Текст книги "Психология критического мышления"
Автор книги: Дайана Халперн
Соавторы: А. Нафтульев
Жанр:
Психология
сообщить о нарушении
Текущая страница: 27 (всего у книги 42 страниц)
Давайте рассмотрим аналогичный пример. При применении метода контрацепции, эффективного на 96 % из расчета на год, в среднем у четырех женщин из каждых ста, пользующихся этим методом, в течение года наступит беременность. Предполагая, что уровень неудач не зависит от времени, следует ожидать, что при применении этого метода в течение 15 лет забеременеет больше женщин, а при его применении в течение более 15 лет количество беременностей будет еще больше (Shaklee, 1987). При опросе студентов колледжа оказалось, что только 52 % студентов понимало, что количество ожидаемых беременностей возрастает со временем, а большинство из них существенно недооценивало число беременностей.
Вероятно, идея, которую я пытаюсь донести до читателя, уже ясна: при определении риска важно понимать, относится ли предлагаемое вам значение вероятности к какой-либо единице времени (например, год), и осознавать, что совокупный риск увеличивается при повторении рискованной ситуации. Создается впечатление непонимания многими того, что совокупные риски выше, чем однократные.
Ожидаемые значения
Какую из следующих двух ставок вы бы сделали, если было бы можно выбрать лишь одну из них?
1. Большая дюжина: игра стоит один доллар. Если, бросив пару игральных костей, вы получите 12 очков, вам вернут ваш доллар плюс еще 24 доллара. Если выпадет любая другая сумма, вы проиграли свой доллар.
2. Счастливая семерка, игра стоит один доллар (так же, как в предыдущем случае). Если, бросив пару игральных костей, вы получите в сумме 7 очков, вам вернут ваш доллар плюс еще б долларов. Если выпадет любая другая сумма, вы проиграли свой доллар.
Теперь выберите либо ставку номер 1, либо ставку номер 2.
Большинство людей выбирает ставку номер 1, считая, что 24 доллара, которые они выиграют, если выпадет 12 оков, в четыре раза больше, чем 6 долларов, которые можно выиграть, если выпадет 7 очков, а денежная величина одинакова для каждой ставки. Давайте проверим, насколько правильны такие рассуждения.
Чтобы выяснить, какая из ставок выгоднее, надо рассчитать вероятность выигрыша и проигрыша в каждом из случаев. Существует формула, которая учитывает все эти значения и дает ожидаемое значение (ОЗ) выигрыша для каждой игры. Ожидаемое значение – это количество денег, которое можно ожидать выиграть при каждой ставке, если вы все время будете продолжать играть. Формула для расчета ожидаемого значения (ОЗ) имеет следующий вид:
ОЗ = (вероятность выигрыша) х (величина выигрыша) + (вероятность проигрыша) х (величина проигрыша).
Давайте вычислим ОЗ для первой ставки. Начнем с расчета вероятности выпадения 12 при броске пары игральных костей. Существует только один способ получить 12: когда на каждой из костей выпадет 6. Вероятность этого события при условии, что кости «честные», равна 1/6 х 1/6 = 1/36 = 0,028. (Поскольку нас интересует вероятность выпадения 6 и на первой, и на второй кости, мы используем правило «и» и перемножаем вероятности.) Таким образом, выпадение 12 ожидается в 2,8 % случаев. Чему равна вероятность, что 12 не выпадет? Поскольку вы уверены, что 12 либо выпадет, либо не выпадет (других исходов быть не может), можно вычесть 0,028 из 1. Вероятность того, что выпадет не 12, равна 0,972. (Это значение с небольшой ошибкой округления можно получить также, если рассчитать вероятности 35 остальных возможных исходов – каждая из них равна 1/36 – и сложить их.) Все исходы, возможные при броске пары игральных костей, показаны на рис. 7.4.
ОЗ (1-я ставка) = (вероятность выпадения 12) х (выигрыш) + (вероятность выпадения не 12) х (проигрыш)
ОЗ (1-я ставка) = 0,028 х $24 + 0,972 х (-$1)
ОЗ (1-я ставка) = $0,672 – $0,97
ОЗ (1-я ставка) = – $0,30
Давайте посмотрим, из чего состоит эта формула. Если выпадет 12, вы выиграете $24, которые дают величину выигрыша. Если выпадет любое другое число, вы потеряете доллар, который заплатили, чтобы вступить в игру, поэтому величина проигрыша равна $1. Вероятность выигрыша умножается на величину выигрыша. Вероятность проигрыша умножается на величину проигрыша. Затем эти два произведения складываются. ОЗ при такой ставке равно $0,30. Это означает, что в конечном счете, если вы будете продолжать играть в эту игру много раз, вы можете ожидать, что будете проигрывать в среднем по $0,30 при каждой игре. Конечно, при каждой игре вы можете или проиграть $1, или выиграть $24, но после множества игр вы проиграете в среднем по $0,30 за одну игру. Если вы сыграете 1000 раз, ставя каждый раз по доллару, то вы потеряете $300.
Сравним этот результат со второй ставкой. Чтобы рассчитать ОЗ для второй ставки, мы начнем с вычисления вероятности выпадения 7 очков при броске пары костей. Сколько существует способов получить 7, бросив пару костей? Семь очков получится, если выпадет 1 на первой кости и 6 на второй, 2 и 5, 3 и 4, 4 и 3, 5 и 2 или 6 и 1. Таким образом, существует 6 возможных способов получить 7 очков из 36 возможных исходов. Вероятность любого из этих исходов равна 1/6x 1/6 = 1/36. (Это вероятность получить, например, 1 на первой кости и 6 на второй кости.) Для определения вероятности того, что за первым выпавшим числом последует второе нужное число, вы должны применить правило «и». Поскольку теперь вас интересует вероятность выпадения 1 и 6, или 2 и 5, или 3 и 4, или 4 и 3, или 5 и 2, или 6 и 1, то следующим шагом должно быть применение правила «или». Поскольку существует 6 возможных комбинаций, вам надо сложить шесть раз по 1/6 (что, конечно, то же самое, что умножить 1/36 на 6). Таким образом, вероятность выпадения 7 очков при броске пары костей равна 6/36 (1/6 или 0,167). Вероятность выпадения любой другой суммы очков (не 7) равна 1–0,167 = 0,833. Теперь мы подсчитаем 03 для второй ставки:
ОЗ (2-я ставка) = (вероятность выпадения 7) х (выигрыш) + (вероятность выпадения не 7) х (проигрыш)
Рис. 7.4. Древовидная диаграмма, изображающая все исходы, возможные при броске пары игральных костей.
ОЗ (2-я ставка) = 0,167 х $6 + 0,833 х (– $1)
ОЗ (2-я ставка) = $1,002 – $0,833 = $0,169, или приблизительно $0,17.
Это означает, что если вы будете продолжать играть на условиях второй ставки, то вы выиграете в среднем по $0,17 за каждую игру. Следовательно, если вы сыграете 1000 раз, ставя каждый раз по $ 1, то можно ожидать, что вы разбогатеете на $170. Конечно, как и в первом случае, вы никогда не выиграете $0,17 за одну игру; это средний результат за много-много игр. Это то, что произойдет на большом интервале времени.
Даже если вы сначала думали иначе, лучше выбрать вторую ставку, поскольку вероятность выпадения семь очков относительно высока. Это объясняется тем, что существует шесть сочетаний, которые в сумме дают семь очков.
Существует игра, основанная на принципе, что чем больше имеется способов, которыми может произойти событие, тем выше его вероятность. Предположим, что в одной комнате собрались 40 человек, составляющих случайную выборку. Оцените вероятность того, что среди них окажутся два человека, у которых дни рождения совпадают. Возможно, вы удивитесь, узнав, что эта вероятность равна приблизительно 0,90. Вы понимаете, почему она такая высокая? Существует очень много способов совпадения дней рождения у сорока человек. Чтобы точно рассчитать эту вероятность, надо подсчитать количество всех возможных сочетаний из сорока человек по два. Таким образом, нам придется начать с сочетания первого человека со вторым, первого с третьим и т. д., пока не дойдем до первого с сороковым; затем начнем считать сочетания второго человека с третьим второго с четвертым и т. д., пока не дойдем до сочетания второго с сороковым. Этот процесс мы будем повторять до тех пор, пока каждый из сорока человек не побывает в паре с любым из остальных. Поскольку существует так много возможных пар людей, у которых могут совпадать дни рождения, то такое «совпадение» более вероятно, чем могло показаться сначала. Вероятность совпадения чьих-нибудь дней рождения превышает 0,50 для 23 человек и превышает 0,75 для 32 человек (Loftus Loftus, 1982). Вы можете воспользоваться этими знаниями, чтобы держать пари на вечеринках или любых других собраниях людей. Лучше всего, если количество людей близко к 40. Большинству людей трудно поверить, что вероятность совпадения дней рождения настолько высока.
Вы можете также воспользоваться своими знаниями по теории вероятностей для того, чтобы повысить свои шансы на успех в некоторых ситуациях. Возьмем, к примеру, Аарона и Джилл, которые спорили из-за того, кому из них выносить мусор. Их мама согласилась помочь им уладить разногласия, назвав наугад число от одного до 10. Тот из них, чье число окажется ближе к числу, названному мамой, победит в споре. Аарон был первым и назвал число «три». Какое число должна назвать Джилл, чтобы иметь максимальные шансы на победу? Прекратите чтение и подумайте, какое число ей следует выбрать.
Джилл лучше всего выбрать число «четыре». Если мама назовет любое число, большее трех, то эта стратегия принесет Джилл победу. Таким образом, она может увеличить вероятность выигрыша в ситуации, которая кажется зависящей только от случая.
Субъективная вероятность
Обычно мы не имеем дела с известными или объективными вероятностями, такими как вероятность дождя в какой-либо день или вероятность возникновения болезней сердца при приеме противозачаточных таблеток. Тем не менее, мы ежедневно принимаем решения на основе собственных оценок вероятности различных событий. Субъективной вероятностью называют личные оценки вероятности событий. Такой термин введен для отличия наших оценок от объективной вероятности, под которой понимают суждение о вероятности события, рассчитанное математическим путем на основе известных данных о частоте его появления. Психологи, исследовавшие субъективные вероятности, обнаружили, что человеческие суждения о вероятностях часто бывают ошибочными, но, тем не менее мы руководствуемся ими при принятии решений во многих ситуациях.
Ошибка игрока
На ярмарках, в казино, в парках и в телевизионных шоу пользуется популярностью игра под названием «Колесо Фортуны». Имеется большое колесо, которое можно вращать. Колесо разделено на множество пронумерованных секторов, как колесо рулетки. Резиновый указатель показывает, какой номер выиграл.
Предположим, что ваша подруга Ванда решила подойти к «Колесу Фортуны» с научной точки зрения. Она села рядом с колесом и стала записывать все выигравшие номера. Допустим, что Ванда записала следующий набор чисел: 3, 6, 10, 19, 18, 4, 1, 7, 7, 5, 20, 17, 2, 14, 19, 13, 8, 11, 13, 16, 12, 15, 19, 3, 8. После тщательного изучения этих чисел она заявила, что при последних 25 запусках колеса ни разу не выпадало число «девять»; она собирается поставить крупную сумму на «девять», так как теперь вероятность появления этого числа значительно возросла. Согласны ли вы с тем, что это надежная ставка? Если вы ответили «да», то совершили ошибку, которая очень часто встречается при изучении законов вероятности. «Колесо Фортуны» не обладает памятью и «не помнит», какие номера только что выиграли. Если колесо сконструировано таким образом, что выигрыш любого номера имеет одинаковую вероятность, то выпадение «девятки» равновероятно при каждом запуске колесе, независимо от того, часто или редко это число выпадало в прошлом. Люди верят, что случайные процессы, такие как вращение колеса, должны самокорректироваться таким образом, что если событие какое-то время не происходило, то вероятность его появления увеличивается. Такие неверные представления носят название ошибки игрока.
Ошибку игрока можно обнаружить во многих ситуациях. Рассмотрим пример из области спорта. Иногда считают, что если игроку в бейсболе долго не удается ударить, то повышается вероятность того, что к нему придет мяч, потому что ему «полагается» удар. Один мой друг, большой любитель спорта, рассказал мне следующую историю о Доне Саттоне, бывшем подающем игроке из команды «Доджерс». В один из сезонов Саттон проиграл очень много пробежек. Он предсказывал, что за этим «спадом» в игре последует «коррекция», и он закончит сезон с обычным для себя средним результатом. К сожалению, случайные факторы не подвергаются коррекции, и, начав сезон плохо, он закончил его с результатом ниже своего обычного среднего уровня. Часто люди продолжают совершать «ошибку игрока» даже после того, как им объяснили, в чем она заключается. Студенты рассказывали мне, что хотя на интеллектуальном уровне они могут понять, что совершают «ошибку игрока», на интуитивном уровне они «нутром» чувствуют, что «так и должно быть». Для понимания законов вероятностей нередко нужно отказаться от своих интуитивных предчувствий, поскольку они часто бывают неверными. Давайте рассмотрим другой пример.
У Уэйна и Марши четыре сына. Хотя они вообще-то не хотят иметь пятерых детей, обоим всегда хотелось иметь дочку. Следует ли им планировать завести еще одного ребенка, поскольку сейчас, при условии, что первые их четверо детей – все мальчики, рождение дочери более вероятно? Если вы поняли, в чем заключается «ошибка игрока», то вы признаете, что при пятой попытке, так же как и при каждой из первых четырех, рождение дочери так же вероятно, как и рождение сына. (На самом деле из-за того, что мальчиков рождается чуть больше, чем девочек, вероятность рождения мальчика несколько выше, чем вероятность рождения девочки.)
У «ошибки игрока» существует и оборотная сторона – некоторые убеждены, что события происходят полосами. Рассмотрите следующие два варианта.
А. Баскетболистка совершила 2 или 3 последних броска мимо кольца. Она собирается бросать снова.
Б. Баскетболистка 2 или 3 раза подряд попала в кольцо. Она собирается бросать снова.
В каком случае вероятность попадания больше – в случае А или в случае Б?
Джилович (Gilovich, 1991) задавал подобные вопросы опытным баскетбольным болельщикам и обнаружил, что 91 % из них верит, что вероятность попадания выше в случае Б по сравнению со случаем А. Другими словами, они верят, что игрокам везет «полосами». Чтобы выяснить, существуют ли данные, подтверждающие веру в «полосы», Джилович проанализировал статистические данные по играм филадельфийской баскетбольной команды. Вот что он выяснил:
• Если игрок только что попал в кольцо, 51 % следующих бросков был успешным.
• Если игрок только что промахнулся мимо кольца, 54 % следующих бросков были успешными.
• Если игрок только что попал в кольцо два раза подряд, 50 % следующих бросков были успешными.
• Если игрок только что промахнулся два раза подряд, 53 % следующих бросков были успешными.
Эти данные не подтверждают того, что баскетболисты совершают броски «полосами». Тем не менее интервью с самими баскетболистами показало их веру в то, что успешные и неудачные броски идут «полосами». Очень трудно убедить людей в том, что случай – это просто случай; он не корректирует сам себя и не распределяет результаты «полосами».
Игнорирование базового уровня
Чарли очень хочется первый раз в жизни поцеловать девушку. Если он пригласит Луизу пойти с ним в кино, то он только на 10 % уверен, что она примет его приглашение. Зато если она пойдет с ним в кино, он на 95 % уверен, что на прощание она его поцелует. Каковы шансы Чарли получить поцелуй?
Начальные вероятности, существующие a priori, называют базовым уровнем. В этой задаче первое препятствие, которое надо преодолеть Чарли, – это уговорить Луизу пойти с ним в кино. Вероятность этого события 10 %. Эту цифру, т. е. базовый уровень, важно обдумать. Десять процентов – довольно низкое значение, поэтому, скорее всего, она с ним не пойдет. Он хочет знать вероятность совместного появления двух случайных событий – она идет с ним в кино и она его целует. Перед тем как приступить к решению этой задачи, оцените приблизительно величину ответа, который вы ожидаете получить. Как вы думаете, она будет больше 95 %, между 95 % и 10 % или меньше 10 %?
Для решения этой задачи мы нарисуем древовидную диаграмму, на которой изобразим все возможные исходы и их вероятности. Конечно, маловероятно, чтобы Чарли или любой другой юноша, желающий стать Ромео, стал бы на самом деле рассчитывать вероятность этого решающего события, но на этом примере можно продемонстрировать сочетание вероятностей. Может быть, Чарли решит, что вероятность добиться поцелуя у Луизы столь мала, что лучше выбрать Брунгильду, которая с большей вероятностью примет его приглашение на свидание и уступит его любовным чарам. Кроме того, любой, кто в действительности оценивал вероятностные величины, касающиеся любви, может также захотеть точнее оценивать вероятность совместного появления двух или нескольких событий.
Наша диаграмма сначала имеет только две ветви – Луиза принимает приглашение и Луиза отказывается. От узла «Луиза соглашается» начинается следующее разветвление, указывающее, получит Чарли поцелуй или нет. Каждая ветвь должна быть помечена соответствующими значениями вероятностей. Конечно, если Луиза не примет приглашение, то Чарли совершенно точно не получит поцелуя. Следовательно, ветвь, исходящая из узла «Луиза отказывается», будет помечена значением вероятности 1,00 события «Чарли не поцелуют».
Согласно правилу «и» для нахождения вероятности двух (или нескольких) событий, вероятность того, что на прощание Луиза поцелует Чарли, равна: 0,10 x 0,95 = 0,095.
Вы не удивлены, что объективная вероятность оказалась меньше, чем низкий базовый уровень (10 %), и значительно меньше, чем более высокий вторичный или последующий уровень (95 %)? Многих людей это удивляет. Надеюсь, что вы помните, что любой ответ, превышающий 10 %, был бы признаком ошибки конъюнкции. Как было сказано в разделе об ошибках конъюнкции, вероятность совместного появления двух случайных событий (Луиза соглашается и целует Чарли) должна быть меньше, чем вероятности появления каждого из этих событий по отдельности. Большинство людей игнорирует низкий базовый уровень вероятности (или недооценивает его влияние) и дает оценку ответа, лежащую ближе к более высокому уровню вторичной вероятности. В целом люди склонны переоценивать вероятность совместного появления двух или нескольких случайных событий. Ошибки такого типа называются игнорированием базового уровня.
Принятие вероятностных решений
Большая часть принимаемых нами в жизни важных решений связана с вероятностями. Хотя более всестороннее обсуждение принятия решений будет проводиться в главе 8, давайте рассмотрим применение древовидных диаграмм в процессе принятия решений.
Эдит пытается выбрать для себя специализацию в колледже. Она учится в университете, где для специализации по каждому из предметов надо сдавать отдельные вступительные экзамены. Она серьезно думает о том, чтобы стать бухгалтером. Она знает, что на отделение бухгалтерии принимают только 25 % из желающих туда поступить. Семьдесят процентов поступивших оканчивают курс, и 90 % окончивших успешно сдают государственные экзамены на звание бухгалтера и становятся бухгалтерами. Эдит хотела бы узнать, каковы ее шансы стать бухгалтером, если она выберет эту специализацию.
Чтобы ответить на ее вопрос, нарисуем древовидную диаграмму, ветви которой будут указывать «путь» к успешному овладению профессией бухгалтера.
Из приведенной выше диаграммы вы видите, что вероятность успешно овладеть профессией бухгалтера равна 0,25 х 0,70 х 0,90, т. е. 0,158. Получив такой результат, Эдит должна обдумать другие варианты. Например, она может попробовать поступать сразу на отделения бухгалтерии и педагогики. Она может снова подсчитать свои шансы на успех по одной из этих профессий, по обеим сразу (если такой вариант для нее возможен) или вероятность неудачи и там, и там.
В этом примере предполагается, что у нас нет никакой дополнительной информации, на основе которой можно оценивать шансы Эдит на успех. Предположим теперь, что нам известно, что у Эдит прекрасные способности к математике. Приведет ли наличие такого рода информации к изменению соответствующих вероятностей? Повысится ли вероятность того, что Эдит будет принята, окончит курс и успешно овладеет профессией, требующей знания математики? Интуитивно хочется ответить «да». Давайте на следующем примере рассмотрим, как изменится задача вычисления вероятности успеха, если учитывать дополнительную информацию.
Прогнозы на основе объединения информации
Хосе всегда хотел стать артистом. Поэтому он планирует продать все свое имущество и отправиться в Нью-Йорк делать карьеру. Предположим, и вам, и Хосе известно, что лишь 4 % людей, мечтающих стать актерами, добиваются в Нью-Йорке профессионального успеха. Это значение является базовым уровнем; оно основано на информации, известной еще до того, как мы получим какую-либо конкретную информацию о Хосе. Давайте остановимся и обдумаем эту цифру – базовый уровень. Она говорит о том, что очень немногие из людей, мечтающих стать актерами, становятся профессионалами в этой области. Другими словами, шансы на успех низкие. Предположим, что у вас нет никакой дополнительной информации о Хосе. Как бы вы оценили его шансы на успех? Если вы ответили 4 %, вы совершенно правы! В отсутствие какой-либо другой информации используйте базовый уровень.
Хосе считает, что ему не стоит беспокоиться: дело в том, что 75 % тех, кто преуспел на актерском поприще, имеют кудрявые волосы, а также хорошо поют и рассказывают анекдоты. Поскольку у Хосе кудрявые волосы, он хорошо поет и уморительно рассказывает анекдоты, то он уверен, что скоро будет рассылать поклонникам свои глянцевые фотографии размером 8 х 10. Значение второй вероятности называется вторичным; оно отражает специфическую информацию о характеристиках Хосе и желательного исхода. Мы используем эти два значения вероятностей для того, чтобы решить, обоснован ли оптимизм Хосе. Каковы его точные шансы на успех? Не забывайте, что вероятности лежат в диапазоне от 0 до 1, причем 0 означает, что Хосе точно потерпит неудачу и ему придется возвратиться домой, а 1 означает, что он совершенно точно добьется успеха на Бродвее. Теперь остановитесь и оцените субъективную вероятность его успеха.
Можете ли вы предложить способ определения объективной вероятности успеха? Чтобы найти объективную вероятность, вам потребуется знать еще одно число, про которое часто забывают, – процент тех, кто терпит неудачу, несмотря на то, что обладает характеристиками, связанными с успехом (в данном случае, кудрявыми волосами и умением петь, танцевать и шутить). Очень немногие люди понимают, что при оценке вероятности успеха необходимо учитывать эту величину. Для краткости изложения я буду обозначать характеристики, связанные с успехом (кудрявые волосы и умение петь и шутить), просто «кудрявые волосы», а отсутствие этих качеств – «нет кудрявых волос». Предположим, что 50 % потерпевших неудачу обладают этими качествами. В таком контексте для расчета вероятностей тоже можно использовать древовидные диаграммы. Давайте начнем с начала и рассмотрим все возможные исходы. В данном случае Хосе либо добьется успеха, либо потерпит неудачу, поэтому мы назовем первые ветви «успех» и «неудача». Как и прежде, мы будем надписывать вероятность каждого события вдоль соответствующей ветви.
Отметим, что эти две вероятности (0,04 и 0,96) в сумме равны 1,0, поскольку других возможных исходов нет. Один из этих исходов обязательно осуществится, поэтому сумма их вероятностей равна 1,0, что указывает на достоверность.
Хосе знает, что у 75 % из тех, кто добивается успеха, бывают кудрявые волосы. В этом примере мы пытаемся найти вероятность определенного исхода (успеха) при условии, что у нас уже имеется некоторая информация, касающаяся вероятности этого исхода. Давайте добавим новые ветви, исходящие из узлов «успех» и «неудача». В этом примере существуют четыре различных исхода: успех при наличии кудрявых волос, успех при отсутствии кудрявых волос, неудача при наличии кудрявых волос и неудача при отсутствии кудрявых волос. Эти четыре исхода показаны на следующей диаграмме:
Отметим, что поскольку 75 % (0,75) добившихся успеха имеют кудрявые волосы, а 25 % (0,25) не обладают этой характеристикой, то сумма вероятностей событий, исходящих из одного узла, должна равняться единице. Точно так же 50 % потерпевших неудачу имеют кудрявые волосы, а 50 % неудачников не обладают этим качеством. Поскольку мы учитываем всех неудачников, то сумма этих вероятностей также должна равняться единице.
После того как диаграмма нарисована, подсчитать объективную вероятность успеха Хосе уже совсем просто. Как и раньше, чтобы найти вероятность какого-либо исхода, надо перемножить вероятности вдоль ведущей к нему ветви. В данном случае мы перемножим вероятности вдоль каждой из ветвей диаграммы и представим результаты в виде таблицы:
Из таблицы видно, что общая доля людей, обладающих кудрявыми волосами, равна 0,03+ 0,48 = 0,51.
Чтобы определить истинные шансы Хосе на успех, нам следует разделить долю людей, добившихся успеха и обладающих кудрявыми волосами (0,03), на общую долю тех, кто имеет кудрявые волосы (0,03 + 0,48 = 0,51). Мы пытаемся прогнозировать успех Хосе на основе знания того факта, что у него кудрявые волосы, а некоторая часть людей с кудрявыми волосами добивается успеха. Какую часть всех людей с кудрявыми волосами (0,51) составляют те, кто добился успеха (0,03)?
Доля добившихся успеха с кудрявыми волосами / Общая доля людей с кудрявыми волосами = 0,03 / (0,03 + 0,48) = 0,06
Таким образом, шансы Хосе на успех на 50 % выше (6 % против 3 %), чем у любого неизвестного, желающего стать артистом, но все равно они очень низкие. Наличие информации о том, что он обладает некоторыми качествами, связанными с успехом, привело к некоторому увеличению вероятности его успеха по сравнению с базовым уровнем, но это увеличение очень незначительно.
Возможно, вам покажется проще следить за логикой этих расчетов, если вы сведете всю информацию в таблицу:
Вы не удивлены, что его шансы на успех оказались столь низкими, несмотря на то, что последующая или вторичная вероятность имела такое высокое значение (75 %)? Большинство людей оказывается удивлено таким результатом. Столь слабые шансы Хосе стать артистом объясняются тем, что в целом на этом поприще добивается успеха очень небольшое количество желающих. Полученное Хосе значение вероятности было близко к априорному, или базовому, уровню успеха для всех начинающих артистов. Поскольку в целом очень немногим артистам удается добиться успеха, Хосе, как и любой другой будущий артист, имеет низкие шансы на успех. Исследования показали, что вообще большинство людей склонно к переоценке шансов на успех при низких базовых уровнях и к их недооценке при высоких базовых уровнях. В предыдущем примере, касавшемся Эдит, у нас была лишь информация о базовом уровне, на которой основывался процесс прогнозирования. В этом примере у нас есть информация о Хосе, которая позволила нам предсказать его шансы на успех, превышающие базовый уровень, хотя из-за общей низкой доли успеха кандидатов в актеры в целом это повышение было незначительным.
Тем читателям, которые предпочитают мыслить пространственными категориями, я предлагаю представить себе большую группу людей, 4 % из которых являются добившимися успеха артистами, а 96 % – не являются таковыми. Эта группа изображена на рис. 7.5. Четверо из 100 нарисованных человечков улыбаются – так изображены добившиеся успеха актеры. Если у вас нет другой информации для прогнозирования успеха Хосе, то вам придется воспользоваться этим базовым уровнем и предсказать ему 4 % шансов на успех.
Рис. 7.5. Наглядное изображение 4 %-го уровня успеха. Заметьте, что 4 % лиц улыбаются.
Теперь давайте учтем дополнительную информацию: 75 % тех, кто добился успеха, имеют кудрявые волосы, а из тех, кто потерпел неудачу, кудрявыми волосами обладают лишь 50 %. Эта информация сочетается с информацией о базовом уровне. Результат изображен на рис. 7.6, где добившимся успеха и неудачникам пририсованы кудрявые волосы. Из четырех улыбающихся человечков трое (75 %) обладают кудрявыми волосами, а из 96 хмурых человечков кудрявые волосы у 48 (50 %).
Анализируя эти цифры, легко заметить, что наши математические действия заключались в том, чтобы определить долю улыбающихся человечков с кудрявыми волосами по отношению ко всем человечкам с кудрявыми волосами, а затем использовать то, что мы знаем о Хосе, для предсказания его шансов на успех. Графически это доля (или часть), которую составляют три улыбающихся кудрявых человечка по отношению к оставшемуся 51 кудрявому человечку:
3/51=0,06
Обобщая; получим следующую схему для расчета вероятности исхода при условии, что у вас имеется информация, касающаяся этой вероятности.
1. Нарисуйте полную древовидную диаграмму, указав информацию о базовом уровне (например, успеха или неудачи), в первой группе узлов. Вторичной информацией воспользуйтесь при изображении второй группы узлов
2. Составьте таблицу, где все различные сочетания базовой и вторичной информации представлены в виде строк.
3. Перемножьте вероятности вдоль каждой из ветвей диаграммы и запишите результаты в строках таблицы.
4. Составьте дробь, в которой значение вероятности интересующей вас ветви (например, успех при наличии кудрявых волос) будет числителем, а сумма этого значения и значения вероятности из другой ветви, содержащей то же условие (например, неудача при наличии кудрявых волос), будет знаменателем.
5. Проверьте ответ. Имеет ли он смысл? Следует ли ожидать, как в приведенном примере, что вероятность успеха должна быть выше базового уровня, потому что у нас имеется информация, которая связана с успехом? (Если бы мы знали, что Хосе обладает некоторым качеством, которое связано с неудачей, то мы бы предсказали, что его шансы на успех будут ниже базового уровня, но при изначально низком базовом уровне они уменьшатся ненамного.)
Существует большое количество заболеваний, базовый уровень вероятности заболеть которыми невелик для группы населения. Результаты медицинских тестов следует интерпретировать с учетом соответствующего базового уровня каждой болезни. Медицина, как и большинство других дисциплин, является вероятностной наукой; тем не менее, очень немногие врачи получают подготовку по теории вероятностей. Неумение применять информацию о базовых уровнях может привести к неверным диагнозам. Игнорирование базового уровня является распространенной ошибкой, допускаемой при размышлении об исходах вероятностных событий. Дреман (Dreman, 1979) суммирует результаты большого количества исследований на эту тему следующим образом: «Тенденция к недооценке или полному игнорированию известных вероятностей при принятии решений, несомненно, является самым серьезным недостатком интуитивного мышления» (цит. по: Myers, 1995, р. 331). Последствия подобных постоянных ошибок и когнитивных предубеждений играют серьезную роль не только в экономике, управлении и капиталовложениях, но практически в любой области, где приходится принимать решения, связанные с вероятностью.