355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Загадки мироздания » Текст книги (страница 15)
Загадки мироздания
  • Текст добавлен: 6 октября 2016, 00:16

Текст книги "Загадки мироздания"


Автор книги: Айзек Азимов



сообщить о нарушении

Текущая страница: 15 (всего у книги 24 страниц)

Если же окажется, что жизнь на Луне имеет в основе своей ту же химическую структуру, что и жизнь на Земле, то значимость этого факта явится еще большим вопросом. Вполне возможно, что ее занесли туда уже приземлявшиеся ранее аппараты с Земли.

Более того, некоторые астрономы считают, что в далеком прошлом, когда Земля и Луна были гораздо ближе друг к другу, а бомбардировка метеоритами была активнее, материя с одного из небесных тел могла попадать на другое. Юри недавно высказал предположение, что на Луну попало в свое время достаточно много воды с Земли, чтобы там могло образоваться на короткий срок некоторое количество озер. В таком случае Луна могла оказаться засеянной жизнью с Земли за множество эпох до начала космической программы, и для того, чтобы получить действительно экзобиологические данные, придется ждать полета на Марс.

Однако, несмотря на все вышеприведенные рассуждения, мы вынуждены вернуться к изначальному постулату: в настоящий момент у экзобиологии полностью отсутствует предмет для изучения. Все, что мы можем делать, – это теоретизировать, пусть убедительно, но пока безосновательно.

Многие биологи (особенно известный гарвардский зоолог Джордж Гейлорд Симпсон, большой любитель фантастики и человек, никак не страдающий отсутствием воображения, и Феодосий Добржанский из Университета Рокфеллера, человек исключительного интеллектуального дарования) уже выходят из себя по поводу излишнего, на их взгляд, энтузиазма науки, до сих пор не имеющей никакого реального содержания.

Так что, несомненно, экзобиологи должны действовать постепенно, шаг за шагом.

Шаг 1: выработать прочную базу, основываясь на единственном известном нам типе жизни – земном.

Шаг 2: опробовать свои осторожные выводы на материале, полученном на Луне и на Марсе, когда дотуда доберется или сам человек, или соответствующие цели исследования приборы.

Шаг 3… Хотя нет, давайте сначала лучше дождемся выполнения шага 2.

Глава 21
МЫ, УМЕРЕННЫЕ

Здесь, на Земле, жизнь развивалась по множеству различных направлений, идеально приспосабливаясь к самым разнообразным условиям окружающей среды, принимая такие формы, до каких не додумалось бы и самое безумное воображение, если бы только они не существовали в реальности.

Наверное, этому не стоит слишком уж удивляться. Насколько нам известно, живая материя состоит из молекул, которые достаточно сложны и велики для того, чтобы удовлетворять переменчивые и многочисленные требования, выдвигаемые жизнью. Эти молекулы должны быть, несмотря на свою сложность, достаточно стабильными для того, чтобы сохранять свою структуру в одних определенных условиях, и при этом достаточно нестабильными, чтобы моментально видоизменяться при других определенных условиях. Такие большие, сложные и стабильно-нестабильные молекулы найти непросто. Самыми важными молекулами такого типа на Земле являются белки, и, по-видимому, замены им быть не может.

Более того, все перемены, происходящие с белками в процессе жизнедеятельности, могут происходить только при условии наличия воды. Жизнь зародилась в океане, и именно вода до сих пор составляет от 50 до 80 процентов в организмах даже сухопутных живых существ.

Так что химическая основа всех разновидностей жизни на Земле, а может – и на других планетах должна быть белково-водной (где строением белков управляет сложная система нуклеиновых кислот). Если нам суждено когда-либо встретиться с инопланетными живыми существами, то сейчас нельзя предсказать, будут ли они крылатыми, зеленокожими, десятиногими, яйцеголовыми или двухвостыми; но с большой долей вероятности можно утверждать, что их химическое строение будет белково-водным под управлением нуклеиновых кислот.

Однако что, если жизнь на других планетах не похожа на земную? Это касается, например, планет, находящихся так близко к своему солнцу, что поверхность их разогрета выше точки плавления свинца, или, наоборот, так далеко от своего солнца, что вода на них представлена только в форме непробиваемых ледяных шапок? Обречены ли такие миры на вечную пустоту? Если живая материя в принципе может быть только белково-водной, то, по-видимому, да.

Но так ли это? Есть ли у нас уверенность, что других схем живой материи в принципе не может быть?

Предположим, к примеру, что на планете, на которой нет и никогда не было воды в жидкой форме из-за страшного холода, нашлось вещество, занявшее нишу воды в условиях низкой температуры. На самом деле такое вещество нам известно – это аммиак.

Наверное, все знают нашатырный спирт – прозрачную жидкость, внешне похожую на воду, но имеющую специфический резкий запах. Это водный раствор аммиака.

Сам по себе аммиак при обычных температурах газообразен. Причем это газ слезоточивый и ядовитый. На Земле для того, чтобы он стал жидкостью, его приходится специально охлаждать до -34 °С. И при температуре выше -73 °С он не замерзает. Точный момент его перехода из жидкого в газообразное состояние зависит еще и от такого параметра, как атмосферное давление на планете, но в любом случае он остается жидкостью при температуре градусов на пятьдесят ниже точки замерзания воды.

Холодные планеты нашей собственной Солнечной системы, например Юпитер и Сатурн, имеют много атмосферы, состоящей в основном из водорода и гелия, но содержащей также аммиак и метан. Возможно, подобными атмосферами обладают и некоторые их спутники, и вообще, есть все основания полагать, что любая крупная холодная планета будет иметь такого рода атмосферу.

И химические свойства аммиака очень похожи на химические свойства воды. Химики уже демонстрировали, что поведение веществ при растворении в аммиаке сходно с поведением веществ при растворении в воде, так что белково-аммиачная основа жизни вполне вероятна в тех условиях, где слишком холодно для зарождения жизни белково-водной.

Биохимия, в основе которой лежит такая связка, должна радикально отличаться от всего, что мы знаем. Наши белки, достаточно активные для того, чтобы участвовать в реакциях жизнедеятельности при обычных для Земли температурах, при температурах жидкого аммиака становятся инертными – скорее всего, слишком инертными для того, чтобы соответствовать требованиям, предъявляемым к живой материи. Однако известно, что существуют химические вещества, при температуре жидкой воды слишком активные и слишком нестабильные, чтобы просуществовать дольше секунды. В условиях более низкой температуры они могут оказаться ровно настолько стабильными, чтобы послужить практической основой жизни.

И еще – земные организмы потребляют пищу, содержащую сложные молекулы, богатые атомами углерода и водорода (растения такой пищи не поедают, они сами изготавливают эти сложные молекулы, используя для этого солнечную энергию). Атомы водорода вступают в соединение с атомами кислорода, и высвобождаемая при этом энергия поддерживает жизнь.

Но на холодных планетах кислорода в атмосфере нет. Вместо него есть водород. Возможно, что пищей «аммиачных» существ смогут служить сложные молекулы, богатые углеродом и кислородом, – молекулы такого типа были бы слишком нестабильны, чтобы существовать в условиях земного диапазона температур. Тогда атомы кислорода, содержащиеся в пище, могли бы вступать в соединение с атомами водорода, получаемыми из атмосферы. Энергия при этом высвобождалась бы точно таким же образом, как и при нашем обмене веществ.

Даже если планета слишком холодна для того, чтобы аммиак на ней не замерзал (а именно такие температуры властвуют на самых далеких планетах нашей Солнечной системы, Уране и Нептуне), это не полностью отнимает у нее возможность стать колыбелью жизни. Остается еще метан, представляющий собой здесь, на Земле, основной компонент так называемого «природного газа», используемого для приготовления пищи и обогрева жилья. Метан еще тяжелее расплавить, чем аммиак; он становится жидким только при температурах ниже -184 °С.

Однако химические свойства метана полностью отличаются от свойств воды или аммиака. В отличие от двух последних жидкостей обычные белки не растворяются в метане. Зато растворяются некоторые жирные вещества, и, возможно, на очень холодных планетах место белков могут занять сложные жиры. Такие сложные жиры существуют на самом деле, и некоторые их них по сложности не уступают белкам; так что нет ничего принципиально невозможного в зарождении метаново-жировой жизни.

А что же планеты, наоборот, горячие, более близкие к Солнцу? Они должны быть маленькими и не иметь атмосферы в обычном понимании. На них могут лишь в небольших количествах удерживаться малопригодные для обмена веществ газы, например, газообразная сера или ртуть. Воды на таких планетах точно нет; если даже когда-то она и была, то давным-давно выкипела.

Возможно, жизнь может зародиться на основе веществ, которые имеют при высоких температурах жидкую форму. Сера, по химическим свойствам несколько напоминающая кислород, находится в жидком состоянии при температурах от 112°С до 437°С. Возможна ли жизнь на серной основе?

Если и да, то белковой она быть не может. Белки при таких высоких температурах совершенно нестабильны. Обычные белки, как и все остальные сложные молекулы живой ткани, в том числе – правящие бал нуклеиновые кислоты, состоят по большей части из атомов углерода и водорода с небольшими вкраплениями кислорода, азота, серы и фосфора.

Иными словами, молекулы наших организмов – производные от углеводов.

Однако во время Второй мировой войны в ходе работы над созданием атомной бомбы химики обнаружили, что атомы водорода в такого рода молекулах можно заменить атомами фтора (фтор – это очень едкий ядовитый газ). Получающиеся в результате фтороуглеводные соединения имеют те же свойства, что и углеводы, но являются гораздо более стабильными. Сложные химические вещества, состоящие из производных фтороуглеводных соединений, слишком стабильны для обеспечения гибкости, необходимой для живой ткани, но при температурах жидкой серы они могут стать в достаточной степени нестабильными. «Могут», потому что очень трудно судить по простым молекулам определенного типа, какими свойствами будут обладать сложные молекулы того же типа. Вот пример: искусственно синтезированная человеком молекула нейлона по строению сходна с молекулой белка. Если бы стабильный и инертный нейлон был единственным веществом своего типа, доступным для анализа, то кто мог бы предсказать на основе его изучения существование сложных, нестабильных белковых молекул со всей их гибкостью и химической активностью?

Есть еще один вид молекул, способных образовывать сложные структуры, возможно стабильные при высоких температурах. Речь идет о кремниевых соединениях. Они состоят в основном из цепочек атомов кремния и кислорода, в качестве примера можно привести земные камни. Однако к этим цепочкам могут присоединяться и углеводные (или, возможно, фтороводородные) группы, придавая молекулам необходимую гибкость.

Такого рода кремниевые соединения были разработаны в лабораториях здесь, на Земле, за последние несколько десятков лет. Помимо прочего, твердые кремниевые соединения служат в качестве искусственной резины, а жидкие – в качестве гидравлических жидкостей. Так что можно представить себе горячие планеты населенными живущими в лужах жидкой серы существами с резиновыми тканями, по жилам которых текут гидравлические жидкости.

На горячих планетах живым существам не обязательно использовать химические реакции для получения энергии. Имея под рукой солнце, размером и яркостью десятикратно превышающее наше, эти существа, будь они хоть фтороуглеродными, хоть кремниевыми, смогут впитывать солнечную энергию напрямую.

Встретимся ли мы в будущем с чем-либо подобным на самом деле?

Даже если нам никогда не суждено добраться до других звезд, то долететь до других планет нашей Солнечной системы смогут уже наши внуки. А все эти планеты, за исключением Марса с, может быть, проживающими на нем простейшими растениями, совершенно не похожи на нашу Землю. Что обнаружится на такой горячей планете, как Меркурий? Ничего, кроме мертвого камня и дымящейся серы? А на холодных мирах, таких, как крупнейший спутник Сатурна Титан? Ничего, кроме твердокаменного льда и леденящего метанового ветра?

Нельзя быть уверенными до конца.

Мы уже приняли на веру одно важное допущение, поверив, что Земля может быть не единственным населенным миром во Вселенной, а может быть – и не единственным миром, населенным разумными существами. Может быть, когда-нибудь нам придется еще больше расширить горизонты сознания и поверить, что и с химической точки зрения наш вариант развития не единственный?

Если это действительно так, то в конце концов мы можем с изумлением прийти к возможности изучать как фтороводородный или кремниевый метаболизм горячих, так и аммиачный или метановый метаболизм холодных, а самих себя типировать как пример белково-водных умеренных.

Почему бы и нет? Ведь как в науке, так и во всех остальных областях деятельности человека, именно жажда новых открытий заставляет что-то предпринимать!

Глава 22
ЕСТЬ ЗДЕСЬ КТО-НИБУДЬ?
 
Сядь, Джессика. Взгляни, как небосвод
Весь выложен кружками золотыми;
И самый малый, если посмотреть,
Поет в своем движенье, точно ангел,
И вторит юнооким херувимам.
Гармония подобная живет
В бессмертных душах; но пока она
Земною, грязной оболочкой праха
Прикрыта грубо, мы ее не слышим [10]  [10]Цит. по пер. Щепкиной-Куперник. ( Примеч. пер.)


[Закрыть]
.
 

Так говорил Лоренцо в шекспировском «Венецианском купце», безуспешно стараясь расслышать музыку сфер.

Со времен Шекспира люди частично преодолели ограничения, накладываемые «грязной оболочкой праха», с помощью новых инструментов – телескопов, спектроскопов, фотоаппаратов и волновых усилителей. Сейчас мы способны в буквальном смысле слышать музыку сфер, поскольку Вселенная кишит радиоволнами. Если их перевести в звуковые, получится всего лишь грубый треск помех, но для очарованных астрономов этот треск кажется поистине ангельской музыкой.

Из некоторых невидимых точек на небосводе приходят волны непохожие на другие. Две такие точки были впервые отмечены в 1960 году и позже включены в каталог активных источников радиоволн, составленный в Калифорнийском технологическом университете. Согласно номерам этого каталога, два вышеупомянутых источника получили названия СТА-21 и СТА-102. В 1963 году англоамериканская группа астрономов отметила эти источники как заслуживающие отдельного изучения, а в октябре 1964 года ведущий советский астроном Николай Кардашев занялся этим изучением вплотную.

Он пришел к выводу, что естественные явления неживой природы не могут служить причиной такого излучения, какое доходит до нас из СТА-21 и СТА-102, и предположил, что это сигналы радиомаяков, выставленных разумными существами, находящимися на высоком уровне технического развития.

Стоит ли сразу отметать подобные предположения, как фантазии? Ни в коем случае! Это маловероятно, что признает, кстати, и сам Кардашев, но это не фантазия! После Второй мировой войны астрономы все больше и больше убеждаются, что где-то в бескрайних глубинах космоса и вправду существует некий иной разум. На эти мысли ученых натолкнула смена теорий, касающихся происхождения Солнечной системы и жизни.

По поводу возникновения Солнечной системы существуют две теории: теория катастроф и эволюционная теория. Согласно первой, когда две звезды сближаются, проходя мимо друг друга, из недр каждой из них оттягиваются большие массы вещества, позже оседающие в пространстве с образованием планет. Согласно второй, звезда образуется из огромного газо-пылевого облака, а из материи, расположенной по краям облака, в то же время и по такому же принципу образуются планеты.

В первой половине XX века общепринятой считалась теория катастроф. Однако по мере более глубокого понимания природы звездного вещества астрономы отбросили ее. Материя, оттянутая из солнца гравитационным полем пролетающей мимо звезды, не может конденсироваться с образованием планет – она слишком горяча для этого.

В 1944 году немецкий астроном Карл фон Вайцзеккер выдвинул новую версию эволюционной теории, встретившую всеобщее одобрение. Все споры среди астрономов свелись к тому, какие именно модификации этой теории лучше подходят для объяснения тех или иных феноменов, но практически все согласны, что именно эволюционная теория в той или иной версии лучше всего отражает действительность.

Этот факт очень важен для вопроса о том, существуют ли другие разумные создания. Если для образования планет необходима катастрофа, то во Вселенной, наверное, очень мало планет, поскольку звезды практически никогда не подходят близко друг к другу.

Если же планеты закономерно появляются в ходе естественной эволюции, сопутствующей возникновению звезды, то они должны быть обычным делом. Тогда практически при каждой звезде должен иметься набор планет – именно так сейчас считают астрономы.

Сколько же этих планет могут быть подобны Земле, а значит – послужить колыбелью жизни в том виде, в каком мы ее знаем? Доктор Стефен Доул из корпорации «Рэнд» попытался ответить на этот вопрос на основе имеющихся знаний.

В нашей Галактике, Млечном Пути, насчитывается приблизительно 135 миллиардов звезд. Однако из них лишь те, размер которых укладывается в определенные рамки, могут служить подходящими солнцами для планет, подобных нашей. Для того чтобы относиться к «земному типу», планеты должны иметь определенный размер, находиться на определенном расстоянии от солнца, иметь определенный период оборота и т. д.

Принимая в расчет все уместные параметры, доктор Доул делает вывод о существовании в нашей Галактике около 640 миллионов планет земного типа.

Если эти планеты распределены по Галактике равномерно, то ближайшая из них находится на расстоянии 27 световых лет от нас (то есть 240 миллионов километров). В радиусе 100 световых лет от нас, таким образом, может иметься 50 планет, похожих на нашу.

Есть ли жизнь на этих планетах? Сейчас можно ответить: да, почти наверняка есть. По данным последних экспериментов получается, что зарождение жизни – не редкая случайность, причиной которой стало некое маловероятное соединение химических элементов, а явление, закономерное для любой системы, условиями сходной с первобытной Землей (см. главы 20 и 21).

Но на скольких из этих планет есть именно разумная жизнь?

Перед этим вопросом наука оказывается в тупике. На него ответить невозможно. Жизнь на Земле существовала уже два или три миллиарда лет к тому моменту, как появились разумные виды животных. Вполне возможно, что это была как раз уже редкая случайность, и гораздо больше вероятность того, что на протяжении всего существования планеты жизнь будет существовать на ней, так и не достигнув разумной стадии.

Сказать ничего точного на этот счет нельзя (доктор Доул своих предположений не выдвигает), но даже если предположить, что шанс возникновения искры разума на обитаемой планете – один к миллиону, то все равно получается, что по нашей Галактике разбросано около тысячи видов разумных существ. А если это так, то некоторых из них должна выдать их активность – особенно если они сами, по каким-то причинам, хотят быть услышанными. Маловероятно, что, прислушавшись к Вселенной, мы услышим чье-то послание; но маловероятно – не значит исключено!

Для того чтобы послать сообщение живым существам, обитающим на планете другой звездной системы, как и для того, чтобы получить такое сообщение, требуется носитель сигналов, способный перемещаться сквозь обширные просторы космоса. Мы знаем три типа таких носителей. Это: 1 – гравитационное поле, 2 – поток субатомных частиц и 3 – электромагнитное излучение.

Из этой троицы со стороны Солнца и Луны сильнее всего до нас доходит гравитационное поле. Именно им определяется наш путь вокруг Солнца, и именно оно вызывает приливы и отливы океанов. Более слабое воздействие гравитационного поля Венеры и Марса можно заметить по легким колебаниям движения Луны.

Однако гравитационная сила – самая слабая по природе. Гравитация других звезд достигает нас столь ослабленной, что не существует никакого способа ее ощутить. К тому же, даже будь она сильнее, мы все равно не смогли бы послать в космос осмысленное послание с помощью гравитационного луча, ведь не существует способов включать и выключать гравитацию, а значит, по отношению к гравитации нельзя использовать никакого кода вроде точки-тире для азбуки Морзе.

Потоки субатомных частиц (объектов меньших, чем атомы) достигают нас в виде протонов и электронов, испускаемых Солнцем, и космических лучей (протонов с крайне высоким содержанием энергии и еще более массивных электрически заряженных частиц) из более удаленных источников. Люди умеют запускать потоки таких частиц, могут включать и выключать их, но в очень небольших количествах.

И даже если бы мы могли испускать мощные потоки субатомных частиц с силой, способной перебросить их от звезды до звезды, мы не смогли бы точно нацелить весь этот поток. Траектории частиц будут искривляться под воздействием каждого магнитного поля, мимо которого они будут пролетать, а таких полей в космосе очень много. А в конечном итоге подавляющее большинство этих частиц будет поглощено или видоизменено атмосферой, которая непременно должна иметься у планеты земного типа.

Есть один тип субатомных частиц – нейтрино, – лишенный всех описанных недостатков. Нейтрино могут лететь по прямой от звезды к звезде, не подвластные влиянию ни гравитации, ни магнитных полей, ни атмосфер. У этих частиц есть только один недостаток – их практически невозможно обнаружить.

Итак, остается только электромагнитное излучение. Сквозь нашу атмосферу проникают два вида этого излучения. Один из них – это обычный свет, а второй – высокочастотные радиоволны, именуемые еще «микроволнами». И то и другое легко произвести и легко заметить, и то и другое не подвластно ни магнитным полям, ни атмосферам, то есть – оба вида излучения идеально подходят для передачи сигнала.

Казалось бы, первым делом выбор должен пасть на свет. Воображение сразу рисует огромный прожектор, мигающий звездам азбукой Морзе. Однако тут возникает ряд принципиальных сложностей.

Во-первых, источников света в Галактике, с ее миллиардами звезд, хоть отбавляй, и один слабый сигнал в них обязательно затеряется. В частности, свет, источник которого находится на некоей далекой планете, будет заглушён светом ее же звезды. Хотя с этим как раз можно поспорить – представим себе, что из прожектора будет исходить не обычный свет, а луч лазера (см. главу 11). Характерный свет лазера хорошо отличим от обычного звездного света, да и само наличие лазера будет свидетельствовать о нашем разуме. Есть, кстати, смелое предположение, что некая очень высокоразвитая цивилизация может и сами звезды использовать в качестве передатчиков. Известно, что некоторые из квазаров (см. главу 19) меняют со временем яркость свечения. Может быть, некие сверхсущества используют их для передачи своего аналога азбуки Морзе? Еще раз подчеркиваю – это очень маловероятно, но само предположение крайне интересно.

Однако свет имеет еще один недостаток как носитель информации – он не способен проникать сквозь густые пылевые облака, а в нашем углу Галактики очень пыльно. Именно из-за этого нам не видно яркого света миллиардов звезд центра нашей Галактики – пылевые облака заслоняют весь свет.

Остаются только микроволны. Они без проблем проходят сквозь пылевые облака, и мы можем принимать микроволны, исходящие из центра Галактики.

Источников микроволн на небосводе гораздо меньше, чем источников света. (Некоторые из них можно увидеть, поскольку свет они тоже излучают, но большинство ни с какими видимыми объектами пока для нас не связаны.) Поэтому нетипичный источник радиоволн гораздо легче заметить, чем нетипичный источник света. Да и Солнце не затмит радиоволн, исходящих с вращающейся вокруг нее планеты, – очень немногие звезды являются по совместительству еще и сильными источниками радиоволн.

Измерить длину отдельных волн микроволнового луча, поступающего из открытого космоса, легко. Большинство радиоисточников имеют длину волны порядка метра. Однако для коммуникации лучше использовать короткие микроволны. Считается, что идеальной будет длина волны порядка 7-15 сантиметров. У таких волн меньше всего вероятность подвергнуться искажению по долгой дороге или затеряться в микроволнах от естественных источников.

Именно этим обусловлен резкий интерес к излучению СТА-21 и СТА-102. Микроволны, поступающие из этих источников, имеют длину по большей части от 10 до 40 сантиметров, а больше всего – в районе 30 сантиметров. Не идеально, но близко к идеалу, гораздо ближе, чем у волн из других источников. Более того, насколько астрономы смогли разобрать, эти волны имеют точечный источник в небесах, вполне возможно – находящийся на планете. Источники обычного радиоизлучения гораздо крупнее, как правило, они представляют собой большое газовое облако.

Если микроволновое излучение СТА-21 и СТА-102 и впрямь продукт деятельности разумных существ, то эти существа явно стоят на более высокой ступени развития, чем мы.

Сейчас человек производит на Земле электричество мощностью 4 миллиарда киловатт. Если всю эту мощность потратить на питание микроволнового передатчика, то этой энергии не хватит – сигнал рассеется и ослабеет, как ни старайся сделать его четким, и к тому моменту, как он достигнет ближайших разумных соседей, его уже невозможно будет определить. Для производства передатчика, способного создать столь сильный сигнал, чтобы его можно было различить, требуется цивилизация, владеющая гораздо большими энергетическими запасами, чем мы.

Производство человеком энергии растет процента на 3-4 в год. Если темпы сохранятся прежними, то через 3200 лет мы будем производить столько же энергии, сколько Солнце, и тогда сможем заявить о своем присутствии с помощью передатчиков, сигналы которых пронизывают всю Галактику вдоль и поперек. Так что если уже сейчас мы можем распознавать сигналы, посланные другими живыми существами, то, значит, они опережают нас в технологическом развитии на несколько тысяч лет.

Строго говоря, не следует воспринимать примеры именно СТА-21 и СТА-102 слишком серьезно. Эти объекты находятся страшно далеко от нас, может быть, это вообще квазары, и нет никаких сомнений, что испускаемое ими излучение можно объяснить и не прибегая к представлениям о разумных существах.

И все же допустим, что некие разумные существа с ближайшей звезды хотят достучаться до нас. Или мы до них. Что надо сообщить в первом послании? Не использовать же и впрямь азбуку Морзе, не ждать же от них, что они тоже говорят по-английски? Надо придумать что-то универсальное, что-то, что должен понять любой. К примеру, можно предположить, что представители любой сверхцивилизации должны знать математику и что математические выражения, верные здесь, будут верны и там.

Так, допустим, что мы выдаем два сигнала микроволн, потом еще два, а потом четыре. Затем, после длинной паузы, – три, три и девять. Потом – опять первую последовательность, потом опять вторую, и так далее: 2,2, 4… 3,3,9… 2, 2,4… 3,3,9…

Если в ответ мы получим сообщение 4, 4, 16 – значит, есть контакт!

Или можно попробовать применить столь же универсальный язык химии. Есть фиксированное количество типов стабильных атомов, которые должны быть одними и теми же по всей Вселенной. Атомы каждого типа состоят из определенного сочетания двух видов частиц – протонов и нейтронов.

Самый простой из них, водород-1, состоит из единственного протона, следующий, водород-2, содержит протон и нейтрон. Следовательно, мы можем передать числа, представляющие собой строение разных атомов в порядке возрастания их сложности. Начав с водорода-1 (1) и водорода-2 (1-1), мы можем перейти к гелию-3 (2-1), гелию-4 (2-2), литию-6 (3-3) и литию-7 (3-4).

Итак, допустим, что мы снова и снова повторяем последовательность чисел 1… 1-1… 2-1… 2-2… 3-3… 3-4… Если инопланетное разумное существо получит эту последовательность чисел, опознает в ней описание строения первых простых атомов и передаст в ответ значения для следующих в цепочке атомов – бериллия-9 (4-5) и бора (5-5), то контакт можно считать установленным.

Можно попытаться и через геометрию. Для этого надо выслать строчку быстрых пульсаций, среди которых будет периодически повторяться пульсация особого рода. После паузы – выдать другую подобную строчку и т. д. Каждая строчка должна при этом содержать чуть отличающуюся по рисунку особую пульсацию.

Если все эти строчки будут записаны одна под другой, то «особая пульсация» должна образовать окружность или иной похожий рисунок. Таким образом можно передавать и простые геометрические теоремы: рисунок правильного треугольника с квадратами на каждой из сторон будет означать, что сумма квадратов катетов равна квадрату гипотенузы.

Более того, таким образом можно передавать даже простые рисунки – например, показать, что у человека четыре конечности, на двух из которых он стоит, что у людей два пола и т. д. Если ответ придет в виде аналогичных картинок, то вот он и контакт.

Конечно, такое общение может продвигаться только очень медленно, поскольку планета, жители которой смогут нам ответить, может оказаться в любом уголке Галактики за тысячи световых лет от нас. Даже если разумные существа обитают от нас на расстоянии всего 500 световых лет, то никакого оптимизма насчет общения с ними быть уже не может.

Ведь в этом случае радиоволнам, как и любому другому подходящему носителю информации, придется добираться от нас до братьев по разуму целых 500 лет, и еще 500 лет пройдет, пока до нас дойдет их ответ.

Какая может быть польза от диалога, между репликами в котором проходит по тысяче лет?

Во-первых, огромное значение будет иметь в таком случае сам факт диалога. Люди точно узнают, что они не единственные разумные существа во Вселенной, и даже, может быть, не самые разумные в ней. Это открытие окажет сильнейшее влияние на религию, на философию и на мировоззрение человечества в целом.

Во-вторых, для того чтобы продолжать говорить, ни нам, ни нашим инопланетянам не нужно обязательно дожидаться ответа. Стоит лишь убедиться в наличии собеседника, и можно приступать к передаче информации сплошным потоком, а в результате мы получим полноценное общение, состоящее из замечаний, ответы на которые придут только в далеком будущем, и ответов на замечания из далекого прошлого.

Да и само ожидание нельзя считать впустую потраченным временем. Его можно провести чрезвычайно плодотворно. Если мы вышлем в космос простые картинки, каждую из них можно сопроводить соответствующим ей кодом морзянки. Так, рисунок человека можно сопроводить словом MAN – «человек» по-английски. Рисунок человека в различных позах можно подписать «MAN WALK», «MAN STAND» – «человек идет», «человек стоит» и т. д


    Ваша оценка произведения:

Популярные книги за неделю