355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Айзек Азимов » Загадки мироздания » Текст книги (страница 7)
Загадки мироздания
  • Текст добавлен: 6 октября 2016, 00:16

Текст книги "Загадки мироздания"


Автор книги: Айзек Азимов



сообщить о нарушении

Текущая страница: 7 (всего у книги 24 страниц)

Мы называем такие хромосомообразные объекты вирусами. Вирус гораздо меньше клетки и гораздо проще по строению. По размерам вирус равен хромосоме, по химическому строению и функциям – сходен с ней.

Вирусоподобные объекты существовали миллиарды лет назад, задолго до того, как началась эволюция клеток, и уже тогда они были способны к самостоятельной репродукции. Видимо, все необходимое для роста и размножения в то время входило непосредственно в их состав, а значит, они были несколько сложнее современных вирусов.

Существующие сегодня вирусы, так сказать, развращены существованием клеток. Современный вирус – это чистой воды паразит, утративший все средства к самостоятельному существованию и вне клетки способный лишь не разрушаться, не более того. Однако стоит ему проникнуть в подходящую клетку, как ее-то химический механизм вирус оказывается вполне способным использовать для своих целей. За счет ресурсов клетки вирус размножается и иногда в процессе этого убивает саму клетку.

Сначала было много споров насчет того, считать ли вирус живым существом, и сейчас большинство биологов сошлись на том, чтобы считать. Это решение стало одной из причин других споров – о том, когда, же будет искусственно синтезирована живая материя. Если под живой материей подразумевать целую клетку – то до этого еще далеко. Если же под живым существом подразумевать вирус – то наша цель гораздо ближе, чем кажется.

Как правило, вирус репродуцируется, только попав в клетку, используя ее ферменты, строительный материал и энергию, которых в клетке предостаточно. Но что, если взять небольшое количество вирусов и предоставить им все необходимое вне клетки?

В октябре 1965 года профессор Сол Шпигельман из университета Иллинойса представил результаты своей работы в этом направлении. Ему удалось получить вирус в пробирке. В некотором смысле это можно назвать синтезом простейшей живой формы, но все-таки это был не совсем полноценный синтез. Изначально для размножения была использована часть вируса, так что весь процесс напоминает скорее выращивание цыпленка (или человека) из яйца. А мы хотели бы видеть синтез живой ткани с самого начала – из полностью неживой материи.

Чтобы понять, как такое возможно вообще, давайте рассмотрим химическое строение хромосомы или вируса.

Содержимое хромосомы или вируса представляет собой длинную, закрученную спиралью цепочку атомов, представляющую собой молекулу нуклеиновой кислоты. Разновидность нуклеиновой кислоты, содержащаяся как в хромосомах, так и в более сложных вирусах, называется «дезоксирибонуклеиновая кислота», сокращаемая обычно как ДНК. Молекулу ДНК окружает белковая оболочка.

Молекулы как ДНК, так и белка имеют чрезвычайно сложное строение и могут иметь бесчисленное множество вариантов (см. главу 2). О разнообразии белков биохимики знали на протяжении уже более века, а вот нуклеиновые кислоты попали в поле зрения ученых достаточно недавно. Кроме того, белки строятся из составных единиц более двадцати различных типов, а нуклеиновые кислоты – только из четырех. Поэтому до 1940-х годов считалось само собой разумеющимся, что именно белки, а не ДНК представляют собой самую важную часть хромосомы или вируса. Однако начиная с 1944 года стали накапливаться факты, говорящие в пользу именно ДНК.

В качестве примера можно привести эксперимент, который провел в 1955 году Хайнц Френкель-Конрат, занимаясь химическими исследованиями в Калифорнийском университете в Беркли. Френкель-Конрат сумел разделить белковую оболочку и нуклеиновокислотное ядро вируса. Ни одна из этих составляющих по отдельности, ни белок, ни нуклеиновая кислота, не могла заразить клетку – вирус казался мертвым. Тогда ученый смешал обратно белок с нуклеиновыми кислотами, и некоторая часть вирусов смогла снова объединиться и обрести способность заражать клетки.

Некоторое время этот эксперимент воспринимался как убийство живого организма с последующим его воскрешением. Хотя организм, о котором идет речь, и представлял собой простейшую из возможных форму жизни, новость о самой возможности воскрешения попала во все заголовки газет.

Впрочем, выяснилось, что никто в ходе эксперимента не умирал и не воскресал. Живым существом оказалась сама нуклеиновая кислота. В некоторых (очень редких) случаях ей удавалось заразить клетку и в отсутствие белковой оболочки. Белок помогает нуклеиновой кислоте проникнуть в клетку, как автомобиль помогает человеку добраться из Нью-Йорка до Чикаго, но в принципе нуклеиновая кислота может, хоть и с трудом, сделать это сама, так же как человек может в случае крайней необходимости добраться из Нью-Йорка до Чикаго пешком.

Оказалось, что и при заражении клетки целым, не разделенным, вирусом внутрь клетки проникает лишь нуклеиновая кислота. Белковая оболочка, выполнив свою задачу – облегчив проникновение, остается сброшенной снаружи. Нуклеиновая же кислота, попав внутрь клетки, не только размножается сама, но и обеспечивает формирование там же белковой оболочки (ведь составляющий ее белок не совпадает в точности ни с одним из белков, вырабатываемых клеткой самостоятельно).

На нуклеиновых кислотах, и в первую очередь на самой важной их разновидности – ДНК, – ученые сосредоточили свое внимание после 1944 года. Физик новозеландского происхождения Морис Уилкинс, один из британских разработчиков атомной бомбы во время Второй мировой войны, рассмотрел ДНК с помощью облучения молекул рентгеновскими лучами. Полученные им таким образом фотографии тщательно изучили британский коллега ученого биохимик Фрэнсис Крик и американец доктор Джеймс Уотсон. В 1953 году эти двое установили строение ДНК, выяснив, что это двойная спираль из четырех различных, но очень похожих между собой структурных единиц, получивших название «нуклеотиды».

В зависимости от распределения нуклеотидов между собой возможных вариантов строения всей молекулы ДНК получается несчетное множество. Уотсон и Крик установили, что молекула ДНК может формировать новые молекулы, являющиеся точной копией ее самой.

Другие биохимики долго и кропотливо выясняли и наконец установили, каким именно образом последовательность элементов ДНК приводит к образованию белка с конкретной, единственно соответствующей ей последовательностью аминокислот. Отдельные участки ДНК способны производить каждый свой фермент, и именно таким образом ДНК и управляет всей внутриклеточной химией. Система соответствий последовательности нуклеиновой кислоты и последовательности аминокислот в белке называется генетическим кодом.

Теперь очевидно, что главной химической реакцией живой материи является способность молекулы ДНК воспроизводиться. Эта реакция – основной закон жизни, все остальное – лишь комментарии. Следовательно, если мы сможем образовать молекулу ДНК из простых, неживых химических соединений, то это и будет синтезом изначальной жизни. Конечно, между этим достижением и синтезом человека может лежать еще целая пропасть научной работы, но все же синтез ДНК стал бы первым настоящим шагом по мосту через эту пропасть. А граница между живой и неживой материей была бы пересечена раз и навсегда.

А как же пересекла эту границу в свое время сама природа? Ведь это произошло миллиарды лет назад, когда не было еще ни ферментов, которые могли бы облегчить работу, ни других нуклеиновых кислот, которые могли бы послужить шаблоном.

Скорее всего, на доисторической, безжизненной еще Земле лишь достаточно простые по строению молекулы могли присутствовать в большом количестве в океане, который принято считать колыбелью жизни, и в атмосфере. Состав этих молекул можно приблизительно высчитать по общему составу молодой Земли (а его, в свою очередь, по известному нам составу Солнца и всей Вселенной в целом) с применением известных нам химических законов.

Итак, предположим, что мы взяли исходные молекулы воды, аммиака, метана, синильной кислоты и прочих и стали подвергать их энергетическому воздействию в виде ультрафиолетового и радиоактивного излучения, потоков электронов и электрических разрядов (молний). Всего этого в условиях доисторической Земли было предостаточно. Что же произойдет?

Чарлз Дарвин, основатель теории эволюции путем естественного отбора, задался этим вопросом еще сто лет назад. Его интересовало, не мог ли химический состав живых существ самостоятельно зародиться из такой системы; не имела ли место некая химическая эволюция, аналогичная эволюции биологической.

Первым, кто попытался с помощью эксперимента найти ответ на этот вопрос, стал Мелвин Кальвин из Калифорнийского университета. В 1951 году он стал подмечать, что под воздействием энергонесущего излучения из простых веществ могут образовываться сложные.

В 1952 году Стэнли Миллер из Чикагского университета продвинулся еще дальше в этом вопросе. Он поместил простые химические вещества вроде тех, что присутствовали на доисторической Земле, в камеру, совершенно лишенную какой бы то ни было живой материи, и на протяжении недели подвергал их воздействию электрических разрядов. Через неделю в смеси обнаружилось достаточно много гораздо более сложных веществ, в том числе четыре аминокислоты, аналогичные встречающимся в составе природных белков.

С тех пор целый ряд других химиков, в их числе Филипп Абельсон из Института Карнеги и Джоан Ото из Хьюстонского университета, проводили подобные же эксперименты. Под воздействием энергии в различных формах из простых веществ во всех проводимых экспериментах образовывались сложные, а из этих сложных – еще более сложные. И все получаемые сложные вещества оказывались сходными с теми, что обнаруживаются в составе живых тканей. Видимо, когда-то давно и естественный путь зарождения жизни был таким же – вслепую и наугад, но неуклонно вперед.

В частности, цейлонско-американский биохимик Сайрил Поннамперума во время работы в Научно-исследовательском центре Эймса при НАСА продемонстрировал процесс пошагового производства молекул нуклеотидов – строительного материала для нуклеиновых кислот. В нуклеотиде содержится атом фосфора. Следовательно, в исходный состав были добавлены простые фосфорсодержащие соединения. Совместно с такими учеными, как Карл Саган и Руфь Маринер, Поннамперума провел серию экспериментов, в результате которых была получена полноценная нуклеотидная молекула. К 1963 году уже удалось синтезировать нуклеотиды в особо энергетически насыщенной форме, из которых можно создавать и сами нуклеиновые кислоты.

И вот в сентябре 1965 года Поннамперума объявил о том, что ему удалось продвинуться еще на шаг – объединить два нуклеотида в динуклеотид, в котором оба нуклеотида были соединены с помощью той же самой химической связи, что объединяет нуклеотиды и в естественных нуклеиновых кислотах.

Теперь в распоряжении химиков оказалась непрерывная цепь поэтапного синтеза, начиная с самых простых веществ, существующих на нашей планете с тех пор, как она впервые обрела современный вид, и заканчивая молекулами, из которых состоят уже сами нуклеиновые кислоты. В этой цепи нет ни одного недостающего звена.

Возникает картина неизбежности молекулярной эволюции. Стоит лишь взять планету, похожую на Землю, где имеется достаточно простых химических соединений, добавить энергии от ближайшего Солнца, и избежать образования нуклеиновой кислоты не удастся. Единственное, что останется на долю ученых в таком случае, – это просто следить за процессом, в крайнем случае – ускорять его.

Синтез нуклеотидов путем удобных химических методов (ведь не обязательно делать это с помощью хаотического процесса, как Поннамперума) стал уже привычным делом. Шотландский химик Александр Тодд (ныне – барон Тодд Трампингтонский) в 1940-х годах синтезировал несколько различных нуклеотидов.

Но что же мы можем сказать о переходе от нуклеотидов непосредственно к нуклеиновой кислоте?

В 1955 году испано-американский биохимик Северо Очоа с помощью правильно подобранных ферментов сумел в ходе своих опытов в Нью-Йоркском университете сформировать из раствора высокоэнергетических нуклеотидов молекулы, очень похожие на естественные нуклеиновые кислоты, несмотря на то что изначально в растворе не имелось ни одной нуклеиновой кислоты, которая могла бы послужить моделью.

Именно этот синтез нуклеиновой кислоты Мюллер и имел в виду в 1960 году, когда сказал, что живую материю уже синтезировали пять лет назад.

Если быть совсем точными, то молекулы нуклеиновой кислоты, синтезированные без шаблона, имеют совершенно хаотичный порядок следования нуклеотидов и, как правило, более простое строение, чем естественные молекулы. Понятно, что искусственно синтезированные нуклеиновые кислоты не помогают работе ни одной клетки и не способны проникать в клетки и размножаться там. Обладая потенциалом живой материи, они тем не менее ничем этот потенциал не проявляют.

Итак, на сегодняшнем этапе развития биологии ученые могут

1) создавать молекулы нуклеиновой кислоты по образцу присутствующей в системе некоей природной молекулы. Такие молекулы можно рассматривать как живые, но они не являются созданными из полностью неживых исходных материалов;

2) создавать молекулы нуклеиновой кислоты из полностью неживых исходных материалов. Такие молекулы до сих пор пока не демонстрируют никаких свойств живой материи.

Наука пока не в силах создать из полностью неживого сырья полноценную живую молекулу нуклеиновой кислоты, но такое положение дел продлится недолго, и именно это имел в виду Прайс в той цитате, с которой я начал главу.

Давайте же заглянем в будущее и посмотрим, какие последствия мы получим, когда человечество научится создавать искусственные нуклеиновые кислоты, искусственные вирусы, искусственные хромосомы, искусственную жизнь.

Какие опасности грозят нам сейчас? Допустим, ученые создадут вирус, который сможет проникать в клетки, – совершенно новый вирус, против которого человек, может быть, никогда не сможет выработать никакой защиты. Может ли получиться так, что новая, невообразимо смертоносная чума, вырвавшись из пробирки, уничтожит все человечество, а может быть, и всю клеточную жизнь на Земле?

Вероятность такого исхода очень мала. Проникновение вируса в клетку и дальнейшее использование вирусом клетки в своих целях – чрезвычайно сложное явление. Этот механизм обладает работоспособностью только благодаря миллиардам лет медленной эволюции, а вирусы, как правило, могут паразитировать только на клетках конкретных видов.

Поэтому допустить появление вируса, который случайно окажется непобедимым для всех систем иммунитета и при этом будет обладать свойством разрушать все клетки человеческого организма, можно лишь с очень большой натяжкой. Выражаясь математическим языком, вероятность такого события не исключена, но крайне мала.

Так давайте же лучше рассмотрим более конструктивные и оптимистические возможности, которые сможет предоставить нам наука.

Над миром встает заря дня, когда мы сможем повторить предыдущий триумф человечества на новом – гораздо более тонком и сложном – уровне.

Когда-то, в далекие доисторические времена, человек вел образ жизни охотника и собирателя. Он ел диких животных, которых удавалось убить, или фрукты и ягоды, которые удавалось найти. Если человеку не везло в погоне или в поиске, то он оставался голодным.

Потом люди научились приручать животных – кормить их, присматривать за ними, а взамен пользоваться их молоком, шерстью и рабочей силой и забивать их на мясо в случае необходимости. Научились выращивать растения и собирать урожай. Человек перестал быть охотником и собирателем и стал пастухом и землепашцем. В результате пищи у него стало гораздо больше. В результате этих потрясающих открытий около 10 тысяч лет назад произошел первый в истории человечества демографический взрыв.

В отношении материи, из которой состоят клетки, мы пока что находимся на стадии «охоты и собирательства». Возьмем для примера инсулин. Инсулин – это белок, вырабатываемый особыми клетками в железе, именуемой поджелудочной. Это не фермент, а гормон, необходимый для правильного функционирования организма. Его отсутствие (или недостаток) в организме приводит к диабету (см. главу 3).

Диабетик может вести нормальный образ жизни, если будет регулярно получать инъекции инсулина. Инсулин для этих инъекций получают из поджелудочной железы забиваемых коров и свиней. Мы «собираем» инсулин из тех поджелудочных желез, которые нам удается найти. А их бывает ровно одна на каждое забитое животное, то есть запас ограничен.

Конечно, этого ограниченного запаса хватает, но зачем заниматься собирательством инсулина, если у нас появился шанс получать его, «разводя стада» молекул? Что, если нам взять из клетки поджелудочной железы не сам инсулин, а молекулу нуклеиновой кислоты, которая запускает производство инсулина? Если мы «одомашним» эту нуклеиновую кислоту и будем предоставлять ей достаточно необходимого сырья, то она сможет производить инсулин в неограниченных количествах, как корова производит молоко. Тогда у нас будет свой собственный запас инсулина и мы перестанем зависеть в этом отношении от количества забиваемых животных. Более того, возможно, нам удастся заставить эту нуклеиновую кислоту реплицироваться самостоятельно и тогда нам вообще не понадобятся больше никакие животные.

Разве не заманчиво выглядит будущее, в котором появятся заводы и фабрики, где вместо лязгающих железных механизмов будут трудиться микроскопические нуклеиновые кислоты? Человечество вполне сможет искусственным образом получать сотни, тысячи сложных ферментов и других белков. С помощью некоторых ферментов удастся проводить некоторые химические реакции лучше, чем посредством любого из ныне известных способов. Появятся и новые вещества, пригодные к использованию в медицинских целях.

Возможно даже, что часть получаемого таким образом биологического материала можно будет употреблять в пищу. Искусственно изготовленные белки будут добавляться в естественную пищу в тех регионах земного шара, где питания не хватает. Да, искусственное изготовление белков будет недешево обходиться, особенно поначалу, но зато сами белки будут представлять собой чистую идеальную пищу – ни костей, ни хрящей, ни жира, сплошной продукт с высочайшей питательной ценностью.

Скорее всего, большинство людей на Земле воспротивятся введению такой неестественной диеты, но колонисты на Луне или Марсе должны высоко ее оценить. Ведь там не пасется скот и не растут яблони, а с учетом того, во сколько обойдется транспортировка пищи в космосе, похоже, что нуклеиновым кислотам будет где развернуться. Сырье-то для будущих молекул найти можно будет без проблем и в составе местных минералов (хорошо бы там оказались известняк и гидросиликаты).

На самом деле, скорее всего, именно от достижений в области использования нуклеиновых кислот в первую очередь зависит вероятность колонизации Солнечной системы на практике.

Человечество совершенно не обязано в своих целенаправленных экспериментах в точности копировать работу природы. В конце концов, нуклеиновые кислоты реплицируются на самом деле ведь не совсем точно. Иногда в процессе репликации происходят небольшие ошибки. Нельзя сказать, что это само по себе плохо, поскольку иногда случается так, что благодаря этим ошибкам получается совершенно новая нуклеиновая кислота, которая начинает приносить дополнительную пользу клетке, в которой появилась на свет. Именно благодаря таким случайным изменениям в строении нуклеиновых кислот за два миллиарда лет эволюционного развития из амебы получился человек.

Люди научились способствовать этим изменениям в нуклеиновых кислотах в процессе репликации. Вероятность ошибок при репликации оказалось возможным увеличивать путем обработки нуклеиновых кислот нагреванием, радиацией, определенными химическими веществами. Нуклеиновые кислоты нового образца строят белки (многие из которых являются ферментами) также с ошибками, получая новые, которым не было раньше аналогов. Скорее всего, большинство этих новых белков окажутся бесполезными, но некоторые вполне могут иметь новые, очень важные свойства, каких в природе еще никогда не наблюдалось. Химикам подобное уже знакомо. Сотню лет назад они научились получать химические соединения, не существующие в природе. Так появились на свет новые красители, новые лекарства и даже новые макромолекулы, например синтетические волокна и пластмассы. И во многих случаях новые вещества имели серьезные преимущества перед любыми природными аналогами.

Почему же нам тогда не производить новые нуклеиновые кислоты, которые будут создавать новые белки, возможно превосходящие все имеющееся в природе? Мы можем не только «разводить» нуклеиновые кислоты, но и «выводить» новые их разновидности, точно так же, как мы выводим новые породы скота или новые сорта пшеницы.

А можно ли применить технологии новых аминокислот напрямую к людям? Давайте поразмышляем дальше.

Каждая хромосома состоит из сотен, если не тысяч, блоков – нуклеиновых кислот, каждая из которых способна создавать определенные белки. Самое старое название этих блоков – «гены». У каждого человека имеется свой личный набор генов, и не исключено, что у любого из нас в клетках присутствуют и дефектные гены, неспособные правильно создавать нужные ферменты.

Чаще всего эти дефекты легки и незаметны – но не всегда. Ученые пытаются разобраться в генах всеми доступными средствами. В 1962 году Роберт Эдгар из Калифорнийского технологического института сумел установить около половины генов, присутствующих в определенном вирусе, через анализ создаваемых этими генами ферментов.

В конце концов, конечно, будут изобретены технологии, с помощью которых можно будет определить функцию каждого гена в заданном наборе хромосом [3]  [3]Недавно завершился амбициознейший международный проект на эту тему. Проект получил название «Геном человека», был начат в США в 1986 году и закончен усилиями ученых из 20 стран мира в 2003 году. Однако пока речь идет лишь именно о составлении карты генома, а не об установлении точной функции каждого из генов. Последняя задача – дело ближайшего будущего. { Примеч. пер.)


[Закрыть]
. Все клетки одного и того же организма имеют один и тот же набор генов, так что подобный анализ можно будет провести на материале, скажем, белых кровяных телец из капли крови.

Может быть, придет время, когда каждый будет подвергаться подобному анализу с рождения. Что можно сделать по результатам генного анализа, когда набор генов индивидуума установлен и проанализирован? В первую очередь, зная, какие гены несут дефект, можно предсказать угрозы здоровью человека, а значит, и принять профилактические меры. Зная свои физические возможности, человеку легче правильно планировать карьеру. Карта генного анализа может стать важнейшим документом каждого, который необходимо всегда иметь с собой, а копия которого будет храниться в каком-нибудь центральном архиве.

Несмотря на то что каждая клетка одного и того же организма содержит один и тот же набор генов, сами гены выражают себя в разных клетках по-разному. Клетки специализируются, одни становятся нервными, другие – мышечными, третьи – клетками кожи, четвертые – печени и т. д. Каждая клетка имеет свой собственный набор ферментов, что означает, что в клетке каждого типа деятельность одних генов подавляется, а других – запускается «на полную катушку».

Каким образом одни гены блокируются организмом, а другие – «включаются», ученые до сих пор в подавляющем большинстве случаев не знают. Но именно этот вопрос сейчас пользуется наибольшей популярностью у исследователей, и над ним сейчас работают со всех сторон. Одни ученые перебирают содержащиеся в хромосомах белки в поисках блокирующего агента; другие – исследуют продукты деятельности ферментов, которые, по мере накопления, могут замедлять действие породивших их ферментов. Возможно, что именно подобного рода обратная связь и обеспечивает блокировку генов. Изучаются и все другие возможности.

Предположим, люди научатся разблокировать гены. Тогда мы получим клетки со всеми свойствами первоначальной оплодотворенной яйцеклетки. Если таким образом удастся произвести «деспециализацию» [4]  [4]В научной терминологии сейчас принят термин «дедифференциация». ( Примеч. пер.)


[Закрыть]
клеток культи утраченной руки или ноги, то, может быть, удастся отрастить конечности заново? А может быть, удастся регенерировать и нервные клетки или клетки глаза и наши потомки не будут знать страшных слов «паралич» и «слепота»?

Вернемся к оплодотворенной яйцеклетке и вопросу о генном анализе. Предположим, что оплодотворенной яйцеклетке дали разделиться пополам, после чего одну из двух получившихся клеток извлекли из системы. Ущерба, таким образом, никому не нанесено, поскольку вторая оставшаяся клетка может самостоятельно делиться дальше, и из нее вырастет в конечном итоге полноценный взрослый человек. На самом деле именно так – когда каждая из двух клеток первого цикла деления оплодотворенной яйцеклетки почему-то начинает развиваться самостоятельно – и получаются однояйцовые близнецы.

Извлеченную клетку можно использовать для генного анализа. По результатам этого анализа будет видно, можно ли дать второй клетке развиваться дальше, в полноценного человека, или она изначально дефектна и человек, родись он, будет носителем неизлечимого генетического заболевания [5]  [5]Описанная процедура – генетический скрининг – является сейчас реальной и вполне распространенной при искусственном оплодотворении (при естественном слишком затруднен процесс извлечения клетки для анализа). Только клетка для анализа забирается не на первой, а на третьей итерации деления – не одна из двух, а одна из восьми. ( Примеч. пер.)


[Закрыть]
.

Теперь предположим, что при анализе обнаружится, что один важный ген в оплодотворенной яйцеклетке поврежден и здоровый человек из нее не вырастет, но остальные гены – настолько хороши, что, будь их обладатель здоров, он оказался бы совершенным существом. С точки зрения человечества было бы непростительно терять такой образец из-за одного-единственного дефектного гена. Нельзя ли будет заменить этот поврежденный ген на здоровый, взяв последний из какого-нибудь генетического банка?

В 1964 году Мюриэл Роджер из Университета Рокфеллера объявил о том, что ему удалось перенести отдельный ген из одной бактериальной клетки в другую. В результате такой генетической трансплантации клетка-реципиент обрела способность вырабатывать новый для себя фермент. Так что идея генетического переноса в принципе не является нереализуемой.

Теперь предположим, что в некоей оплодотворенной яйцеклетке имеется не один, а несколько поврежденных генов, слишком много, чтобы из нее можно было получить полноценного человека. Но допустим, ни один из этих дефектных генов не относится к работе, скажем, сердца или почек. Нельзя ли взять отдельно здоровые гены и вырастить на их основе именно эти органы для будущих трансплантаций?

Звучит дико, но наука развивается страшно быстрыми темпами. Огромного, немыслимого прогресса удается достичь всего за несколько десятилетий. Шестьдесят лет спустя после неуклюжего полета аппарата братьев Райт уже имелись реактивные самолеты, способные облететь весь земной шар. Сорок лет спустя после того, как Роберт Годдард поднял свою первую ракету на жидком топливе на высоту 50 метров, запущенные человеком ракеты летели уже дальше Марса.

Так кто сейчас может сказать, каким будет уровень биологической инженерии к 2000 году, до которого многие из нас к тому же и не доживут?

Конечно, возможности, связанные с биоинженерными успехами, не могут не вызывать и опасений. Хватит ли наших знаний для того, чтобы играть с жизнью и смертью, подобно Богу?

Может, и не хватит. Но человеку рисковать не впервой. Он уже рискнул уподобиться Богу, когда впервые начал с помощью силы своего разума изменять окружающий мир. Одомашнив животных, изобретя земледелие и начав строить города, человек создал цивилизацию. Это коренным образом изменило все существование человека. Да, эти изменения привели к возникновению проблем, которых раньше не было, но в целом жизнь изменилась к лучшему и возвращения назад к варварству не хочет никто.

И потом, когда люди создали паровую машину, приручили электрический ток, придумали двигатель внутреннего сгорания и разработали атомную бомбу, получение каждой из этих технологий все дальше отдаляло человека от исходного положения. При этом возникли просто огромные проблемы, но, опять же, мало кто захочет вернуться обратно в доиндустриальную эпоху.

Несомненно, эра биологической инженерии принесет в нашу жизнь еще больше принципиальных перемен и новых проблем, но примеры прошлого показывают, что человеку свойственно справляться с такими изменениями, получая от них гораздо больше благ, чем рисков.

Кроме того, если суть этих перемен будет в том, что человек возьмется улучшать себя самого, то и с возникающими по ходу проблемами управляться будет уже человек улучшенный.

Каждое предыдущее усовершенствование будет облегчать работу по следующему, и, двигаясь по этой восходящей спирали, человек может наконец достичь желанной чистоты и окунуться в солнечное будущее безграничных возможностей.


    Ваша оценка произведения:

Популярные книги за неделю