетворять самым противоречивым условиям.
9. Использование аналогий и метафор, консультация специалиста – все это наиболее широко применяемые стратегии для решения задач любого типа. Надо быть всегда готовым использовать визуализацию и выполнить осмысленный поиск аналогий с целью подбора аналогичного решения.
10. Помните, что это лишь советы по поиску решений задач. Наилучший способ стать высококлассным специалистом по решению задач – это решить как можно больше задач.
Трудности при решении задач
Задачи – это самый главный продукт, из нами производимых.
Бердсли
Функциональная привязанность и трафаретное мышление
Вспомните рассмотренную выше задачу о двух веревках. Цель состояла в том, чтобы одновременно ухватить концы обеих веревок, свешивающихся с потолка. Правильное решение заключалось в раскачивании одной из веревок с предварительно привязанным к ее концу грузом – например, плоскогубцами. Одной из причин, по которой эта задача кажется очень сложной, является функциональная привязанность. Человек настроен или «привязан» к обычному использованию плоскогубцев, и ему трудно осознать, что их можно использовать не по прямому назначению. Другой пример функциональной привязанности был упомянут во введении (глава 1). В классической задаче со свечой тестируемым было предложено прикрепить свечу к стене, чтобы она могла гореть, используя при этом лишь коробок с кнопками и несколько спичек. У людей, которым была предложена эта задача, возникали трудности с представлением коробка в качестве подсвечника, поскольку они воспринимали его как упаковку для спичек или кнопок, т. е. рассматривали только прямое функциональное назначение коробка.
Функциональная привязанность – это один из видов трафаретного мышления. Я рассматриваю эти понятия как «привычные способы мышления» человека. Они заранее определяют пути развития мысли и реакции человека. Чтобы продемонстрировать, насколько мощным может оказаться трафаретное мышление, рассмотрим задачу о девяти точках, приведенную на рис. 9.18. Отложите на время дальнейшее чтение и попытаетесь ее решить.
Рис. 9.18. Задача о девяти точках. Соедините все девять точек, проведя не более четырех прямых линий и не отрывая карандаш от бумаги.
Трудность решения этой задачи вытекает из автоматически воспринимаемого строгого расположения этих точек в форме квадрата. Большинство людей пытаются решить эту задачу, оставаясь в рамках воображаемого квадрата, образованного точками по внешней границе. Если вы продлите линии за границы воображаемого квадрата, то обнаружите довольно простое решение задачи. Кроме того, большинство людей полагает, что линии должны проходить через центры точек. Одно из решений задачи о девяти точках показано на рис. 9.19.
Рис. 9.19. Одно из возможных решений задачи о девяти точках.
Заметьте, что решение подразумевает нестандартный путь Большинство людей полагает, что линии должны оставаться в границах квадрата и проходить через центры точек
Но есть еще несколько решений этой задачи. Каждое из них предполагает уход от трафаретного мышления. Два решения представлены на рис. 9.20. Другие, более экзотические решения, среди которых предложение одной десятилетней девочки провести через все девять точек одну жирную прямую, можно найти в чудесной книге Дж. Л. Адамса (Adams, 1979) «Раскрепощение мысли». Желание остаться внутри квадрата слишком сильно, и его трудно преодолеть. Стратегии, которые позволяют вам увидеть задачу в новых ракурсах, например стратегия личной аналогии, одновременно способствуют поиску нетрадиционных путей решения.
Другое возможное решение сложите бумагу с точками, как показано на рисунке, и точки выстроятся в одну прямую линию.
Можно также свернуть бумагу с точками в рулон и прочертить спиральную линию через точки, перейдя, таким образом, от плоскостной задачи к пространственной.
Рис. 9.20. Другие возможные способы решения задачи о девяти точках (Источник: Adams, 1979)
Введение в заблуждение и нерелевантная информация
Моему отцу когда-то очень нравилась загадка:
Предположим, вы являетесь водителем автобуса. На первой остановке к вам в автобус вошли 6 мужчин и 2 женщины. На второй остановке 2 мужчин вышли из автобуса и 1 женщина вошла. На третьей остановке вышел 1 мужчина, а вошли 2 женщины. На четвертой – вошли 3 мужчин, а 3 женщины вышли из автобуса. На пятой остановке 2 мужчин вышли, 3 мужчин вошли, 1 женщина вышла и 2 женщины вошли. Как зовут водителя автобуса?
Сможете ли вы ответить на этот вопрос, не перечитывая условия задачи? Водителя, разумеется, зовут так же, как и вас, поскольку задача начиналась со слов: «Предположим, вы являетесь водителем автобуса». Вся другая информация о перемещениях пассажиров была нерелевантной (неважной для решения задачи). Часто такая, не относящаяся к существу задачи, информация запутывает человека и направляет его по тупиковому пути.
Нередко задачи, возникающие в реальной жизни, включают в себя, помимо всего прочего, определение, какая информация является релевантной (важной для решения), а какая – нет. Чтобы не заблудиться в лишней информации, вы должны всегда ясно видеть перед собой цель. Иногда может оказаться полезной стратегия упрощения, чтобы отделить нужные исходные данные от нерелевантной и запутывающей информации.
Попробуем решить другой пример:
Если в ящике шкафа перемешаны носки черного и коричневого цветов в соотношении 4 к 5, то сколько носков вам надо достать из ящика, чтобы быть уверенным, что найдется хотя бы одна пара одинаковых носков? (Fixx, 1978)