355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Вначале была аксиома. Гильберт. Основания математики » Текст книги (страница 1)
Вначале была аксиома. Гильберт. Основания математики
  • Текст добавлен: 18 июля 2017, 13:30

Текст книги "Вначале была аксиома. Гильберт. Основания математики"


Автор книги: авторов Коллектив


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 1 (всего у книги 9 страниц)

Annotation

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, – гильбертово пространство. Среди коллег этого незаурядного ученого выделяла невероятная харизма, а знаменитые 23 кардинальные проблемы, сформулированные им в 1900 году, предопределили развитие самой дисциплины на десятилетия вперед. Он превратил город Гёттинген в мировую столицу математики, но стал свидетелем того, как его разоряют нацистские зачистки. Знаменитая фраза «Мы должны знать. Мы будем знать», выгравированная на его могиле, передает жажду знаний последнего великого математика-универсала.

Carlos М. Madrid Casado

Введение

ГЛАВА 1

ГЛАВА 2

ГЛАВА 3

ГЛАВА 4

ГЛАВА 5

Список рекомендуемой литературы

Указатель




Carlos М. Madrid Casado

Наука. Величайшие теории: выпуск 34: Вначале была аксиома. Гильберт. Основания математики.

Еженедельное издание

ISSN 2409-0069

Пер. с исп. – М.: Де Агостини, 2015. – 176 с.

ISSN 2409-0069

© Carlos М. Madrid Casado, 2013 (текст)

© RBA Collecionables S.A., 2013 © ООО «Де Агостини», 2014-2015

Введение

Зайдите в любую библиотеку и окиньте взглядом ее стеллажи. Вы сразу обнаружите книги Евклида, Ньютона или Эйнштейна, а рядом – труды Платона, Аристотеля или Канта, не говоря о произведениях Сервантеса и Шекспира. Настоящее рядом с прекрасным. Но почему порядок именно такой? Возможно, все дело в небрежности библиотекаря или же, если не брать в расчет случайность, здесь есть какая-то глубинная причина? Вероятно, следует начать с вопроса: почему работы Евклида (а значит и Архимеда, Лейбница, Эйлера или Гаусса) все еще присутствуют в нашей жизни, почему они все еще актуальны? Ведь не зря труд Евклида «Начала геометрии» веками оставался учебником, который знакомил с научными истинами целые поколения студентов. Какой была роль геометрии и математики в целом во множестве знаний? Для одних математика стала дверью и ключом к науке, для других – еще и алфавитом философии.

Однако на вопрос об основании и природе математики дали слишком много ответов. Почти столько же, сколько в мире было математиков, начиная с работавших под сенью пирамид землемеров, заканчивая нашими современниками и не забывая о греческих геометрах. С глубокой древности говоря «математика», подразумевают «доказательство». Доказательство, как клей, скрепляет математику. Но что такое доказательство?

Ответу на этот вопрос наш герой, Давид Гильберт (1862-1943), посвятил значительную часть своей научной деятельности. В чем состоит доказательство математической теоремы? И все ли математические истины доказуемы? Эти и другие загадки, возникшие на стыке науки и философии, сосредоточились возле оснований математики. Глубокая озабоченность данным вопросом определяла привязанность Гильберта к этой науке.

Давид Гильберт – пожалуй, один из значительнейших математиков XX века. Его работы в области алгебры, геометрии, анализа, физики, логики и оснований математики дают ему право называться математиком века. И это не пустые слова. Его вклад (как в качественном, так и в количественном отношении) обладает неизмеримой, беспрецедентной значимостью. Гильберт – ученый уровня Гаусса и Пуанкаре. Но в чем заключается легендарность этой личности? К постоянным нововведениям и выдающимся результатам, к которым привыкли его современники, следует добавить личную харизму, очаровывавшую тех, кто с ним встречался. Путь, проделанный математикой в XX веке, невозможно объяснить без учета его вклада. Его влияние сказалось на целом ряде поколений, работавших над теми знаменитыми проблемами, которые он обозначил в программе столетия. Он был математиком из математиков.

В то время как личная жизнь ученого протекала в похвальном спокойствии, жизнь интеллектуальная бурлила приключениями. Такое положение дел, возможно, не вписывается в представления о герое, зато подходит образу творческой личности, и эта история только и ждет, чтобы ее рассказали. Гильберту посчастливилось жить в эпоху, когда и математика, и физика чрезвычайно прогрессировали, хотя параллельно испытывали глубокие потрясения, приведшие к новому математическому методу и к свершению революции в физике. Описываемый период пришелся на настоящий творческий расцвет, и Гильберт был среди ведущих действующих лиц.

Обзор жизни и научной деятельности Давида Гильберта сосредоточится на нескольких этапах, обусловленных его математическими интересами (алгеброй, геометрией, анализом, теоретической физикой и основаниями математики): разрабатываемые им годами, они и определили его легендарную репутацию. Но в этой книге мы не только расскажем о понятиях, которые он ввел или в становление которых внес вклад; мы также познакомимся с некоторыми важнейшими деятелями науки начала XX века. Минковский, Пуанкаре, Эйнштейн, фон Нейман и Гедель появятся на этих страницах в числе многих других. Читатель получит удовольствие от знакомства и постоянных встреч с людьми, имена которых известны каждому студенту благодаря понятиям и теоремам, названным в их честь.

Детство и молодость Гильберт провел в родном Кёнигсберге, а в зрелом возрасте переехал в Геттинген, где жил до конца своих дней. Будучи профессором университета, он способствовал созданию математического института, который привлек лучшие умы того времени. Вокруг него выстраивался авангард немецкой науки, да и европейской тоже, пока нацисты не превратили Геттинген в пустошь.

Карьера молодого Гильберта пошла в гору, когда, к удивлению коллег, он решил насущную алгебраическую проблему, казавшуюся непреодолимой. Однако через некоторое время он оставил алгебру и переключился на основания геометрии, взяв на вооружение аксиоматический метод. В его работе этот метод имел решающее значение. Гильберт больше, чем кто-либо, научил математиков мыслить аксиоматически и определил новый метод как самый надежный в математической вселенной.

На лекции, прочитанной им на Международном конгрессе математиков в Париже 8 августа 1900 года (в тот день стояла удушающая жара), он продемонстрировал научному сообществу свою проницательность, и его стали воспринимать как человека, за которым – будущее математики. Логика необходима этой науке, но именно проблемы обеспечивают ее жизнедеятельность. Круг из 23 проблем, сформулированных Гильбертом, определил равное количество вызовов, которые мотивировали ведущих математиков последующие 100 лет. В итоге математика стала развиваться во многих направлениях. Некоторые из этих проблем были решены однозначно (как, например, в случае континуум-гипотезы), в то время как другие (скажем, гипотеза Римана) все еще ждут своей очереди.

Гильберт – легендарная личность и для физики тоже. Уравнения общей теории относительности – результат его творческой гениальности в не меньшей степени, чем гениальности Эйнштейна. Квантовая механика, в свою очередь, тесно связана с математической структурой, гильбертовым пространством. Кроме того, новый век стал свидетелем того, как немецкий математик очерчивает (не в полной мере осознавая это) новую область математического анализа – функциональный анализ.

Однако самая обширная тема – это основания математики. Парадоксы логики и теории множеств, а также плеяда открытых вопросов о надежности классической математики спровоцировали глубокий раскол в научном сообществе и все нараставшие споры об основаниях этой дисциплины. К 1920 году, находясь на пике карьеры, наш герой ринулся создавать амбициозную программу основания, причем ему пришлось помериться силами с некоторыми виднейшими европейскими математиками. Как архитектор, исследующий фундамент старого дворца, который вот-вот рухнет, Гильберт пересмотрел основания математики, пытаясь устранить ее трещины и обеспечить ей устойчивость на долгие века. Он хотел стереть уродливое пятно парадоксов с идеального здания математики. На это его воодушевляла слепая вера в то, что можно доказать: математика, снабженная подходящими аксиомами, не содержит никаких противоречий, она устойчива. Это одна из главных проблем математики, которую Гильберт озвучил на лекции 1900 года.

Изучая его вклад, мы вновь переживем это эпическое и страстное приключение в поисках точности, где сошлись великие логики и математики конца XIX – начала XX века: Фреге, Рассел, Кантор, Пуанкаре, Брауэр и Гёдель. Вдохновленные богатством современной им математики, эти ученые задумались о ее природе и целях. В ту пору выделились три тенденции. Логицизм, проявившийся у Фреге и оживленный Расселом, утверждал, что все математические принципы могут быть сведены к логическим законам. Интуиционизм – порождение Пуанкаре и Брауэра – отрицал методы классической математики, которые привели ее к парадоксам. И наконец, формализм, отождествляемый с мыслью Гильберта, стремился полностью аксиоматизировать математику, доказав, что аксиомы никогда не ведут к противоречию.

Гильберт был лидером школы формализма, по сути он отстаивал позицию, что математические рассуждения могут быть представлены аксиоматически, в рамках формальной системы и без какого-либо упоминания о значении символов. Эта ключевая идея позволяла уклониться от любого упоминания о скользкой и парадоксальной бесконечности. Гильберт считал, что все математические теоремы можно вывести на основе одного или более правил посредством символического управления ограниченным числом аксиом, причем за конечное число шагов. Тогда можно было рассматривать математику как игру формул, а проблему доказательства непротиворечивости аксиом – как вопрос конечной сочетаемости, тщательного анализа формул, которые могут быть доказаны в рамках формальной системы, последовательностей символов, производимых системой. Но упорные попытки Гильберта решить этот вопрос, заложить основы математики, не вызывающие никакого рационального сомнения, закончились поражением.

Об австрийском логике Курте Гёделе заговорили, когда в 1931 году он объявил: чтобы доказать непротиворечивость математики, методов Гильберта недостаточно. Теоремы Гёделя о неполноте стали ушатом холодной воды для самого Гильберта и его последователей. Более того, они означали крах его программы. Оказалось, что непротиворечивую устойчивость математики невозможно доказать. Непоколебимая убежденность в том, что математика – самая надежная из наук, вылилась для многих в историческое коллективное разочарование. Математика несет в себе черты неуверенности, случайности и необоснованности, но тем не менее продолжает прогрессировать.

Гильберт олицетворял идеал математика межвоенного поколения. Его влияние прочитывается в современной математике – аксиоматической науке, изучающей абстрактные структуры. Она порвала с математикой прошлого, которая была сосредоточена на числах, формулах и фигурах, изначально ее составлявших.

Давид Гильберт определенно являлся ученым-универсалом, поскольку знал почти все ответвления современной ему математики, и оказался последним представителем этого уже исчезнувшего вида.

1862 Давид Гильберт появляется на свет в городе Кёнигсберге, Пруссия.

1880 Начинает изучать математику в Кёнигсбергском университете. Зарождается его дружба с Адольфом Гурвицем и в особенности с Германом Минковским.

1888 Его первая крупная математическая победа: он решает проблему Гордана в теории инвариантов.

1892 Становится ординарным профессором в Кёнигсбергском университете. Женится на Кёте Ерош.

1895 Благодаря стараниям Феликса Клейна становится профессором Гёттингенского университета.

1897 Публикует «Отчет о числах», сборник актуальных знаний в области алгебраической теории чисел.

1899 Публикует «Основания геометрии», в которых представляет все возможные геометрии посредством исключительно аксиоматического метода.

1900 Читает знаменитую лекцию «Проблемы математики» на II Международном конгрессе математиков в Париже.

1904 Возрождает принцип Дирихле для вариационного исчисления.

1912 Собирает в монографию все свои статьи об интегральных уравнениях, используемых физиками того времени, а также набор инструментов развития квантовой механики с 1925 года.

1915 Соревнуется с Альбертом Эйнштейном в выведении уравнений поля общей теории относительности.

1922 Практически в одиночку вновь пробуждает интерес к основаниям математики, стремясь доказать непротиворечивость классической математики, чтобы нейтрализовать скептицизм интуиционистов.

1928 В соавторстве с Вильгельмом Аккерманом публикует «Основы теоретической логики», первый учебник по математической логике в ее современном понимании.

1930 Уходит в отставку. Читает оптимистичную лекцию по случаю получения звания почетного гражданина Кёнигсберга, завершая ее лозунгом: «Мы должны знать. Мы будем знать». Курт Гёдель накладывает ограничения на формализм Гильберта на конгрессе, проходящем в то же время.

1934 В соавторстве с Паулем Бернайсом публикует первый том «Оснований математики», в который включены некоторые достижения в этой области.

1943 Умирает в Гёттингене (Германия) в то время, как своим жестоким чередом идет Вторая мировая война.

ГЛАВА 1

Основания геометрии

Карьера Гильберта пошла вверх, когда он решил хитрую проблему Гордана. Однако молодой ученый отложил алгебру и теорию чисел, чтобы полностью погрузиться в изучение оснований геометрии. Открытие неевклидовых геометрий стало шахом почти 2000-летней греческой геометрии. Переформулирование аксиоматического метода позволило Гильберту навести порядок в этой области и подчеркнуть, что нет единой справедливой геометрии: их много, и каждая обладает различным набором аксиом.

Кёнигсберг, 1862 год. Прошло 58 лет после смерти Иммануила Канта и 120 с тех пор, как Леонард Эйлер (1707-1783) решил знаменитую проблему семи мостов. Давид Гильберт появился на свет 23 января в протестантской семье из среднего класса, которая вот уже два поколения жила в столице Восточной Пруссии. Пруссия в то время возглавила объединение Германии под руководством кайзера Вильгельма I и железного канцлера Отто фон Бисмарка. Отец будущего ученого был городским судьей и прививал сыну типичные прусские ценности: пунктуальность, дисциплину и чувство долга. Мать, наоборот, увлекалась философией, астрономией и, как рассказывают, простыми числами.

В школьные годы Гильберт показал себя упорной, энергичной и решительной личностью, хотя в средней школе страдал от того, что учебный процесс выстраивался на заучивании. Он увлекался искусством, литературой и математикой, однако не считался вундеркиндом. В 1880 году он выдержал экзамен и был зачислен в университет, избрав математику, хотя родители хотели, чтобы он изучал право.

Кёнигсберг – конечно, не Берлин, где развернули свою деятельность преподаватели уровня Карла Вейерштрасса (1815– 1897) и Леопольда Кронекера (1823-1891), но и здесь имелась прочная математическая традиция. Здесь когда-то работал Карл Якоби (1804-1851), считавшийся вторым после Гаусса немецким математиком. Так в каком же научном контексте получал образование Гильберт? В последней четверти XIX века предполагалось, что как дисциплина математика имеет три ответвления: анализ, алгебру и геометрию. Анализ – это исследование все более строгого использования бесконечно малых, решение дифференциальных уравнений и теория функций в целом. Алгебра постепенно перестала походить на предмет, который мы изучали в школе, и занималась уже абстрактными объектами, хотя и не исключала теорию чисел. Геометрия же включала в себя целое семейство плохо согласованных между собой составляющих: евклидову геометрию и неевклидовы геометрии (в том числе проективную), а также дифференциальную и алгебраическую геометрии, в которых использовались инструменты анализа и алгебры.

Любая дисциплина проходит три фазы развития: наивную, формальную и критическую.

Давид Гильберт

Гильберт успешно изучал курсы алгебры, анализа и геометрии. В университете же он познакомился с Германом Минковским (1864-1909), который стал его лучшим другом. Будучи однокурсником Гильберта, он был на два года младше него, он опережал курс на целый триместр. Когда ему только исполнилось 19, он получил гран-при в области математики, которую вручала Парижская академия наук (хотя все прошло не слишком гладко, поскольку заходила речь о плагиате). Друзья обычно прогуливались вместе и восхищенно обсуждали математику. В ходе этих прогулок они исследовали каждый уголок математического знания. Эту традицию студенческих лет они сохранили на всю жизнь.

Получив степень доктора, Гильберт задумался о том, чтобы устроиться на должность приват-доцента, которая позволила бы ему преподавать в университете (пусть даже жалованье не было фиксированным и складывалось в зависимости от количества студентов). Для этого требовалось внести какой-нибудь оригинальный вклад в науку. С этой целью Гильберт отправился на встречу с Феликсом Клейном (1849-1925), одним из знаменитых математиков того времени. Годы спустя Клейн говорил, что сразу же понял: за этим юношей – будущее математики. По его совету Гильберт поехал в Париж, где познакомился с Анри Пуанкаре (1854-1912). Француз был на восемь лет старше Гильберта, но уже состоялся как ученый. Он считался главным представителем французской математики, которая надеялась обойти немцев. В результате Пуанкаре и Гильберт не нашли общий язык, со временем они даже стали открыто соперничать. Тут крылась конкуренция за главенствование в математике будущего (отношения Пуанкаре и Клейна также не были хорошими: у последнего это противостояние даже вылилось в депрессию). На обратном пути Гильберт задержался в Гёттингенском университете и навестил недавно обосновавшегося там Клейна. Тот познакомил его с Паулем Горданом (1837-1912), одним из главных экспертов по теории инвариантов – области, в которой Гильберт добился своего первого большого успеха.


ОТ АЛГЕБРЫ К ТЕОРИИ ЧИСЕЛ

Теория инвариантов представляла собой ответвление алгебры XIX века и рассматривала, какие величины не изменяются (остаются инвариантными), когда мы преобразуем один многочлен в другой в соответствии с определенными правилами. Одна из самых любопытных проблем получила название проблемы Гордана. В 1868 году Гильберт ошарашил современников, предложив революционное решение задачи, которое король теории инвариантов Гордан назвал «теологическим». Гильберту удалось сделать то, к чему уже несколько лет стремились все эксперты по инвариантам: доказать так называемую основную теорему теории инвариантов, в которой утверждается, что любая система инвариантов образована конечным образом (проще говоря, что любой инвариант системы может быть представлен в виде сочетания небольшого количества инвариантов, образующих базис). Эту задачу не назовешь пустяковой.

Однако нас интересует не ее содержание, а форма ее доказательства Гильбертом, поскольку это поможет представить путь развития его исследовательской карьеры. Как и в других областях математики, Гильберт разработал множество элементов, составивших новый подход. В данном случае он структурный алгебраический, сосредоточенный на структурах математических объектов в большей степени, чем на собственно математических объектах, а на группах, идеалах, кольцах и телах (алгебраических структурах) – в большей степени, чем на самих числах или конкретных многочленах, которые они содержат. Не осознавая этого, Гильберт готовил абстрактную алгебру XX века и мимоходом утвердил новый математический метод, знаменосцем которого стал позже.

Подход Гильберта разительно отличался от традиционного. Вместо того чтобы открыто искать решение проблемы, он доказал: проблема не может не иметь решения. Его доказательство было не конструктивным, а экзистенциальным. Он не предлагал решения напрямую («вот базис инвариантов»), а только доказывал, что оно обязательно должно быть («если бы не было базиса инвариантов, мы бы пришли к противоречию»). Следовательно, доказательство основной теоремы осуществлялось путем доведения до абсурда. Эта аргументация не была единодушно принята математическим сообществом.

Кронекер – одна из главных фигур немецкой математики того времени – высказался в этом отношении довольно резко. По слухам, подход Гильберта многим показался «зловещим». Для Кронекера доказательство существования обязательно означало построение того объекта, существование которого требовалось доказать. В данном случае это построение базиса инвариантов, которое, по утверждению Гильберта, существует. Он не принимал аргументов, что отсутствие существования базиса предполагает противоречие, следовательно, данный базис обязательно должен существовать, хотя его вычисление неосуществимо.


КОНСТРУКТИВНЫЕ И ЭКЗИСТЕНЦИАЛЬНЫЕ ДОКАЗАТЕЛЬСТВА

Чтобы понять разницу, рассмотрим пример. Если вопрос заключается в том, имеет ли уравнение х2 – 1 = 0 решение, у нас есть два варианта. Первый – найти решение с помощью вычислений и алгебраических манипуляций: х = 1 и х = -1. Второй – попытаться ответить косвенно: задействовав некую теорему, показать, что уравнение имеет решение, хотя мы не можем его найти. Естественно, второй путь оказывается эффективнее, когда математик сталкивается с намного более сложными проблемами, чем решение простого уравнения второй степени. Очень часто в уравнениях высшей степени легче доказать существование решения, чем найти его.


Путь, известный со времен Античности

Эта характеристика является общей для многих математических проблем. Евклид доказал, что существует бесконечное количество простых чисел без необходимости перечислять их все. Он выстраивал свое рассуждение путем доведения до абсурда. Первый шаг в таком доказательстве состоит в том, чтобы отрицать высказывание, которое нужно доказать. Чтобы доказать, что существует бесконечное количество простых чисел, Евклид предположил, что их число конечное: р1 р2,... Рn. На основе этого предположения он делал выводы, пока не пришел к абсурдному утверждению. Если предположить, будто есть только n простых чисел, то либо число р1 х р2 х ... х рn + 1 (образованное произведением их всех плюс один) является простым, либо не является. В первом случае отмечается противоречие, поскольку это новое простое число не является ни одним из партии. Во втором случае, если это не простое число, оно должно делиться на простое число, но ни одно из чисел р1, р2,... рn явно не является его делителем (деление неточное, оно дает 1 в остатке). И тут мы вновь сталкиваемся с противоречием. Следовательно, гипотеза, что существует конечное количество простых чисел, ложная: их должно быть бесконечное количество (хотя мы не можем определить их по одному). Доведение до абсурда, которое так любили Евклид и Гильберт, – один из лучших математических инструментов.

Гильберт опубликовал статью в 1890 году в журнале Mathematische Annalen, который издавал Клейн. Рецензентом выступил сам Гордан, и хотя вначале он потребовал внесения существенных изменений, в итоге признал революционный подход Гильберта. Работы Гордана составляли ужасно длинные и сложные вычисления, они контрастировали с краткой, элегантной и лаконичной статьей Гильберта, в основе которой лежало доведение до абсурда. Однако потребовалось решительное вмешательство Клейна, чтобы примирить их, поскольку Гильберт не желал трогать ни единой запятой в своей статье. В конце концов Гордан признал, что даже у теологии есть свое применение.

Гильберт бросил вызов и выиграл у тех, кто настаивал, будто математические доказательства должны базироваться на методе, рассматривающем сущности, наличие которых нужно доказать. Он доказал, что предположение о ложности гипотезы Гордана («существует базис инвариантов») ведет к противоречию. Этого было достаточно. Много лет спустя Гильберт объяснял своим студентам разницу между конструктивными доказательствами и теми, которые таковыми не являются (экзистенциальными), подчеркивая, что в аудитории есть кто-то, у кого на голове волос меньше, чем у других (никто из присутствующих не был абсолютно лысым), хотя мы не располагаем никаким способом выявить этого человека.

Это не математика! Это теология!

Гордан после ознакомления с доказательством Гильберта

На кон было поставлено не только будущее теории инвариантов (область исследования, которую Гильберт практически закрыл), но и нечто большее – противостояние двух подходов к математике: конструктивного – характерного для XIX века – и экзистенциального, свойственного XX столетию (когда слово «существовать» имело лишь одно значение: быть лишенным противоречия). Экзистенциальный подход Гильберта в дальнейшем обеспечил ему многие победы и многие споры.

Наконец, в 1892 году усилия Гильберта увенчались успехом, и он получил должность ординарного профессора Кёнигсбергского университета. Несмотря на то что в итоге он стал блестящим преподавателем, в начале его лекции едва привлекали студентов.


СОВРЕМЕННАЯ АЛГЕБРА И NULLSTELLENSATZ

Вавилоняне, египтяне и греки решали уравнения первой и второй степени, используя различные алгебраические техники. Следы греческой геометрической алгебры заметны по выражениям вроде «квадрат» и «куб» для второй и третьей степеней: «а в квадрате» – это квадрат со стороной а, а «а в кубе» – это куб с ребром а. Введение нового символьного аппарата (Диофант, Аль-Хорезми, Виет) определило настоящий прорыв в развитии алгебры и ее последующее отделение.

В эпоху Возрождения Тарталья (по– итальянски «заика») вывел формулу для решения уравнений третьей степени, но предпочел держать ее в секрете. Астролог и математик Джероламо Кардано убедил его открыть ее и затем опубликовал, выдавав за свою. Лодовико Феррари, бывший секретарь Кардано, получил другую формулу для решения уравнений четвертой степени, однако решение в радикалах полиномиального уравнения пятой степени им не далось. Через 300 лет Абель доказал, что это невозможно.

Гаусс в возрасте 52 лет. Литография из журнала «Астрономические новости», 1828 год.


Гаусс и основная теорема алгебры

Чтобы больше узнать о рождении современной алгебры, следует обратиться к докторской диссертации Гаусса, которую тот защитил в 1797 году. Гениальный Гаусс доказал то, что сегодня известно как основная теорема алгебры: любое полиномиальное уравнение степени п имеет ровно п решений среди комплексных чисел. Хотя этот результат допускал Декарт (различая действительные и мнимые корни), а также со множеством ошибок доказал Д’Аламбер, только доказательство Гаусса было исчерпывающим. Его работа радикально изменила облик алгебры. Именно этот долгий путь Гильберта сквозь теорию инвариантов определил Nullstellensatz, или теорему о нулях, – мощный результат, обобщивший основную теорему алгебры для того случая, когда вместо уравнения имеется система алгебраических уравнений.

Гильберт не впадал в отчаяние и расценивал этот период как процесс медленного, но стабильного созревания. Тогда же он женился на Кёте Ерош (его любимой партнерше по танцам), с которой был знаком с детства. Через год родился их единственный сын Франц, у которого еще в детстве проявилось серьезное умственное заболевание. Когда у юноши диагностировали шизофрению, отец поместил его в лечебницу для душевнобольных, где тот провел значительную часть своей жизни. С тех пор Гильберт держался так, будто у него никогда не было сына.

В 1895 году он кардинально изменил свою жизнь. В конфиденциальном письме его уведомили о назначении – по рекомендации Клейна – профессором престижного Гёттингенского университета, где до того работали два таких колосса математики, как Гаусс и Риман. Его не пришлось упрашивать, он переехал и никогда не покидал Гёттинген.

Между тем с теории инвариантов Гильберт уже переключился на теорию чисел – типично немецкую дисциплину с тех пор, как Гаусс опубликовал «Арифметические исследования» (1801) и назвал ее царицей математики. Немецкое математическое общество (основанное в 1890 году под председательством Георга Кантора (1845-1918)) поручило Гильберту и Минковскому разработать отчет о состоянии вопроса. Минковский сразу отказался, сославшись на занятость, зато Гильберт сделал намного больше, чем от него ожидали. Результатом была жемчужина математической литературы, ставшая в дальнейшем классикой в этой области знания, – Der Zahlbericht («Отчет о числах»), датированная 10 апреля 1897 года. В этой работе Гильберт объединил все имеющиеся данные, организовав их с новой точки зрения, переписал формулировки и доказательства. Он не только перераспределил детали головоломки, которую представляла собой алгебраическая теория чисел, но и заполнил лакуны оригинальными исследованиями. В предисловии к отчету он писал:

«Теория чисел – это здание редкой красоты и гармонии. [...] Целью данного отчета является описание с единой точки зрения результатов теории чисел с ее доказательствами, с ее логическим развитием, что должно приблизить тот день, когда достижения классиков в области теории чисел станут общим достоянием всех математиков».


ПЕРВАЯ НАУЧНАЯ РЕВОЛЮЦИЯ

Древние вавилонская и египетская цивилизации имели значительные знания в области геометрии. Но их, если можно так выразиться, «математика» не вышла за пределы технической стадии, основываясь на сборниках инструкций для решения повседневных проблем, которые были связаны с трудом землемеров и в которых едва прослеживалось понятие доказательства. Геометрические теоремы Фалеса Милетского (ок. 624 – ок. 546 до н.э.) заставили бы улыбнуться египетских землемеров ввиду их простоты и бесполезности («Диаметр делит круг на две равные части»). Однако мы говорим о первых теоремах, которые являются истинными спустя более чем 2000 лет. Фалесу удалось измерить высоту пирамиды Хеопса с использованием простого правила пропорциональности.

Пифагору также удалось установить логическую связь с наследием вавилонян и египтян. Под руководством Платона Афинская академия систематизировала пифагорейскую математику, особенно заметен вклад Теэтета (ок. 417 – ок. 369 до н.э.) и Евдокса (ок. 390 – ок. 337 до н.э.). Первому приписывают теорему, гласящую, что существует только пять правильных многогранников, пять Платоновых тел. Тогда же геометров того времени завораживали три классические проблемы: трисекция угла, квадратура круга и удвоение куба. Перейдя из Афинской академии в Александрийский мусейон, мы встретились бы с Евклидом, работа которого (наряду с работой Аполлония и Архимеда) завершает золотую эпоху греческой геометрии.


    Ваша оценка произведения:

Популярные книги за неделю