Текст книги "Психология критического мышления"
Автор книги: Дайана Халперн
Соавторы: А. Нафтульев
Жанр:
Психология
сообщить о нарушении
Текущая страница: 28 (всего у книги 42 страниц)
Рис. 7.6. Наглядное изображение относительной доли добившихся успеха актеров и неудачников, обладающих такими же характеристиками, как Хосе. Эти характеристики изображены в виде кудрявых волос.
Нерегрессивные суждения
Гарри недавно поступил в Государственный арбузолитейный университет. Средний балл всех студентов этого университета (СБ) равен 2,8. Гарри – новичок и еще не сдавал экзаменов. Хотя у вас нет никакой конкретной информации о Гарри, как вы думаете, каков будет его средний балл? Прекратите чтение и попытайтесь угадать его средний балл.
После первых экзаменов в середине семестра Гарри получил средний балл 3,8. При наличии этой новой информации как вы теперь оцените СБ Гарри, который он получит в конце учебного года? Большинство людей на первый вопрос сразу отвечает 2,8, т. е. называют средний балл всех студентов арбузолитейного университета. Это правильный ответ, поскольку, не имея другой информации, лучше всего заключить, что средний балл любого из студентов этого университета близок к общему среднему баллу. На второй вопрос большинство людей отвечает 3,8. К сожалению, это не самый лучший ответ. Хотя и верно, что человек, получающий высокие оценки на экзаменах в середине семестра, как правило, получает высокие оценки на экзаменах за весь семестр, все же эти оценки не совпадают в точности. Обычно человек, получивший очень высокий по какой-либо шкале результат, в следующий раз получает результаты ближе к средним. Следовательно, средний балл Гарри в конце учебного года, скорее всего, будет меньше, чем 3,8, и больше, чем 2,8. (Точный прогноз среднего балла можно вычислить математически, но эти расчеты выходят за рамки данной книги.) Эта идея сложна для понимания, поскольку большинство людей находит, что она противоречит интуиции, и это действительно так.
Полезно рассмотреть пример из области спорта. Вспомните своих любимых спортсменов. Хотя они иногда выступают совершенно блестяще, чаще всего их результат близок к среднему. В конце концов, невозможно всегда сбивать все кегли или выбивать 1000 очков. Любителям спорта известно явление, которое носит название «синдром второго года». После выдающихся успехов в течение первого года выступлений на следующий год звезда обычно начинает показывать результаты, которые ближе к среднему уровню. Еще один пример, который может помочь прояснить эту концепцию, – это часто используемый пример о росте отцов и сыновей. Как правило, сыновья отцов очень высокого роста имеют рост ближе к среднему (хотя все же выше среднего). Это явление носит название регрессии к среднему значению. (Среднее значение вычисляется путем сложения всех интересующих вас значений и деления на число этих значений.)
Выше в этой главе я говорила о законах случая. Никто не может точно предсказать рост конкретного человека. Но в целом – т. е. если обследовать очень много отцов высокого роста, то окажется, что у большинства из их сыновей рост регрессирует к среднему значению. Таким образом, как и было сказано выше, знание законов вероятности помогает нам лучше прогнозировать, но точные прогнозы будут получаться не всегда. Важно понимать эту концепцию, имея дело с вероятностными событиями.
Канеман и Тверски (Kahneman Tversky, 1973) изучали последствия, возникающие вследствие того, что специалисты не понимают явления регрессии к среднему. Израильские летные инструкторы хвалили курсантов, когда они успешно выполняли сложные фигуры пилотажа и маневры, и критиковали плохие полеты. С учетом того, что вы только что узнали о регрессии к среднему значению, понятно, что должно произойти после того, как пилот отлично справился с заданием? Последующие полеты, вероятно, окажутся ближе к среднему уровню, потому что класс пилотажа регрессировал к среднему. И наоборот, чего следует ожидать после очень плохого полета? Опять-таки, последующие должны быть ближе к среднему уровню – в данном случае это означает, что они станут лучше, хотя могут все равно остаться ниже среднего уровня. Инструкторы не понимали явления регрессии к среднему значению, поэтому пришли к неверному выводу о том, что похвалы приводят к ухудшению результатов, а критика – к улучшению.
Давайте рассмотрим еще один пример регрессии к среднему значению. Это явление носит повсеместный характер, но очень немногие люди знают о нем. Предположим, что вы узнали о группе самопомощи для людей, дети которых очень плохо себя ведут. (Такие группы действительно существуют.) Большинство родителей обращается в такие группы тогда, когда их дети ведут себя особенно плохо. После нескольких недель посещения группы многие родители сообщают, что поведение их ребенка стало лучше. Можно ли сделать вывод, что занятия в группе помогли родителям научиться управлять поведением своих детей? Вспомните о регрессии к среднему значению! Если родители поступили в группу, когда поведение их ребенка было особенно плохим, то что бы они ни делали – даже если бы они не делали ничего, – все равно поведение ребенка, скорее всего, должно регрессировать к среднему по условной шкале поведения уровню. Мы можем прогнозировать не ангельское или хотя бы нормальное, т. е. среднее поведение, а только некоторое улучшение или изменение поведения в сторону среднего уровня. Поскольку это статистический прогноз, иногда он может оказаться неверным, но в среднем (в достаточно протяженном интервале времени) мы будем правы. Поэтому нельзя сделать никаких выводов об эффективности занятий в группе самопомощи, если не провести эксперимент того типа, который был описан в главе 6. Нужно будет случайным образом распределить детей и семьи по группам самопомощи и контрольным группам, а затем определить, будут ли дети из групп самопомощи вести себя значительно лучше, чем дети из контрольной группы, на которых не оказывали никакого специального воздействия. Для того чтобы заключить, что такие группы помогают улучшить поведение ребенка, мы должны иметь возможность случайным образом распределить семьи по группам. Если вы начнете искать в жизни случаи регрессии к среднему значению, то удивитесь, какое количество событий можно объяснить именно «движением к среднему значению», а не какими-либо другими причинами.
Риск
Если мы проанализируем данные, полученные в сотнях населенных пунктов, расположенных в США или во всем мире, то обнаружим, что в некоторых районах имеет место исключительно высокий уровень заболеваемости некоторыми видами рака, врожденных уродств, опухолей мозга и других заболеваний, а также необъяснимых смертей. Как можно выяснить, существует ли связь между высоким уровнем заболеваемости и наличием токсических веществ (например, пестицидов) в воде и магнитными полями от линий электропередач или это явление носит случайный характер?
Понятие частотности, т. е. того, насколько часто повторяется событие, является неотъемлемой частью определения вероятности. Если событие происходит часто, то его появление имеет высокую вероятность. Для определения степени риска, связанного с катастрофическими событиями, необходимо сначала определить их частоту. Поскольку, как правило, катастрофические события происходят редко (например, авиакатастрофы или утечки радиации с атомных электростанций), а в некоторых случаях их последствия проявляются лишь через много лет (например, раковые заболевания, вызванные загрязнением окружающей среды), то определение их частотности – очень трудная задача. Чтобы понять, как люди выносят свои суждения о степени риска, необходимо понимать, как они определяют частотность связанных с риском событий обыденной жизни. Ряд исследователей (Lichtenstein et al., 1978) заинтересовался тем, как люди оценивают частотность событий, вызывающих летальный исход. Они изучили этот вопрос, предложив студентам колледжа и членам Лиги женщин-избирателей несколько пар возможных причин смерти и попросив их выбрать, какая из причин более вероятна. Чтобы понять суть этого эксперимента и полученных в нем результатов, давайте попробуем сами ответить на несколько вопросов. Для приведенных ниже пар событий укажите, какое из них является более вероятной причиной смерти, а затем оцените, во сколько раз вероятнее выбранная вами причина приводит к смерти, чем второе событие пары. (Реальные частотности упоминающихся событий приводятся в конце этого раздела.)
Исследователи обнаружили, что в целом люди тем точнее оценивают вероятности причин смерти, чем больше реальные различия между частотностями событий, однако они делают большое количество ошибок при оценке частотности различных событий по отношению друг к другу. Субъекты описанного эксперимента переоценивали частотность событий, которые происходят очень редко, и недооценивали частотность событий, которые происходят очень часто. Кроме того, частотность событий со смертельным исходом, которые широко освещаются в средствах массовой информации (например, авиакатастрофы, наводнения, убийства, торнадо, ботулизм), обычно переоценивается, в то время как менее драматичные, молчаливые убийцы (например, диабет, инсульт, астма, туберкулез) недооцениваются. Создается впечатление, что широко освещаемые события легче приходят на ум, и это приводит к необъективной оценке их частотности. Наше восприятие риска искажается под влиянием событий, которые хорошо запоминаются, таких как стихийные бедствия или несчастные случаи, поданные в новостях как сенсации, например, большая авиакатастрофа или заболевание ботулизмом из-за употребления непрожаренных гамбургеров. В главе 2 я говорила о том, что память является неотъемлемой частью всех мыслительных процессов. Наши воспоминания оказывают решающее влияние на характер нашего мышления. Из приводимой ниже цитаты видно, насколько важно при оценке мыслительных процессов иметь в виду то, что память может быть необъективной.
Наше общество очень часто выносит суждения об опасной деятельности при отсутствии адекватных статистических данных об этой деятельности, – например, об исследованиях в области генной инженерии или захоронении радиоактивных отходов Мы подозреваем, что необъективность, обнаруженная в этих суждениях (переоценка редких событий, недооценка частых событий и искажения, возникающие под влиянием драматичности или яркости производимого впечатления), на самом деле существует и даже может усиливаться в таких ситуациях (Lichtenstein et al, 1978, р 577)
Нет ничего удивительного в том, что мы склонны переоценивать вероятность событий, которые широко освещаются в средствах массовой информации. Принимая решения, мы полагаемся на доступную нам информацию и обычно не осознаем, что эта информация тенденциозна или сенсационна (Fischoff, 1993). Об убийствах рассказывают в каждом выпуске новостей и пишут в каждой газете; о смертях, наступивших от болезней сердца, редко упоминают в этом контексте. Неудивительно, что многие люди считают, что вероятность быть убитыми для них больше, чем вероятность умереть от сердечного приступа (эта оценка, к сожалению, верна для подростков и молодежи из больших американских городов, хотя и неверна почти для всех остальных людей).
Оценка риска
Каждый день мы попадаем в одни рискованные ситуации и избегаем других. Мы начинаем рисковать, как только просыпаемся.
Уилсон и Крауч (Wilson & Crouch, 1987)
Как специалисты принимают решения, которые потенциально могут иметь катастрофические последствия? Как всем нам, осведомленным гражданам своей страны и избирателям, принимать решения, связанные с риском? Постановка таких вопросов вполне своевременна, но ответить на них нелегко.
Целью оценки риска является нахождение путей избежать риска, снизить его или взять под контроль (Wilson Crouch, 1987). Человеческая жизнь всесторонне связана с риском. В качестве примера можно привести то, что в США примерно 200 человек ежегодно погибают от удара электрическим током из-за неисправности домашней проводки или бытовых электроприборов, а 7000 человек умирают от последствий падения в собственном доме (большинство из них старше 65 лет). Тем не менее мало кто из нас сочтет риск подобного несчастного случая достаточно серьезным для того, чтобы перестать пользоваться электричеством или прекратить ходить по своему дому. Существуют и другие риски, которые явно слишком велики, чтобы им подвергаться. Например, очень немногие из нас решатся с завязанными глазами перейти автостраду с интенсивным движением. Кроме того, существуют риски, которые почти не изучены, такие как выбросы новых химических веществ в окружающую среду или развитие новых технологий. Уилсон и Крауч (Wilson Crouch, 1987) предлагают избирателям и потребителям при принятии решения о безопасности какого-либо действия или технологии использовать несколько способов оценки риска:
1. Один из методов оценки риска основан на анализе исторических данных. Например, для того чтобы оценить риск возникновения рака из-за облучения при рентгенологических медицинских исследованиях, можно воспользоваться данными о том, что при определенной ежегодной дозе облучения (40 мР) ожидается возникновение определенного количества случаев заболевания (1100). Подобную информацию о риске потребители могут сравнить с другими известными рисками, чтобы решить, перевешивает ли польза, приносимая рентгеновскими исследованиями, связанный с ними риск.
2. Риск, связанный с новыми технологиями, для которых еще нет исторических данных, можно рассчитать путем расчета риска, связанного с отдельными компонентами этих технологий (в случае, если они независимы друг от друга), и перемножения полученных значений вдоль ветвей дерева решения. Такой метод расчета вероятностей был описан выше в одном из разделов этой главы. В качестве примера можно привести расчет вероятности серьезной аварии на химическом заводе.
3. Риск можно рассчитать по аналогии. (Использование аналогий в качестве вспомогательного средства при решении задач более подробно обсуждается в двух следующих главах.) При испытаниях лекарств на животных экспериментатор фактически пользуется аналогией и экстраполирует полученные результаты на людей.
Необъективность при оценке риска
Психологи и другие ученые, исследующие то, каким образом люди определяют степень рискованности различных ситуаций, знают, что при оценке «туманной смеси догадок» (Paulos, 1994, р. 34), на которых строится информация, нуждающаяся в нашей интерпретации, большинство из нас становится жертвой распространенных предубеждений. Вот некоторые из них (Wandersman & Hallman, 1993):
1. Когда люди рискуют добровольно, то они воспринимают риск менее серьезно по сравнению со случаями вынужденного риска. Например, многие считают, что косметические операции безопаснее, чем операции, от которых мы не можем отказаться. В конце концов, пациенты добровольно идут на косметическую операцию, поэтому им приходится убеждать себя, что эта операция «достаточно безопасна».
2. Естественные риски считаются менее опасными, чем искусственные. Например, многие люди считают, что природные токсины, имеющиеся в нашей пище, менее опасны, чем попавшие в нее пестициды или добавление консервантов.
3. Запоминающиеся события, в которых пострадало одновременно большое количество людей, воспринимаются как более рискованные по сравнению с обыденными и менее яркими событиями. Примером этого эффекта является большое количество людей, которые боятся попасть в авиакатастрофу, но почти не думают о безопасности при поездках на автомобиле.
4. События, которые люди считают подконтрольными человеку, воспринимаются как более безопасные по сравнению с теми событиями, которыми нельзя управлять. Многие люди склонны чувствовать себя в большей безопасности, сидя за рулем, а не в качестве пассажира, поскольку большинство из нас считает себя водителями выше среднего уровня.
5. Явления, которые невозможно наблюдать и которые связаны с эффектными и пугающими последствиями (генная инженерия, радиоактивные отходы, СПИД и ядерные реакторы), считаются более рискованными, чем явления, связанные с известной степенью риска или менее пугающими последствиями (курение, автокатастрофы, динамит и пистолеты; Slovic, 1987).
Очевидно, что личное восприятие риска отличается от его научной оценки. Эксперты по оценке риска судят о риске на основе данных о ежегодной смертности; события, вызывающие наибольшее количество смертей, расцениваются как самые рискованные. Например, эксперты сочли автотранспорт источником большего риска, чем использование ядерной энергии (поскольку в автокатастрофах погибает больше людей), в то время как выборки, составленные из студентов колледжей и членов Лиги женщин-избирателей, посчитали ядерную энергию источником большего риска (так как катастрофы, связанные с ее использованием, могут иметь ужасающие воображение последствия).
Главная трудность при интерпретации маловероятных рисков, таких как наводнения или ядерные аварии, состоит в том, что статистические данные о них трудны для осмысления. Трудно соотнести с собственной жизнью тот факт, что конкретное связанное с риском событие случается с одним из 10 000 человек. Нам необходимо так переформулировать эту информацию, чтобы она отвечала на вопрос: «Насколько вероятно, что это случится со мной?» Один из предлагаемых способов осмысления такого рода информации состоит в том, чтобы перевести все подобные риски в стандартные единицы «риска в час» (Slovic, Fischoff, Lichtenstein, 1986). Предположим, например, вы узнаете, что риск, связанный с поездкой на мотоцикле, равен риску, который связан с пребыванием в 75-летнем возрасте в течение одного часа. Поможет ли подобная информация осмысленно интерпретировать риск, связанный с поездкой на мотоцикле? Хотя она может принести пользу при оценке сравнительного риска (поездка на мотоцикле по сравнению с полетом на дельтаплане), сама по себе такая информация бесполезна, поскольку понять, что подразумевается под риском пребывания в 75-летнем возрасте в течение одного часа, все равно трудно.
В качестве избирателей и потребителей мы постоянно сталкиваемся с необходимостью принятия решений по огромному количеству самых разных проблем, включающих в себя использование ядерной энергии, радиационное заражение пищевых продуктов, хирургические операции, качество воды и воздуха, применение лекарств. Для принятия обоснованного решения всегда необходимо тщательное рассмотрение информации, касающейся оценки риска, связанного с данным решением (например, исторические данные, аналогичные риски и риски, связанные с отдельными компонентами), а также понимание факторов, приводящих к тенденциозности при субъективной оценке риска.
Ниже приводятся ответы на заданные выше вопросы о вероятностях причин смерти, сопровождающиеся действительными частотностями каждой причины (количество смертей на 100 000 000 человек). Проверьте свои ответы и выясните, не сделали ли вы общих ошибок, переоценив события, которые касаются большого количества людей одновременно и лучше запоминаются (такие, как авиакатастрофы), и недооценив те риски, которые мы считаем управляемыми (такие, как вождение автомобиля).
Использование статистики и возможные ошибки, возникающие при этом
Существует три вида лжи: просто ложь, гнусная ложь и статистика.
Дизраэли (1804–1881)
Когда мы хотим узнать что-нибудь о группе людей, часто бывает невозможно или неудобно спрашивать об этом всех членов группы. Предположим, что вы хотите выяснить, действительно ли доноры, сдающие кровь для Красного Креста, как правило, добрые и благородные люди. Поскольку вы не можете обследовать всех, кто сдает кровь, чтобы определить, насколько они добры и заботливы, вы обследуете только часть этого контингента, которая называется выборкой. Количественные показатели, рассчитанные на выборке людей, называется статистическими данными. (Статистикой также называется область математики, которая использует теорию вероятностей для принятия решений о контингентах.) Статистические данные встречаются в любой сфере жизни – от средних результатов игроков в бейсбол до величины военных потерь. Многие люди вполне справедливо относятся к статистике подозрительно. Хафф (Huff, 1954) написал небольшую книжечку, в которой приводятся юмористические примеры статистических ошибок. Книга носит название «Как лгать с помощью статистики» (How to Lie With Statistics). В этой книге есть такая зарифмованная мысль: «Статистика умело грим наложит – немного пудры и немного краски – и факты на себя уж не похожи. Я отношусь к статистике с опаской» (р. 9).
О среднем
Если сказать, что в средней американской семье 2,1 ребенка, то что это будет означать? Это число было получено путем создания выборки из американских семей, подсчета общего количества детей в этих семьях и деления на количество семей в выборке. Это число может дать весьма точное представление о том, что в американских семьях примерно по два ребенка – в некоторых больше, а в некоторых меньше, а может и ввести нас в заблуждение. Возможно, что в половине семей совсем не было детей, а в другой половине было по четыре ребенка или даже больше, а читатель будет ошибочно считать, что в большинстве семей «примерно» два ребенка, в то время как на самом деле нет ни одной такой семьи. Эта ситуация напоминает человека, который держит голову в духовке, а ноги в холодильнике и говорит, что в среднем он чувствует себя вполне комфортно. Не исключено также, что выборка, использованная для получения этого статистического показателя, не репрезентативна для контингента – в данном случае для всех американских семей. Если выборка состояла из студентов колледжей или жителей Манхэттена, то полученный результат завышен. С другой стороны, если в выборку вошли жители сельских районов, то полученный результат занижен. Если выборки не отражают особенности контингента, то их называют нерепрезентативными выборками. Статистические данные, рассчитанные на таких выборках, не дают точной информации о контингенте.
Средние значения тоже могут вводить нас в заблуждение, поскольку существует три различных вида средних значений. Предположим, что у миссис Вонг пятеро детей. Старшая дочь сделала успешную карьеру и занимает пост управляющего большой корпорацией. Она зарабатывает $500 000 в год. Вторая дочь – учительница и зарабатывает $25 000 в год. Третий сын работает официантом и получает $15 000 в год. Оставшиеся дети – безработные артисты, получающие по $5000 в год. Если миссис Вонг хочет похвастаться, как хорошо живут ее дети, она может подсчитать среднее арифметическое их доходов, которое называют еще средним значением. Когда люди думают о средних показателях, они, как правило, имеют в виду среднее арифметическое. Это сумма всех значений, поделенная на число слагаемых. Средний доход детей миссис Вонг равен $550 000: 5 = $110 000. Конечно, любой человек, услышав такую цифру, заключит, что у миссис Вонг очень успешные и состоятельные дети.
Средний доход детей миссис Вонг получился таким высоким из-за того, что в сумму входит одно очень большое слагаемое, в результате чего среднее значение возросло. Средние значения также называют оценками с тяготением к центру. Второй тип оценок с центральной тенденцией – это медиана, или срединное значение. На него не влияет наличие нескольких экстремальных значений величины. Чтобы найти медиану, значения выстраиваются в порядке возрастания или убывания. Значение, оказавшееся в середине ряда, и является медианой. Для примера с доходами детей миссис Вонг это будет выглядеть так:
$5000; $5000; $15 000, $25 000, $500 000
Средним значением, или медианой, будет третье значение, или $15 000. Таким образом, миссис Вонг могла бы также заявить, что ее дети зарабатывают в среднем по $15 000. (Когда число значений четное, медиана равна среднему арифметическому двух срединных значений.)
Миссис Вонг могла бы утверждать, что ее дети зарабатывают в среднем $ 110 000 или $15 000, и оба утверждения были бы правдивыми. Смысл приведенного примера в том, что следует осторожно относиться к средним показателям. Чтобы понять их смысл, необходимо знать, о каком типе значения идет речь – о среднем арифметическом или медиане, а также иметь представление об изменчивости данных и «форме» распределения (каким образом числа группируются).
Точность
Предположим, я сообщу вам, что проводилось научное исследование продолжительности рабочего дня у служащих. Более того, в результате этого исследования обнаружено, что средняя продолжительность рабочего дня равна 8,167 часа. Не правда ли, звучит наукообразно и внушительно? А если бы я сказала вам, что большинство служащих работает примерно по 8 часов в день? Большинство из вас ответило бы: «Я это и так знаю. Стоило ли проводить исследование?» Дело в том, что точные статистические данные часто производят на нас впечатление даже тогда, когда точность совсем не нужна.
Приведу пример из одного престижного еженедельного журнала новостей. Естественно, для журнала важно, чтобы читатели считали его статьи правдивыми и авторитетными. Несколько лет назад в нем была опубликована статья об угрозе здоровью жителей Нью-Йорка, которая возникает из-за собачьих экскрементов. Чтобы создать у читателей представление о масштабах проблемы, они подсчитали ежедневное количество собачьих экскрементов в Нью-Йорке с точностью до двух десятичных знаков (до одной сотой фунта!). Я понятия не имею, как они получили эту цифру, и мне даже думать не хочется о том, как они собирали данные. Я твердо уверена только в том, что они не могли точно измерить это количество. Зато, конечно, такие точные статистические данные произвели впечатление, что журнал публикует тщательно проверенную научную информацию, которой можно доверять.
Еще более смешной пример излишней точности связан с именем Марка Твена, одного из самых знаменитых писателей Америки. Однажды он заявил, что возраст реки Миссисипи – 100 миллионов и три года. Оказывается, за три года до этого Марк Твен узнал, что Миссисипи – 100 миллионов лет.
Значимые различия
Если вы хотите определить средний рост всех женщин, то вы можете создать выборку из 100 женщин, измерить их рост и вычислить среднее значение. Предположим, что вы взяли другую выборку из 100 женщин и снова определили их средний рост. Будете ли вы ожидать, что средние значения роста для этих двух выборок точно совпадут? Конечно, нет – очевидно, что будут наблюдаться некоторые отклонения. Эти средние значения рассчитаны на различных выборках, поэтому получены несколько отличающиеся результаты.
Допустим, кто-нибудь измерил рост женщин из выборки, состоящей из тех, кто живет в студенческом общежитии, и обнаружил, что их средний рост 5 футов и 5 дюймов. Затем он измерил рост женщин, которые не живут в общежитии, и обнаружил, что их средний рост 5 футов и 4? дюйма. Можно ли на основании этих данных сделать вывод, что те, кто живет в общежитии, – выше ростом, чем те, кто там не живет? Надеюсь, что вы ответили «нет», потому что небольшие различия между группами могут носить случайный характер, особенно если размер выборки невелик, т. е. в нее входит малое количество людей. Существуют статистические методы для определения вероятности того, что различия между данными, полученными на двух или нескольких выборках, являются случайными. Если вероятность случайности очень мала, то такие различия называются значимыми различиями.
Вопрос о значимости изменений относится также и к контингентам. Если по списку численность студентов вашего колледжа увеличилась с 15 862 до 15 879 человек, то есть ли у администрации основания заключить, что подобное увеличение численности что-либо означает? Ответ на этот вопрос зависит от множества переменных. Если количество студентов в течение последних 5 лет ежегодно немного увеличивалось, то эти цифры могут отражать слабую, но постоянную тенденцию. С другой стороны, это сравнительно небольшое увеличение могло произойти из-за случайных колебаний, и тогда оно не отражает определенной тенденции. Из-за случайных факторов это число могло бы с таким же успехом уменьшиться. Точно так же изменение уровня безработицы с 10,0 % до 9,9 % может или быть всего лишь случайным колебанием (флуктуацией), или указывать на конец экономического спада. Можно ожидать, что республиканцы и демократы по-разному будут интерпретировать такие цифры, в зависимости от того, кто в данный момент стоит у власти.
Экстраполяция
Экстраполяцией называется оценка значения величины путем продолжения ряда известных ее значений. Если число студентов, специализирующихся по психологии в Захолустном университете, за последние 5 лет составляло приблизительно 150, 175, 200, 225 и 250, соответственно, то большинство людей одобрительно отнесется к прогнозу, предсказывающему, что в следующем году количество студентов, специализирующихся по психологии, будет равно примерно 275.
Экстраполяция может приводить к ошибкам, которые иногда бывают смешными. Например, предположим, что нам надо исследовать уменьшение средней численности американской семьи с 1900 по 1950 г. С помощью экстраполяции мы можем получить прогноз, что вскоре средняя численность американской семьи будет равна нулю, а затем превратится в отрицательное число. Конечно, этого быть не может! Это все равно что сказать, что если время, за которое спринтеры пробегают стометровку, будет продолжать сокращаться, то в конце концов кто-нибудь пробежит ее за 0 секунд или за отрицательный промежуток времени.
Статистические мистификации
Как можно превратить чистый жир в смесь, которая на 96 % не содержит жиров? Нет, тут нет никакого волшебства; на самом деле это очень просто. Если съесть два кусочка сливочного масла, то 100 % калорийности будут составлять жиры. Но если положить те же два кусочка масла в стакан с водой и выпить эту тошнотворную смесь, то вы создадите на 96 % свободный от жиров напиток (т. е. он будет содержать 96 % воды). Вам достанется то же самое количество калорий, состоящих из одних жиров, но название «напиток, на 96 % свободный от жиров» производит впечатление большей пользы для здоровья. Поэтому продукты с наклейкой «на столько-то процентов не содержит жиров» являются фальсификацией здорового питания, а этикетки наклеены с целью дезинформации (Nutrition Action Healthletter, 1991).
Многие из статистических данных, на которые мы по привычке ссылаемся, удручающе неправильны. Бозелл (Bozell, 1993) усомнился в точности сведений, которые мы получаем из средств массовой информации. Например, он цитирует репортера CBS, который предупреждал, что заболеваемость СПИДом среди гетеросексуалов только в 1992 г. увеличилась на 30 %. Но по данным Центра контроля над заболеваемостью, количество заболевших СПИДом среди гетеросексуалов в 1992 г. увеличилось на 17 %, что является снижением скорости роста заболеваемости по сравнению с ростом на 21 % в 1991 г. Точно так же Бозелл цитирует ведущего программы новостей NBC, который сообщил, что в настоящее время в США 5 миллионов бездомных, хотя Бюро переписи населения в 1990 г. насчитало только 220 000 бездомных. Различия очень большие, но как нам определить, какие из этих статистических данных ближе к истине?