Текст книги "Психология критического мышления"
Автор книги: Дайана Халперн
Соавторы: А. Нафтульев
Жанр:
Психология
сообщить о нарушении
Текущая страница: 14 (всего у книги 42 страниц)
ХАГАР УЖАСНЫЙ. Автор Дик Браун
Слово прагматический описывает нечто, имеющее практическое значение. В реальной жизни у людей есть причины рассуждать логически, но иногда законы логики противоречат ситуации, последствиям и общепринятым причинам и правилам вывода заключений. Как продемонстрировали в приведенном выше примере участники эксперимента Хенле (Henle, 1962), в реальной жизни, определяя, вытекает ли заключение из посылок, мы добавляем к предлагаемым нам фактам собственные мнения и знания. Это прагматический или практический подход к задачам логического мышления, который применяется в большинстве повседневных ситуаций. Эту мысль я поясню в дальнейших разделах этой главы.
Индуктивные и дедуктивные рассуждения
Реальное мышление имеет собственную логику, оно последовательно, разумно, и рефлективно.
Дьюи (Dewey, 1933, р 75)
Между индуктивными и дедуктивными рассуждениями часто проводят разграничение. (См. главу 6 «Мышление как проверка гипотез», в которой обсуждается эта тема.) При индуктивных рассуждениях производится сбор наблюдений, подтверждающих или подсказывающих заключение. Например, если у всех людей, которых вам когда-либо приходилось видеть, была только одна голова, то вы воспользуетесь этими данными для подтверждения заключения (или гипотезы) о том, что у всех людей в мире только по одной голове. Но, конечно, вы не можете быть абсолютно уверены в этом. Всегда остается возможность, что существует человек, которого вы никогда не видели и у которого две головы. Если вы встретите хотя бы одного человека с двумя головами, это будет означать, что ваше заключение неверно. Таким образом, рассуждая индуктивным методом, вы никогда не сможете доказать, что ваше заключение или гипотеза верны; но вы можете опровергнуть их.
При индуктивных рассуждениях мы собираем факты и используем их для подтверждения или опровержения своих заключений или гипотез. Именно таким способом мы открываем для себя мир. Лопес (Lopes, 1982) описывает индукцию следующим образом: «Это делают ученые; это делают рабочие; это делают даже птицы и звери. Но этот процесс полон тайн и парадоксов…индукцию невозможно обосновать с логической точки зрения» (р. 626). Мы пользуемся индуктивными рассуждениями как неформально, в ходе повседневной жизни, так и формально, при экспериментальных исследованиях. Поэтому проверку гипотез часто описывают как процесс индуктивных рассуждений. Рассуждая индуктивным методом, мы обобщаем свой опыт и на основе этих обобщений формируем представления или ожидания. Иногда индуктивные рассуждения описывают как рассуждения, «восходящие» от конкретных примеров или наблюдений к общим представлениям о природе мира.
При дедуктивных рассуждениях мы начинаем с утверждений, которые являются или считаются истинными, например «у всех людей только по одной голове», а затем заключаем, что у Ла Тиши, женщины, которую мы никогда не видели, должна быть одна голова. Это заключение логически следует из предыдущего утверждения. Если мы знаем, что утверждение о том, что у всех людей по одной голове, верно, то тогда должно быть верным и то, что у любого конкретного человека имеется только одна голова. Такой вывод неизбежно следует из утверждения; если утверждение верно, то верным должно быть и заключение. Иногда дедуктивные рассуждения описывают, как рассуждения, «нисходящие» от общих представлений о природе мира к конкретным примерам или наблюдениям. Рипс (Rips, 1988) утверждал, что дедукция является общим механизмом, применимым для решения всех когнитивных задач. Он считает, что дедукция «позволяет нам отвечать на вопросы, основываясь на информации, хранящейся в памяти, планировать действия по достижению целей и решать некоторые виды головоломок» (р. 117). На рис. 4.1 схематически изображено представление о рассуждениях, восходящих от наблюдений, и нисходящих от гипотез.
Рис. 4.1. Наглядное изображение различий между дедуктивными и индуктивными рассуждениями.
В большинстве реальных жизненных ситуаций мы рекурсивно пользуемся обоими типами рассуждений.
Несмотря на то что между индуктивными и дедуктивными рассуждениями часто проводят разграничение (Neubert Binko, 1992), оно не имеет большого значения при описании того, как люди рассуждают в действительности. В обыденной ситуации мы переключаемся в процессе мышления с индуктивных рассуждений на дедуктивные и наоборот. Наши гипотезы и убеждения управляют нашими наблюдениями, а наши наблюдения, в свою очередь, приводят к изменению наших гипотез и убеждений. Часто этот процесс представляет собой непрерывное переплетение индуктивных и дедуктивных рассуждений. В действительности мышление почти всегда происходит с применением методов различных типов.
Линейное упорядочение
Рассуждения – это, в сущности, правильно выстроенные факты.
Б. Ф. Андерсон (Anderson В. F., 1980, р. 62)
Джоэль сильнее Билла, но слабее Ричарда. Ричард сильнее Джоэля, но слабее Дональда. Кто из них самый сильный, а кто – на втором месте по силе?
Хотя я уверена в том, что вы никогда в жизни не встречались с Джоэлем, Дональдом, Ричардом и Биллом, я убеждена, что вы сможете ответить на мой вопрос Посылки или утверждения в этой задаче содержат информацию об упорядоченных связях между терминами, поэтому такой тип задач называют линейным упорядочением, или линейным силлогизмом. Как и во всех задачах на дедуктивные рассуждения, посылки служат основой для вывода валидного заключения – заключения, истинного при условии верности посылок. В задачах с линейной структурой мы сталкиваемся с упорядоченными связями, в которых отношения между терминами можно представить в виде пространственного ряда.
Линейные схемы
Как вы решали задачу про Джоэля, Дональда, Ричарда и Билла? Большинство людей решает такие задачи поэтапно, расставляя людей согласно условиям:
Условие «Джоэль сильнее Билла, но слабее Ричарда» преобразуется в следующую схему:
Условие «Ричард сильнее Джоэля, но слабее Дональда» указывает на то, что в самую верхнюю строку схемы надо поместить Дональда:
Таким образом, легко «увидеть», что Дональд – самый сильный, а Ричард на втором месте. Изучение линейных силлогизмов показало, что при ответе на вопрос люди, по крайней мере частично, полагаются на пространственное воображение или какого-либо рода пространственное представление задачи.
Поработайте над приведенными ниже парами линейных силлогизмов. Попробуйте определить, какой из силлогизмов в каждой паре решить легче.
1. а) Джулио умнее, чем Диана.
Диана умнее, чем Эллен.
Кто из них самый умный? Джулио, Диана, Эллен или это неизвестно?
ИЛИ
б) Джоанн выше ростом, чем Сьюзен.
Ребекка выше ростом, чем Джоанн.
Кто ниже всех ростом? Джоанн, Сьюзен, Ребекка или это неизвестно?
2. а) Пэт не выше ростом, чем Джим.
Джим ниже ростом, чем Тиффани.
Кто выше всех ростом? Пэт, Джим, Тиффани или это неизвестно?
ИЛИ
б) Лэс хуже, чем Моуш.
Гарольд хуже, чем Моуш.
Кто хуже всех? Лэс, Моуш, Гарольд или это неизвестно?
3. а) Стюарт не может бегать быстрее, чем Луис.
Луис не может бегать медленнее, чем Дина.
Кто бегает медленнее всех? Стюарт, Луис, Дина или это неизвестно?
ИЛИ
б) Говард толще, чем Эйс.
Эйс худее, чем Кила.
Кто из них самый худой? Говард, Эйс, Кила или это неизвестно?
Не показалось ли вам, что некоторые из этих задач решить проще, чем другие?
Вероятно, вы решили, что самая простая задача – это задача 1а. Исследования показали, что когда второй термин первой посылки является первым термином второй посылки (Диана в задаче 1а) и когда сравниваемые термины конгруэнтны (умнее, умнее, самый умный), задачи на линейные построения решаются легко. Задача 16 сформулирована не столь просто. Сравнение проводится между Джоанн и Сьюзен и Ребеккой и Сьюзен. Кроме того, термины сравнения не конгруэнтны (выше ростом, выше ростом, ниже всех ростом.) Правильные ответы: 1а – Джулио; 16 – Сьюзен.
В задаче 2а содержится отрицание «не», наличие которого увеличивает сложность задачи. Кроме того, информация представлена одновременно в терминах «выше ростом» и «ниже ростом», в результате чего задача усложняется. Правильный ответ – Тиффани. (Пэт может быть одного роста с Джимом или ниже ростом.) Наглядно эти соотношения можно представить следующим образом:
Несмотря на то, что в задаче 2б все сравнения проводятся в конгруэнтных терминах (хуже, хуже, хуже всех), некоторым людям она кажется запутанной, поскольку мы не знаем, кто хуже – Лэс или Гарольд. Кроме того, исследования показали, что такие термины, как «хуже», труднее для понимания, чем термины типа «лучше», поскольку «хуже» означает, что все трое являются плохими, в то время как «лучше» – более нейтральный термин. (Правильный ответ – неизвестно.) В задаче 3а два отрицательных термина, а также неконгруэнтные термины сравнения (быстрее, медленнее, самый медленный). На основе данной информации определить, кто бегает медленнее всех, невозможно. Задача 3б несколько проще, поскольку в ней нет отрицаний, однако в ней есть не соответствующие друг другу термины сравнения (толще, худее, самый худой). Правильный ответ: самый худой – Эйс.
При решении этих задач вы должны были открыть для себя некоторые из следующих психологических принципов линейного упорядочения:
1. Задачи на упорядочение решаются проще, если термины сравнения конгруэнтны (например, ниже ростом, ниже ростом, самый низкий рост).
2. Решение упрощается, если второй термин первой посылки совпадает с первым термином второй посылки (А лучше, чем Б; Б лучше, чем В).
3. Наличие отрицаний усложняет задачу (например, у А не больше волос, чем у Б).
4. Сравнения между смежными терминами (например, Джулио и Диана в задаче 1а) труднее, чем сравнения между крайними терминами (Джулио и Эллен) (Potts, 1972).
5. Если вы столкнулись со сложным силлогизмом любого типа, лучшей стратегией для его решения является изображение пространственного ряда. При решении линейных силлогизмов изобразите терминологический ряд, чтобы связи между словами можно было проанализировать наглядно.
6. Термины сравнения, которые ограничивают значение фразы, такие как «хуже» или «глупее», труднее обрабатывать по сравнению с более общими и нейтральными терминами, такими как «лучше» или «умнее». Прилагательные, выражающие отношение (например, хуже, глупее), называются маркированными прилагательными, в то время как нейтральные прилагательные называются немаркированными.
Этими обобщающими замечаниями можно воспользоваться для ясной передачи линейно упорядоченной информации. Если вы хотите, чтобы человек понял линейный силлогизм, используйте конгруэнтные термины сравнения, сделайте второй термин первой посылки первым термином второй посылки и избегайте отрицаний и маркированных прилагательных. Эти несколько правил передачи линейной информации отражают некоторые основные когнитивные принципы. Один из общих принципов когнитивной психологии свидетельствует о том, что отрицательную информацию (нет, не) труднее обрабатывать, чем положительную, отчасти из-за того, что она предъявляет дополнительные требования к оперативной памяти (Matlin, 1994). Использование схем при обработке вербальной информации имеет много преимуществ, в том числе позволяет снизить нагрузку на оперативную память и сделать связи очевидными и наглядными.
Различие между истинностью и валидностью
Знания – это лишь часть образования; оно является полным, когда мы можем мыслить и рассуждать на основе своих знаний.
Шаубль и Глейзер (Schauble Glaser, 1990, р. 9)
С точки зрения логики, законы для определения валидности заключения едины и не зависят от используемых нами терминов. В первом примере этого раздела я могла изменить посылки, сказав, что Дональд сильнее Ричарда, или поставить любые другие имена (Игорь сильнее Ю-Чина), или буквы, или символы (Б сильнее, чем А). В этих примерах достоверность не имеет значения, поскольку всегда считается, что посылки истинные. Возможно, это озадачит кого-то из вас. Предположим, что я говорю:
Ваша сестра уродливее ведьмы из сказки «Волшебник страны Оз».
Вы уродливее, чем ваша сестра.
Следовательно, вы уродливее ведьмы из сказки «Волшебник страны Оз».
Вы можете опротестовать такое заключение. Может быть, у вас вообще нет сестры, но при данных посылках полученное заключение валидно. Проверьте его сами. Однако от этого оно не становится истинным. В главе 5, которая называется «Анализ умозаключений», рассматривается проблема определения истинности или степени правдоподобия посылок. Пока же мы рассматривали только вопрос о валидности: истинно ли данное заключение, если истинны посылки. Люди очень часто не могут отличить истинность от валидности. Это особенно трудно, если заключение противоречит сокровенным убеждениям.
Хотя законы логики говорят о том, что формулируемые нами заключения не зависят от содержания посылок, в действительности содержание влияет на наш выбор валидных заключений. Можно построить логические рассуждения так, что заключения будут противоречить убеждениям большинства людей. Когда личные убеждения индивидуума влияют на выбор логического заключения, то имеет место мнение, основанное на предубеждении (belief bias). Это явление демонстрировалось много раз. В 1944 г. Морган и Мортон проводили его систематическое изучение. Тогда у большинства американцев было вполне определенное отношение ко Второй мировой войне, которое явно влияло на процесс рассуждений. При решении задач, требовавших дедуктивных рассуждений, американцы были склонны выбирать заключения, которые соответствовали их убеждениям, предпочитая их тем, которые противоречили им.
Вас, вероятно, не удивит, что человеческие рассуждения могут становиться алогичными под влиянием эмоций. Это верно для представителей всех слоев общества, даже для судей Верховного суда США. Когда судья Уильям О. Дуглас начинал работать в Верховном суде, председатель Верховного суда Чарльз Эванс Хью дал ему следующий совет: «Вы должны помнить одну вещь. На конституционном уровне, на котором мы работаем, девяносто процентов всех решений выносятся под влиянием эмоций. Рациональная часть нашего ума подыскивает доводы, обосновывающие наши предпочтения» (Hunt, 1982, р. 129). К сожалению, апелляционные юридические процедуры иногда похожи на политические игры, и решения меняются столь же часто, как политический климат. Юридические «рассуждения» иногда служат основой для убеждения других в достоверности заключения. Если вы понимаете, как формулировать валидные суждения, то вы сможете заметить, когда люди используют такие суждения с целью извлечения личной выгоды, и противостоять этому.
Условные суждения
Конечно, разум слаб по сравнению со стоящими перед ним бесконечными задачами. Он действительно слаб на фоне безумств и страстей человечества, которые, как мы должны признать, почти целиком управляют нашими судьбами, в большом и малом.
Альберт Эйнштейн (1879–1955)
В условных суждениях, т. е. в суждениях, имеющих структуру «если… то…», как и в примерах других рассуждений, представленных в этой главе, посылки, которые являются или считаются истинными, используются для определения валидности заключения. Эти суждения основаны на отношениях сопряженности: одни события зависят от появления других событий. Если истинна первая часть условной связи («если…»), то должна быть истинной и вторая часть («то…»). Эти суждения иногда называют условной логикой или логикой высказываний (пропозициональной логикой). Изучите приведенные ниже четыре условных суждения. В каждом случае определите, является ли заключение валидным.
1. Если она богата, то она носит бриллианты.
Она богата.
Следовательно, она носит бриллианты.
Правильно или неправильно?
2. Если она богата, то она носит бриллианты.
Она не носит бриллиантов.
Следовательно, она не богата.
Правильно или неправильно?
3. Если она богата, то она носит бриллианты.
Она носит бриллианты.
Следовательно, она богата.
Правильно или неправильно?
4. Если она богата, то она носит бриллианты.
Она не богата.
Следовательно, она не носит бриллиантов.
Правильно или неправильно?
В каждой из этих задач первая посылка начинается со слова «если». Первая часть посылки («если она богата») называется антецедентом (основанием); вторая часть («то она носит бриллианты») – консеквентом (следствием).
Древовидные диаграммы
Как и другие типы дедуктивных рассуждений, условные умозаключения могут быть представлены в виде пространственного ряда. Древовидные диаграммы, т. е. схемы, на которых основная информация представлена в виде «ветвей», напоминающих ветви дерева, используются в нескольких главах этой книги, в том числе и для определения валидности заключения в задачах, требующих дедуктивных рассуждений типа «если… то…». Древовидные диаграммы являются очень удобной формой представления информации во многих ситуациях, и труд, затраченный на обучение их построению, окупится сторицей. Мы будем пользоваться древовидными диаграммами в главе 7, посвященной пониманию вероятностных законов, в главе 9, посвященной решению задач, и в главе 10, где обсуждается творчество.
Начать рисовать древовидную диаграмму очень легко. Первая надпись, которую вы наносите на лист, носит название «начала». Вы рисуете точку и помечаете ее словом «начало». Этот первый шаг ни у кого не вызывает затруднений.
Формально точки называются узлами, и из них исходят ветви (линии). Ветви представляют все ситуации, которые могут произойти после того, как вы попали в данный узел. В задачах типа «если… то…» за начальной точкой следуют два возможных состояния. В данном примере или она богата, или нет. Поскольку существуют две возможности, то из начального узла будут исходить две ветви. Антецедент – это исходная точка «дерева», а концы ветвей представляют консеквент. Валидность заключения можно определить, анализируя ветви. Давайте попробуем это сделать на примере первой задачи.
Условие «если она богата» принимает вид:
Следствие «она носит бриллианты» добавляет второй ряд ветвей, отражая тот факт, что за узлом «она богата» всегда следуют «бриллианты», а за узлом «она не богата» «бриллианты» могут как присутствовать, так и отсутствовать. От узла «она не богата» мы рисуем ветви, отражающие обе возможности, поскольку у нас нет никакой информации о связях между отсутствием богатства и ношением бриллиантов.
Когда нам сообщают, что «она богата», обводим кружком ветвь или ветви, имеющие такую отметку, и двигаемся вдоль ветви, исходящей из узла «богата», в результате чего придем к заключению, что «она носит бриллианты». На этой диаграмме имеется только один узел, отражающий возможность, что «она богата», и из этого узла исходит лишь одна ветвь – ветвь, которая ведет к заключению «она носит бриллианты». Как только вы находите узел «она богата», единственным возможным следствием является «она носит бриллианты». Таким образом, в задаче 1 заключение является валидным. Задачи такого типа называются подтверждением антецедента. В данном случае вторая посылка утверждает истинность основания; поэтому его следствие тоже истинно.
В задаче 2 заключение тоже валидно. Древовидная диаграмма имеет такой же вид, как и в первой задаче, потому что используются те же утверждения «если… то…». При определении валидности заключения мы начинаем с единственного узла «она не носит бриллиантов», откуда можно вернуться только в узел «она не богата». Поскольку вторая посылка утверждает, что следствие не верно, то задачи такого типа называются отрицанием консеквента.
Что касается задачи 3, то многие готовы сделать вывод, что ее заключение валидно, хотя на самом деле это не так. Конечно, мы должны считать истиной, что если она богата, то носит бриллианты, но возможно также, что бедные люди тоже носят бриллианты. Я обнаружила, что эта задача вызывает затруднения у студентов с достаточно высоким уровнем интеллекта. Поскольку вторая посылка утверждает, что следствие наступило, задачи такого типа носят название подтверждения консеквента. Неправильно было бы считать, что из истинности консеквента следует истинность антецедента. В подобных логических задачах «если» не означает «если и только если», хотя многие интерпретируют «если» именно в таком смысле. Конечно, она может быть богатой, – возможно, это даже более вероятно, – но мы не можем заключить, что она богата только потому, что она носит бриллианты. Это видно из древовидной диаграммы. Существует два узла с пометкой «она носит бриллианты», один из которых соединен с узлом «она богата», а другой соединен с узлом «она не богата». Мы не можем определить, какой вариант правилен, поскольку возможны оба.
Ошибка, происходящая при утверждении следствия, относится к типу ошибок, допускаемых при дедуктивных рассуждениях, которая носит название неправильного обращения. Неправильное обращение в условных умозаключениях имеет место тогда, когда люди верят, что утверждение «если А, то Б» означает также «если Б, то А».
В задаче 4 заключение также является ошибочным, хотя напрашивается вывод, что если она не богата, то не носит бриллиантов. Вы догадываетесь, как называются задачи такого типа? Они называются отрицанием антецедента, поскольку вторая посылка утверждает, что основание ложно. Начиная опять с узла «она не богата», вы видите, что он соединен одновременно с узлами «носит бриллианты» и «не носит бриллиантов», поэтому возможны оба варианта.
Обобщение этих четырех типов рассуждений вместе с примерами каждого из них приводятся в табл. 4.1.
Авторы некоторых популярных рекламных объявлений эксплуатируют человеческую склонность делать неправильные выводы из утверждений типа «если… то…».
Пользующийся большим успехом ролик, рекламирующий йогурт, сообщает вам примерно следующее:
На экране очень старые люди из отдаленных районов России. Нам сообщают, что в этой далекой местности многие люди живут до 110 лет. Нам также сообщают, что эти люди едят очень много йогурта. Авторы хотят, чтобы зрители пришли к заключению, что, употребляя йогурт, можно прожить 110 лет.
Нам в неявной форме внушают, что если мы будем есть йогурт, то доживем до 110 лет. Можно, конечно, прожить 110 лет, ни разу в жизни даже не попробовав йогурта, и у нас нет оснований считать, что именно употребление йогурта добавило этим людям годы жизни. Нет оснований для утверждения о наличии причинной связи, т. е. о том, что употребление йогурта может быть причиной долголетия. Эти русские из отдаленных районов всю жизнь занимались тяжелым физическим трудом и вступали в контакт с очень небольшим количеством посторонних людей, которые являются потенциальными переносчиками инфекционных болезней. Любой из этих фактов, а также многие другие факторы, в том числе наследственность, могут оказаться причиной долголетия. (Возможно, стоит усомниться и в истинности утверждения об их долголетии.) Авторы рекламы, очевидно, надеются, что зрители станут жертвой ошибки утверждения следствия и скажут себе: «Если я буду есть йогурт, я доживу до глубокой старости».
Таблица 4.1. Четыре типа рассуждений в условных умозаключениях
Условные суждения в повседневной жизни
Условные умозаключения наряду с линейным упорядочением в неявном виде встречаются в обычных текстах. Конечно, на них нет аккуратных ярлычков с надписями посылка и заключение. Тем не менее, они служат основой для многих распространенных доводов. В контексте повседневных рассуждений часто встречаются ошибки, возникающие из-за отрицания антецедента и утверждения консеквента.
В настоящее время ведутся ожесточенные споры на тему о том, следует ли сообщать учащимся средних и старших классов школы информацию о противозачаточных средствах. Сторонники сообщения такой информации утверждают, что при наличии сведений о противозачаточных средствах учащиеся, живущие половой жизнью, будут действовать ответственно. Формально это означает: если учащиеся получат информацию о контрацептивах, они будут «защищены», вступая в половые отношения. Их противники утверждают, что учащиеся не должны вступать в половые контакты (независимо от наличия или отсутствия «защиты»); поэтому им не следует сообщать информацию о противозачаточных средствах. Это пример ошибки, возникающей при отрицании основания. Из того, что у учащихся не будет информации о контрацептивах, вовсе не следует, что они не будут вступать в половые контакты.
В этой главе неоднократно подчеркивалось, что многие люди не умеют рассуждать в соответствии с законами формальной логики, если их специально этому не обучить. В повседневных (практических) рассуждениях мы пользуемся для определения правильности заключения информацией, которая не была указана в посылках. Мы привлекаем дополнительную информацию, в том числе наши знания о содержании посылок. Эту мысль иллюстрируют следующие два предложения (Braine, 1978):
Если бы в 1940 г. у Гитлера была атомная бомба, он бы выиграл войну.
и
Если бы в 1940 г. у Гитлера было на один самолет больше, он бы выиграл войну (р. 19).
Хотя с точки зрения логики люди должны рассуждать одинаково правильно на основе любой из этих посылок и избегать ошибок утверждения консеквента и отрицания антецедента, в действительности большинству людей гораздо легче проводить правильные рассуждения с первым предложением, чем со вторым. Содержание посылок и необъективность, связанная с нашими собственными убеждениями, влияют на то, какие заключения мы готовы принять в качестве правильных в данном случае, так же как при дедуктивных рассуждениях других типов, которые рассматриваются в этой главе. При интерпретации условных умозаключений в бытовом контексте, чтобы решить, следует ли заключение из посылок, мы полагаемся на свои знания о содержании посылок. Согласно законам формальной логики наши рассуждения не должны зависеть от содержания. Все мы должны приходить к одинаковым логически правильным заключениям, независимо от их содержания. Конечно, люди не являются совершенными логическими машинами. Перед тем как принять решение о логической правильности заключения, мы должны определить, истинны ли посылки. (Этот вопрос подробнее рассматривается в главе 5.)
Отрицание
Как было показано в предыдущем разделе, касавшемся линейных рассуждений, использование отрицаний («нет», «не») существенно усложняет задачи, требующие логических рассуждений (Wason, 1969). Эти трудности хорошо иллюстрируют следующие примеры, в которых либо антецедент, либо консеквент содержат отрицание:
Если загорится не зеленый свет, я поеду в Рим.
Неверно, что загорелся не зеленый свет.
Что вы можете заключить, и можно ли вообще что-либо заключить?
Если это буква В, то цифра не 4.
Цифра не 4
Что вы можете заключить, и можно ли вообще что-либо заключить?
В этих примерах трудно разобраться по причине использования отрицания и его утверждением или отрицанием. В первом утверждении отрицается негативный антецедент (не [не зеленый]). Такое суждение называется двойным отрицанием. Вы не можете ничего заключить о консеквенте, если антецедент отрицается, даже если сам этот антецедент был отрицательным. Рассмотрим второй пример. Большинство людей делает неправильный вывод, что во втором примере можно заключить, что «это буква В». Вы должны узнать в этой ситуации пример утверждения консеквента. Если вам трудно было ответить на эти вопросы, начертите соответствующие древовидные диаграммы и ответ «появится» сам собой.
Я однажды слышала, как один политик сделал заявление, похожее на приведенные примеры. Он сказал: «Неверно, что я не поддерживаю этот законопроект». Мне потребовалось несколько секунд, чтобы понять, что он подразумевал, что поддерживает законопроект. Он мог иметь в виду, что относится к законопроекту нейтрально, не одобряя его, но и не выступая против него, но в контексте его выступления я проинтерпретировала его заявление как поддержку законопроекта. Это пример использования контекста для уточнения подразумеваемого значения. Чтобы ясно выражать свои мысли, по возможности избегайте отрицаний.
Тенденция к подтверждению
В последние годы уделяется большое внимание проблеме тенденции к подтверждению (confirmation bias), т. е. склонности искать и использовать информацию, которая поддерживает или подтверждает ваши гипотезы или посылки. Поскольку данная проблема возникает в различных контекстах, в этой книге она обсуждается несколько раз. Так же как тот факт, что наличие отрицания усложняет большинство мыслительных задач, склонность искать подтверждающие свидетельства, вероятно, является одним из распространенных когнитивных предубеждений. (Обсуждение этих вопросов см. в главах 6 и 8.)
Продемонстрируйте для себя это явление (Johnson-Laird Wason, 1970): перед вами на столе лежат четыре карточки. На одной стороне каждой из них написана буква, а на другой стороне – цифра. Ваша задача заключается в том, чтобы проверить выполнение следующего правила: «Если на одной стороне карточки гласная, то на другой ее стороне – четное число». Какую карточку или карточки вы должны перевернуть, чтобы выяснить, выполняется ли указанное правило? Вы можете перевернуть лишь минимально необходимое для проверки выполнения правила количество карточек. Остановитесь, пожалуйста, и изучите изображенные ниже карточки, чтобы решить, какие из них вам потребуется перевернуть. Не продолжайте чтение, пока не решите, какие карточки вы хотите перевернуть.
Немногие люди правильно выбирают карточки в этой задаче, которая известна под названием задача выбора из четырех карточек. Эта задача хорошо изучена и часто приводится в литературе по когнитивной психологии. Большинство людей отвечает, что надо перевернуть «только карточку Л» или «карточки А и 4». Правильный ответ – карточки А и 7. Вы можете разобраться, почему это так?
Лучший способ решить эту логическую задачу – нарисовать древовидную диаграмму, соответствующую утверждению «Если на одной стороне карточки гласная, то на другой ее стороне – четное число». Она будет выглядеть следующим образом:
Если на оборотной стороне карточки с буквой А нечетное число, то правило не выполняется. Точно так же, если на оборотной стороне карточки с числом 7 написана гласная, то правило не выполняется. А как поступить с карточками D и 4? Буква D обозначает согласный звук. Поскольку в правиле ничего не сказано о согласных, то не имеет значения, четное или нечетное число написано на обороте этой карточки. Поскольку 4 – четное число, то неважно, гласная или согласная написана на обороте этой карточки. Причина затруднений, которые вызывает эта задача, заключается в том, что люди интерпретируют правило таким образом, будто оно означает также и второе утверждение: «Если на одной стороне карточки не гласная, то на другой ее стороне нет четного числа», или, если убрать отрицания, «Если на одной стороне карточки согласная, то на другой ее стороне – нечетное число». Такая альтернативная интерпретация является неправильной. Узнали ли вы тип ошибки – отрицание антецедента? Этот результат имеет устойчивый характер. Повышенная сложность данной задачи связана с тем, что в ней решающую роль играет опровержение гипотезы. Люди не понимают важности разработки стратегии опровержения. Другими словами, нам надо думать о способах, с помощью которых можно показать, что гипотеза может быть ложной, вместо того чтобы искать подтверждения ее истинности. Ситуация усугубляется, если делается еще и ошибочное предположение о том, что обратное правило также верно. Единственным способом правильного решения задачи является выбор только тех карточек, для которых правило может не выполняться.