355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Вначале была аксиома. Гильберт. Основания математики » Текст книги (страница 8)
Вначале была аксиома. Гильберт. Основания математики
  • Текст добавлен: 18 июля 2017, 13:30

Текст книги "Вначале была аксиома. Гильберт. Основания математики"


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 8 (всего у книги 9 страниц)

Интуиционистская реконструкция логики и математики не очень-то вдохновляла, хотя имела широкое распространение. Это была не реконструкция, а скорее разрушение. Интуиционистская математика искалечила классическую математику.

Снимок с торжества по случаю 60-летия Давида Гильберта. Рядом с ним вдова его друга Минковского (справа) и его жена Кёте. В тот период он полностью отдался спору с интуиционистами об основаниях математики.

Гильберт в своем саду вместе с Германом Вейлем, одним из своих любимых учеников, который, однако, выступал на стороне интуиционистов.

Ян Брауэр, нидерландский математик, который возглавил интуиционистское движение, считая своими предшественниками Канта, Кронекера и Пуанкаре. Самый ярый противник Гильберта.

Интуиционизм с его постоянным воззванием к конструктивности, основанной на временной перечислимости и на отказе от принципа «третьего не дано», выбросил за борт более половины классических достижений. С Брауэром математика обрела ясность, но математики наблюдали, как передовые теории, которые казались им прочными как скалы, обращаются в пепел. Хотя нидерландский математик без колебаний принял разрушение анализа, большая часть математического сообщества сочла это неприемлемым. Некоторые математики заговорили о «большевистской угрозе», которую несет Брауэр. И тут Гильберту пришлось вмешаться.


«ЖРЕБИЙ БРОШЕН»

Полемика между формализмом и интуиционизмом лежала в основе всего спора об основаниях в 1920 годы, при этом Гильберт и Брауэр были ее главными участниками. Спор, то ли из-за сложного характера Брауэра, то ли из-за большого авторитета Гильберта, перешел чисто академические границы и обрел форму личного противостояния. Началось оно в 1921 году, и сразу потеря в лагере Гильберта: дезертировал его блестящий ученик Герман Вейль. В этом году он опубликовал памфлет «О новом кризисе оснований математики», в котором поддерживал разгромные тезисы Брауэра и называл себя апостолом интуиционизма, предсказывая приход математической революции.

Спор затрагивал важнейшие стороны концепции математики Гильберта, но его бурная реакция отчасти объяснялась вопросами репутации. Если самый выдающийся ученик перешел в стан врага, почему этого не смогут сделать остальные?

В счастливые 1920-е, которые совпали с последним исследовательским этапом в его карьере, уже пожилой Гильберт посвятил себя спору об основаниях математики. И он вмешался в него со всем пылом, что определило в споре действительно новый поворот. Немец предложил «программу Гильберта» (уже намеченную в его знаменитой лекции в Париже в 1900 году), чтобы раз и навсегда заложить основы математики.

Для Гильберта наука была организмом, который растет и развивается одновременно во многих направлениях. Прояснение оснований с помощью аксиоматического метода было одной из фаз этого роста, и несмотря на всю важность, она необязательно была приоритетной. Для описания этой концепции Гильберт использовал характерную для себя метафору:

«Здание науки строится не как дом, где сначала закладывают прочный фундамент, а потом уже переходят к сооружению конструкции и отделке комнат. Наука прежде всего охватывает широкое пространство, чтобы иметь возможность свободно развиваться. И только после того, как проявляются первые признаки того, что ее слабый фундамент не выдерживает, принимаются за его укрепление и переопределение. Это признак не слабости науки, а наоборот. Это правильный и здоровый путь ее развития».

В математике время исследования оснований уже пришло. С 1900 года убежденный в надежности аксиоматического метода, который так хорошо себя показал в геометрии, Гильберт навязывал аксиоматический подход остальным математическим дисциплинам, в частности теории множеств, а также сделал первые шаги для основания математической теории доказательства. Пока платонизм и логицизм утверждали, что точностью математики ведает царствие небесное, а интуиционизм приписывал это человеческому разуму, формализм Гильберта связывал ее с исписанным листом бумаги. Математику можно рассматривать как игру знаков, лишенных значения, как цепь символов на бумаге, свободных от смысла, но подчиняющихся некоторым правилам, чтобы с ними можно было работать. Формалистская позиция, которую развили Гильберт и его соратники (Бернайс и Аккерман), предлагала решение, основанное на двух моментах: во-первых, на общей аксиоматизации математики и логики, а во-вторых, на доказательстве непротиворечивости этой формальной системы. Доказательство, что внутри системы нельзя вывести никакого противоречия, было краеугольным камнем формалистского здания.

Однако сперва требовалось дать отпор набравшему силу интуиционизму европейских математиков. После Первой мировой войны критика классической математики, сформулированная Брауэром и Вейлем, усилилась и побудила Гильберта попытаться искоренить все скептические сомнения. Гильберт осознавал, что позиция Брауэра и Вейля не лишена обоснования и нужно действовать осторожно, чтобы не спровоцировать парадоксы теории множеств. Но он не был готов отказаться ни от теории Кантора (не зря первой проблемой в списке 1900 года была его континуум-гипотеза), ни от достижений классической математики (включая достижения, полученные с использованием самой многострадальной аксиомы, аксиомы выбора). Значительная часть его успеха как математика обязана доказательствам существования, как раз против таких доказательств Брауэр (как до него Кронекер и Гордан) и выступал.

Пытаясь пресечь его влияние, Гильберт задался вопросом, что можно сделать, чтобы не отказываться от принципа исключенного третьего. По его мнению, отнять этот принцип у математика было равносильно тому, чтобы запретить астроному использовать телескоп или боксеру пускать в ход кулаки. Профессор из Гёттингена был удивлен и разочарован тем, что целый круг математиков, не церемонясь, заняли сторону противника, и это серьезно сказалось на математике. Континуум или трансфинитные числа Кантора оказались в положении обреченных математических объектов. А теорема, доказывающая существование бесконечного количества простых чисел, в свою очередь, была ярким примером запрещенного образа мысли. Действительно, принятие идеи, что любая значимая пропозиция либо истинна, либо ложна, является основополагающим для метода косвенного доказательства. Евклид доказал существование бесконечного количества простых чисел, продемонстрировав, что противоположный тезис является ложным, то есть воспользовавшись принципом исключенного третьего. Поскольку его доказательство не было конструктивным и не позволяло определить и-ное простое число, оно не годилось для интуиционистов.

По сравнению с классической интуиционистская математика предполагала жалкий остаток, ряд изолированных и бессвязных результатов. Постоянный страх Гильберта был вызван тем, что интуиционизму удастся расчленить математику и при этом будут утрачены ценные достижения. Он был насколько удручен этим положением вещей, что, борясь с интуиционизмом, даже переходил на личности и оперировал не совсем академическими аргументами:

«Программа Брауэра – это не революция, а банальное повторение старых методов [отсылка к Кронекеру] бесплодного поиска, который, даже если применить его с удвоенной силой, полностью проваливается. Сегодня мы вооружены благодаря работам Фреге, Дедекинда и Кантора. Попытки Брауэра и Вейля заранее обречены на поражение».

В конце десятилетия, когда борьба между двумя группами достигла апогея, Гильберт почувствовал, что силы на исходе и злокачественная анемия убивает его. И тогда он испугался, что после его смерти Брауэр обретет могущество и склонит к интуиционизму журнал Mathematische Annalen, который Гильберт возглавлял. В итоге в 1928 году он совершил немного грязный маневр и исключил Брауэра из редколлегии. Несмотря на возражения Эйнштейна, большинство ученых прислушались к воле Гильберта, и Брауэру пришлось уйти. Это столкновение надломило нидерландского математика, и он более чем когда-либо ударился в солипсизм. Гильберт назвал этот эпизод «войной мышей и лягушек». Гильберт выиграл битву, но не войну.

ГЛАВА 5

Крах программы Гильберта

Гильберт мечтал поместить математику на аксиоматический фундамент. К сожалению, теоремы Гёделя не позволили его мечтам стать явью. В математике, задуманной как формальная система, всегда останется место гипотезе, истинность или ложность которой нельзя доказать. Еще хуже – никогда нельзя будет доказать, что она лишена противоречий. Когда возведение здания математики уже завершалось, его фундамент вновь разрушился.

К концу 1920-х годов ангел формализма и демон интуиционизма все еще боролись за душу каждого математика. Но, к удовольствию Гильберта, формализм мчался на всех парусах. Казалось, «программа Гильберта» вот-вот свершится. Никто, даже самые реакционно и революционно настроенные математики, не могли изгнать формалистов из фантасмагорического собора, выстроенного из бесконечностей Кантора. Никто не мог заставить их перестать слушать симфонию бесконечности – классического анализа.

После 1900 года, когда Гильберт прочитал ту знаменитую лекцию в Париже, на III Международном конгрессе математиков 1904 года, проведенном в Гейдельберге, он представил свою точку зрения на кризис оснований, но в течение следующих 15 лет больше не возвращался к этой теме – анализ и физика полностью захватили его. Движимый желанием дать отпор интуиционистам, он снова обратился к теме основ математики сначала в 1917 году, а затем постоянно возвращался к ней с 1922 года. Для Гильберта и формалистской школы объекты математической мысли – это символы сами по себе, и фундаментальная проблема – это проблема устойчивости или непротиворечивости математики. Чтобы окончательно обосновать математику, он не нуждался ни в Боге, как Кронекер, ни в предположении об особенностях нашего восприятия в соответствии с принципом индукции, как Пуанкаре, ни в оригинальной интуиции, как Брауэр, ни даже в аксиоме о бесконечности или аксиоме о редуктивности, как Рассел и Уайтхед. Как таковая проблема оснований математики должна была окончательно устраниться после проверки на непротиворечивость аксиоматической системы математики.


СИЛЬНЫЕ СТОРОНЫ ПРОГРАММЫ

Несложно проследить происхождение идей Гильберта. В 1900 году он опубликовал лекцию «Понятие числа», прочитанную годом ранее на ежегодной ассамблее Немецкого математического общества. После книги об основаниях геометрии эта работа стала его второй публикацией, касающейся аксиоматического метода. В ней он рассматривал два возможных подхода к математическим понятиям – генетический и аксиоматический. Классический пример применения генетического метода характерен для арифметики. Натуральные числа появляются на основе базовой интуиции счета: если требуется произвести вычитание любых натуральных чисел, система расширяется, чтобы включить в себя целые числа. Необходимость разделить два любых целых числа приводит к введению рациональных чисел, а чтобы иметь возможность извлекать корни, добавляются иррациональные числа и дается определение действительным числам. Гильберт отмечал, есть аксиоматический метод, типичный для геометрии (и для анализа, поскольку Гильберт показал, как аксиоматизировать действительные числа). Несмотря на высокую дидактическую ценность генетического метода, аксиоматический метод имеет преимущество обеспечения полной логической надежности. В этой ранней работе Гильберт открыто и впервые заявил о необходимости подхода к проблеме абсолютной непротиворечивости арифметики как к унаследованной от геометрии (относительную непротиворечивость которой он сам доказал). Этот вопрос занял второе место (ему предшествует только континуумгипотеза) в списке из 23 открытых проблем 1900 года; Гильберт вернулся к нему на конгрессе 1904 года, хотя и недооценил его сложность. Задача заключалась не в том, чтобы найти самые базовые модели, на которые можно было бы опереться, чтобы вывести непротиворечивость арифметики, как это было сделано с аксиомами геометрии (при этом была бы доказана только относительная непротиворечивость). Следовало разработать доказательство абсолютной непротиворечивости, основываясь на синтаксисе, а не на семантике, то есть выяснив, позволяет формальная система, выражающая арифметику, прийти к противоречиям или нет.

Однако только около 1904 года, когда стали проявляться парадоксы, Гильберт убедился, что основные усилия необходимо направить на аксиоматический анализ как часть более обширной задачи – установления непротиворечивости арифметики (поскольку и геометрия, и анализ были сведены к ней). Как обычно, Гильберт выбрал себе соратника – на этот раз Цермело – и поручил ему детальную разработку аксиоматизации теории множеств. Именно так начали вырисовываться два основных момента программы Гильберта: сперва аксиоматизация, затем непротиворечивость.

На первом этапе было необходимо формализовать теорию множеств, а также логику и арифметику. Наивные определения не позволяли вывести строгие рассуждения, лишенные парадоксов. Следовало полностью формализовать известную математику, переведя все ее содержимое в формальную систему, выраженную с помощью нового символического языка: 0 (число нуль), s (функция последующего члена), ¬ (не), v (или), ^ (и), →(вывод), Ǝ (квантор существования), перевернутое А(квантор всеобщности), = (равенство), х (переменная) и так далее. Как раз в 1928 году, спустя 50 лет после первого шага Фреге, Гильберт и Аккерман опубликовали «Основы теоретической логики» – учебник по дисциплине, сегодня называемой логикой первого порядка. Их формализация достигла канонического уровня, и сегодня она известна как система Гильберта – Аккермана. Они установили формальный синтаксис, а также предложили аксиомы и правила этой логики, что позволяет выводить новые формулы. Логика первого порядка превратилась в настоящее исчисление.

Вначале был знак.

Давид Гильберт, «Новые основания математики» (1922)

В учебнике Гильберта и Аккермана были сформулированы некоторые металогические вопросы о свойствах исчисления, ими разработанного. Они перекликались, в частности, с доказательством (в 1926 году предложенным Бернайсом) того, что элементарная логика, или логика пропозиций, является верной (любая доказуемая формула верна) и полной (любая логическая истина, в свою очередь, доказуема), и к этому же результату в 1922 году независимо пришел Эмиль Пост (1897– 1954). Авторы задавались вопросом – является ли таковой логика первого порядка? – хотя признавали, что ответ не найден. Ровно через год, в 1929 году, молодой австрийский логик Курт Гёдель доказал полноту логики первого порядка в своей докторской диссертации, написанной под руководством Ханса Хана (1879-1934), хотя опубликовал ее он лишь в 1930 году Эта логика была верной (все доказуемые формулы истинны) и полной (все логические истины, все тавтологии доказуемы). При исчислении предикатов первого порядка синтаксическое понятие дедукции и семантическое понятие истины совпадают, имеют одно и то же расширение.

Программа Гильберта неожиданно обрела успех: любая логически справедливая формула, то есть истинная в любой возможной интерпретации, выводима с помощью описанных исчислений. Но что произойдет, если к этому чистому исчислению предикатов добавить аксиомы и правила, которые относились бы к арифметике или к теории множеств? Останется ли оно верным и непротиворечивым? И полным?

На втором этапе в объект математического изучения следовало превратить само понятие доказательства, чтобы таким образом доказать непротиворечивость арифметики и искоренить все сомнения. В математике нет места полуправде. Для Гильберта математик занимается понятием математического доказательства, точно так же как физик проверяет работу своих приборов или философ критически осмысливает свои же аргументы. Разработка «теории доказательства» позволит рассматривать доказательства в качестве результата чистых сочетаний символов, согласно предписанным формальным правилам. В этих условиях было достаточно доказать, что никакое формальное выведение, никакое сочетание символов не может привести к формуле 0≠0 (что является противоречием). Так была бы установлена непротиворечивость арифметики. Достаточно доказать, что есть одна недоказуемая формула, поскольку если бы все формулы были доказуемы, мы могли бы вывести противоречие (доказав пропозицию и обратную ей), и система оказалась бы противоречивой. И наоборот, если бы система была противоречивой, поскольку из противоречия следует что угодно (ex contradictione sequitur quodlibet, как уверяли схоластики), мы могли бы доказать любую формулу (формула «если 0≠0, то Р» всегда истинна, справедлива, поскольку таковой не является предпосылка).

В 1920 годы Гильберт ввел идею о том, что его «теория доказательства» подходит к вопросу непротиворечивости на двух уровнях рассмотрения. С одной стороны, это математический уровень, как представлено в рамках формальной системы. С другой стороны, это метаматематический, дискурсивный уровень, на котором говорится об аксиоматизированной математике. На данном уровне следовало доказать непротиворечивость посредством ряда техник, которые изучали бы формальную систему извне, отключив ее от любого числового значения или значения, связанного с бесконечностью, просто в качестве конечных цепочек первичных знаков, на основе которых можно образовать формулы и доказательства в соответствии с некоторыми предопределенными правилами. Пропозиции, которые относятся к этому формальному скелету, к этой арифметике, лишенной значения, – это метаматематические пропозиции, которые формулируются не на языке объекта, а на метаязыке. Это как если бы на уроке английского использовался испанский язык, чтобы показать оттенки какого-нибудь англосаксонского слова. Вопрос о непротиворечивости в математике или вопрос, является ли формула 0≠0 доказуемой, – по сути, то же самое, что спрашивать, является ли определенная шахматная позиция правомерной, то есть можно ли достичь ее из исходного положения партии и по правилам передвижения фигур. Чтобы на него ответить, мы не играем в шахматы, а размышляем о собственно шахматах.

Сомневайся в данных, пока данные не оставят места сомнению.

Анри Пуанкаре

Но Гильберт настаивал на том, что математическое доказательство непротиворечивости арифметики должно удовлетворить как классических математиков, так и интуиционистов, то есть оно должно проводиться финитными, конструктивными методами, которые не требуют вмешательства бесконечности. В конце жизни Пуанкаре подчеркивал, что если для доказательства непротиворечивости арифметики – даже в математическом плане – воспользоваться принципом индукции, то есть пятой аксиомой Пеано, получится порочный круг: попытка доказать связность арифметики с помощью арифметического принципа. Нужно было доказать это посредством самоочевидных рассуждений, что сами математические методы, даже когда они предполагают присутствие актуальной бесконечности, справедливы, то есть не позволяют вывести противоречие. Более того, Гильберт хотел доказать не только непротиворечивость математики, но также ее полноту. Это был другой нерешенный вопрос из его лекции 1900 года: возможность решения любого математического вопроса.

Гильберту и его соратникам удалось доказать непротиворечивость некоторых простых формальных систем. Так, в 1922 году Гильберт сконцентрировался на элементарной части арифметики и, изучая вид доказуемых формул, сделал вывод, что формула 0≠0 – не из их числа. Это доказательство позже было развито Аккерманом в его докторской диссертации (датированной 1925 годом и написанной под руководством Гильберта), а также в 1927 году элегантно упрощено фон Нейманом. Но это были фрагментарные достижения: формальные арифметические системы, из которых следовала непротиворечивость, не включали в себя принцип индукции. В 1929 году польскому математику Мойжешу Пресбургеру (1904-1943) удалось доказать непротиворечивость арифметики, включающей в себя принцип индукции и сложение, но не умножение. Эти результаты обрели форму двухтомника, написанного Бернайсом от лица Гильберта и озаглавленного «Основания математики» (1934-1939). Однако непротиворечивость систем, описывающих достаточно большую область арифметики с натуральными числами, все еще оставалась неохваченной.


ГЁДЕЛЬ: БУРИ И ШКВАЛЫ

К 1930 году первый пункт программы Гильберта в целом был выполнен: логика, теория множеств и арифметика аксиоматизированы. Но все еще оставался вопрос об их непротиворечивости и полноте.

Гильберт вышел на пенсию, когда ему исполнилось 68 лет. В связи с получением звания почетного гражданина Кёнигсберга заслуженный профессор Гёттингенского университета произнес речь в своем родном городе. В ней он вновь отстаивал идею, что в математике нет неразрешимых проблем. Записывая обращение для местного радио, он четко произнес последнюю фразу своей речи: «Мы должны знать. Мы будем знать» и улыбнулся. Запись сохранилась, и если прислушаться, в конце можно уловить смех Гильберта. Это было 8 сентября 1930 года.

По иронии судьбы, за три дня до этого в Кёнигсберге состоялась конференция по эпистемологии точных наук. Цель встречи состояла в том, чтобы определить, на какой стадии находится разрешение кризиса оснований математики. Выступали представители каждого из связанных с основаниями течений. От логицизма – Рудольф Карнап (1891-1970), изложивший концепцию математики, которую сформулировал в Венском кружке: математические теоремы как тавтологии, логические истины. От интуиционизма – Аренд Гейтинг, выступавший за исключение бесконечности из математики. И от формализма – Джон фон Нейман, сторонник Гильберта. А 6 сентября слово взял 24-летний австрийский логик Курт Гёдель и доложил о недавно полученных им результатах: «Я могу привести примеры истинных арифметических пропозиций, недоказуемых в формальной системе классической математики». Несмотря на важность этого заявления, оно осталось незамеченным. И только фон Нейман был в недоумении. Несмотря на то что он всегда мечтал доказать непротиворечивость всей математики посредством финитных методов, в его голову уже закралось сомнение, что на самом деле это невозможно, и краткое выступление застенчивого юноши в круглых очках показалось его событием невероятного значения. Это был смертный приговор красивому девизу Гильберта. Надежда, которая теплилась в душе немецкого математика более 30 лет, должна была окончательно угаснуть. Математика больше никогда не будет надежной. Когда в 1931 году были опубликованы теоремы Гёделя о неполноте, в программе Гильберта произошло короткое замыкание. Чтобы объяснить, почему это произошло, нам нужно обратиться к математической логике.

С эпохи Аристотеля, не забывая о вкладе схоластиков, логика задумывалась как учение о рассуждении, которое никогда не происходит в пустоте, а всегда в рамках какого-то языка. С течением времени математики обращали все большее внимание на логику языков, на которых они изъясняются, чтобы определить их возможности. Логика научила математиков тому, что в языке существует два основных понятия: одно – семантического характера, понятие истины, другое – синтаксического характера, понятие доказательства. Сложность заключалась в том, чтобы определить радиус их действия: совпадают ли эти два понятия экстенсионально, пусть они сильно различаются интенсионально. Другими словами, является ли все доказуемое истинным (правильность) и все истинное – доказуемым {полнота). В целом языку, богатому в плане выражения, соответствует логика, бедная на интересные свойства. Так, логика языков первого порядка является правильной и полной, но математику ее обычно не хватает в ежедневной работе (когда нужно количественно оценить свойства, а не только объекты).

Но не следует ожидать, что логика языков второго порядка или выше будет полной. Так что одно из двух: либо мы занимаемся математикой на маловыразительном языке, логика которого правильна и полна, либо мы формализуем наши математические рассуждения на выразительном языке, но логика, лежащая в его основании, в лучшем случае правильна (мы можем доказывать лишь истины), но не полна (мы не можем доказать все истины).

Гёдель – величайший логик со времен Аристотеля.

Джон фон Нейман о Гёделе

Ограничиваясь языком первого порядка (где можно давать количественную оценку только объектам), если мы будем толковать объекты как числа, мы едва ли уйдем дальше элементарной арифметики (например, теорема, утверждающая, что любое множество натуральных чисел обладает минимальным невыразимым элементом, поскольку нам придется давать количественную оценку множествам чисел) и никогда не доберемся до анализа. Проблема в том, что функции или числовые отношения не являются числами. Однако эта трудность испаряется, если мы рассматриваем множества, поскольку функции и отношения между множествами – это, в свою очередь, другие множества: я-ные собрания множеств – это множества.

Возникает важный вопрос: можно ли свести всю математику к теории множеств? Если истолковать объекты нашего языка первого порядка как множества, легко эмпирически убедиться, что большинство математических сущностей можно определить на основе множеств. Эта программа исследования основывалась на вышеупомянутой теории множеств ZF: на базе небольшого количества аксиом, сформулированных в первом порядке, эта теория множеств была способна охватить значительную часть математики того времени.

Снова, как в итоге понял Гёдель, цена этого теоретического богатства (выразимость) – метатеоретическая бедность, которая проявляется в нескольких ограничивающих результатах: теоремах о неполноте. В первой теореме доказывается, что существует истинная формула, которая недоказуема в ZF (хотя в работе Гёделя в качестве отправной формальной системы взят труд Рппсгрга mathematica, а его результаты справедливы для ZFи других смежных систем). А во второй – что невозможно доказать непротиворечивость ZF в ZF. Более того, доказательство в ZF отсутствия противоречия в ZF и, следовательно, в математике доказало бы исключительно, что ZF и математика противоречивы. Гёдель положил конец надежде на формализм Гильберта. Все усилия, направленные на доказательство непротиворечивости математики, обречены на провал. Точнее, невозможно доказать посредством финитных методов отсутствие противоречий любой формальной системы, содержащей арифметику Пеано (если позволить себе применение тяжелой артиллерии, непротиворечивость все-таки возможно доказать, как в 1936 году это сделал ученик Гильберта Герхард Генцен (1909-1945), хотя и посредством трансфинитных методов, очевидность которых спорная).

Кто из нас не возликовал бы, подними он занавес, за которым скрывается будущее, загляни он в последующие достижения науки и секреты ее развития?!

Давид Гильберт, из речи на II Международном конгрессе математиков в Париже

Парадокс лжеца был для Гёделя одним из двигателей доказательства теорем о неполноте. Поскольку доказательство было на грани перехода в цикличность, некоторые математики – в частности, 60-летний Цермело – не осознали его ценности. Гёдель придумал ловкий перевод на метаязык внутри языка: арифметизацию метаматематики. С помощью смелой цифровой кодификации, основанной на простых числах (которую с тех пор называют гёделизацией), он назначил номера знакам так, чтобы с каждой формулой (и также с каждым доказательством) можно было связать число, кодировавшее бы всю структуру. Пропозиции, в которых говорилось о свойствах формальной системы, выражались в рамках системы посредством арифметических формул. Доказуемость, например, была представлена в виде числового отношения.

В таких условиях Гёдель вышел из ситуации, составив формулу G, которая говорит сама о себе: «я недоказуемо». Эта формула стала примером неразрешимого утверждения внутри формальной системы: ни она, ни ее отрицание не являются теоремами, то есть чем-то доказуемым. Действительно, Іеделю удалось доказать, что G доказуемо тогда и только тогда, когда ¬G доказуемо. Следовательно, если мы хотим, чтобы формальная система была непротиворечивой, ни G, ни ¬G не могут быть таковыми. Если бы G было доказуемо, так как ¬G утверждает в метаматематических терминах, что G доказуемо (отрицает то, что оно недоказуемо, как сказано в нем самом), то было бы возможно доказать также ¬G и вывести противоречие (G^¬G). И наоборот, если бы ¬G было доказуемым, мы могли бы по той же причине доказать G и прийти к тому же противоречию. В итоге доказательство любой из этих двух формул автоматически предполагало бы противоречивость системы. Более того, если допустить, что формальная система непротиворечива, то G недоказуемо, но истинно. Если бы G было ложно, так как в G говорится: «я недоказуемо», то G было бы доказуемо, что невозможно. Следовательно, у нас есть высказывание G, которое, хотя и недоказуемо, является истинным.

Существование неразрешимого утверждения предполагает, что аксиомы теории не содержат ответа на все вопросы, формулируемые формальным языком, потому что ни утверждение, ни его отрицание не являются теоремами. И так как либо оно, либо его отрицание должно быть истинным, у нас есть истинная недоказуемая формула. Хуже всего, что если добавить неразрешимое утверждение в качестве аксиомы, появляются другие, новые. Математика вдруг очнулась от гильбертова сна – от мечты о полноте, в которой аксиоматические системы не содержат неразрешимых формул, а истинное всегда совпадает с доказуемым. Проще говоря, «непротиворечивый» предполагает «неполный», и наоборот, «полный» предполагает «противоречивый». Ни одна формальная система, содержащая привычную арифметику, не может быть одновременно и той и другой. Если мы предположим, что она непротиворечива, она всегда будет неполной, то есть будет содержать недоказуемые истины. Будут существовать некоторые истинные свойства формально неразрешимых чисел, то есть свойства, которые мы не можем ни доказать, ни отвергнуть на основе аксиом.

Но за первой теоремой о неполноте следует вторая: так как непротиворечивость равносильна утверждению, что формула 0≠0 недоказуема, Гёдель трансформировал это последнее математическое свойство в арифметическую формулу (назовем ее С) и заметил, что в первой теореме установлено, по сути, что «C→G». Непротиворечивость предполагает, что существует неразрешимое утверждение и, следовательно, неполнота. Так что доказательство С позволило бы нам исключить G из импликации «C→G» посредством modus ponens и, следовательно, доказать G, что невозможно, поскольку G недоказуемо. Это удивительное следствие сводится к тому, что непротиворечивость формальной системы, которая включает в себя арифметику, недоказуема в рамках формальной системы. Гёдель не доказал должным образом эту вторую теорему, он только высказался о ее приемлемости, но так никогда и не записал обещанного доказательства. Первое полное доказательство, очень тщательное, появилось, что любопытно, в 1939 году, во втором томе «Оснований математики» Бернайса и Гильберта.


    Ваша оценка произведения:

Популярные книги за неделю