Текст книги "Вначале была аксиома. Гильберт. Основания математики"
Автор книги: авторов Коллектив
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 4 (всего у книги 9 страниц)
«По сравнению с прочими преподавателями этот проворный мужчина с густой рыжей бородой и в повседневном костюме выглядел не слишком академично. Его лекции были очень лаконичными. Он читал их довольно скучно, но благодаря богатому содержанию и ясности представления о форме можно было забыть. Гильберт часто демонстрировал свои новые открытия, но всегда убеждался, что все следят за его мыслью. Он читал лекции для учеников, а не для самого себя».
ПОРТРЕТ ГИЛЬБЕРТА В ШЛЯПЕ
Эта фотография 1912 года стала частью собирательного образа математиков. Панама, глаза, сверкающие за стеклами очков, заостренная бородка. .. Но кое-что отсутствует на этом известнейшем портрете: обворожительность персонажа. Непреодолимая страсть к математике, о которой свидетельствует цветущая риторика его речей, и некоторая чудаковатость, свойственная ученым. Один из учеников рассказывал, как несколько дней Гильберт появлялся на людях в одних и тех же рваных брюках, отчего окружающим становилось неловко.
Указать ему на эту деликатную деталь было поручено его помощнику, Рихарду Куранту (1888-1972). Однажды вечером, воспользовавшись тем, что они проходят мимо колючих кустов, Курант сообщил Гильберту, что у него порвались брюки. «А! Нет, – ответил Гильберт, – они уже несколько недель в таком виде, но никто не обратил внимания». Более того, обычно разъезжая на велосипеде по улицам Гёттингена, этот математик никогда не уставал флиртовать. На одной из вечеринок по случаю дня рождения гости состязались в стихосложении, каждая строфа начиналась с первой буквы имени девушки, за которой ему доводилось ухаживать. Но когда веселая компания добралась до буквы К, никто не знал, что сказать. В этот момент Кёте, благоразумная и мудрая жена Гильберта, заметила: «Могли бы хоть раз подумать и обо мне».
Естественно, весомыми были и обстоятельства времени и места. После смерти старого Кронекера и отставки Вейерштрасса немецкий академический мир начал оживать, академические кафедры закружились в танце, в результате Клейн и Гильберт заняли благоприятное положение и обосновались в Гёттингене. Вскоре стараниями Феликса Клейна, большого ученого и политика, Гёттинген превратился в важнейший математический центр мира, обладающий впечатляющей группой преподавателей, среди которых выделялись Гильберт и Минковский (в штат университета его зачислили в 1902 году), а также многочисленными подающими надежды учениками.
За 35 лет преподавания в Гёттингене было сделано очень многое. Список учеников Гильберта впечатляет: Отто Блюменталь, Макс Ден, Эрхард Шмидт (1876-1959), Рихард Курант, Эрнст Цермело (1871-1953), чемпион мира по шахматам Эмануэль Ласкер (1868-1941) и другие. Среди них выделяется Герман Вейль, он защитил докторскую диссертацию под руководством Гильберта в 1908 году и сменил его в 1930 году, когда тот вышел в отставку. Гильберт всегда держался как наставник, помогающий по мере возможности. Так, например, когда возникло недовольство по поводу назначения преподавателем в университете молодой выдающейся женщины-математика Эмми Нётер (1882-1935), своим самым неуступчивым коллегам Гильберт иронично заявил: «Не думаю, что пол кандидата является аргументом против его назначения. Все-таки это университет, а не общественная баня». Это еще один пример широты его взглядов.
ГЛАВА 3
Аксиоматизация физики
Первые годы нового века Гильберт работал в области вариационного исчисления и интегральных уравнений. Ему удалось придать форму новому ответвлению анализа – функциональному анализу. Кроме того, он сыграл ключевую роль в математической формулировке общей теории относительности и квантовой механики. Гильберт соревновался с Эйнштейном в поиске уравнений, которые связали бы гравитацию с теорией относительности.
Но это не все: так называемое гильбертово пространство стало в итоге математической структурой, распахивающей двери в квантовое пространство.
Одно из недавних открытий в области истории математики касалось безудержного интереса, который Гильберт проявлял к физике своего времени. Дружба с Минковским и знакомство с работами Герца оказались катализаторами его интереса в юные годы, а математическая традиция Гёттингена, без сомнения, сделала все остальное (Гаусс, Риман и Клейн разделяли его любовь к физике). Его научная деятельность совпала с рождением двух физических учений XX века – квантовой теории (1900) и теории относительности (1905), – что усилило его интерес в первые два десятилетия нового века.
С приезда в Гёттинген в 1895 году Гильберт вел множество курсов и семинаров, посвященных математической физике. Неудивительно, что на лекции в Париже в 1900 году, говоря о шестой проблеме, он отметил: исследования в области оснований геометрии подсказывают тот же – аксиоматический – подход к физическим наукам, в которых у математики заметная роль. Механика, оптика, а также термодинамика и теория электричества должны следовать скрупулезной модели, испробованной геометрией. Строгость – не сугубо математическое свойство. Физика может достичь абсолютной строгости по стандартам аксиоматического метода.
В 1905 году, избрав это направление, немецкий математик предложил аксиоматическое изложение механики, описав понятие силы через различные аксиомы векторного пространства. Затем он аксиоматизировал теорию вероятностей – в том виде, в каком она возникла в рамках кинетической теории газов. Ряд выпускников Геттингена, учеников Гильберта, внесли в это существенный вклад. В 1909 году Георг Гамель (1877-1954) аксиоматизировал классическую механику, а Константин Каратеодори (1873-1950) сделал то же для термодинамики. Сам Гильберт совершил гигантский шаг, в 1915 году сформулировав собственные уравнения для общей теории относительности. Наконец, в конце счастливых 1920-х годов в сотрудничестве с Лотаром Нордгеймом (1899-1985) и Джоном фон Нейманом (1903-1957) он попытался включить квантовую механику в аксиоматическую систему.
Однако его интерес к физике не может рассматриваться в отрыве от анализа. Его внимание к анализу сменялось вниманием к физике и обратно, и в первые два десятилетия века это происходило непрерывно. Гильберт сосредоточился на двух областях, довольно близких к анализу, – вариационном исчислении и интегральных уравнениях. Действительно, в 3 из 23 проблем, которые Гильберт представил в Париже, речь шла о вариационном исчислении и, в частности, о развитии теории уравнений в частных производных.
УРАВНЕНИЯ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Довольно долгое время уравнения (алгебраические) отвечали требованию вычислять неизвестные числа, например корни многочлена. Но в математике нередко возникают качественно другие проблемы: те, в которых неизвестное – это не число, а функция, выражающая отношение между различными переменными (как в случае с движением планет – зависимость пространственных координат от времени). Особый класс здесь – так называемые дифференциальные уравнения, определяющие неизвестную функцию на основе одного или нескольких уравнений, в которых участвуют производные функции.
Основав исчисление (дифференциальное и интегральное), Ньютон сформулировал законы физики в том виде, который связывал между собой физические величины и скорости изменения. То есть пространство, пройденное движущимся телом с его скоростью, и скорость движущегося тела с его ускорением. Итак, законы физики оказались выраженными через дифференциальные уравнения, при этом дифференциалы и производные были мерами скорости изменения. Производная функции показывает, как изменяется значение функции, если она возрастает, убывает или остается постоянной. Ускорение, например, измеряет изменения скорости движущегося тела, вариацию скорости во времени, поскольку частное дифференциалов скорости и времени есть производная скорости относительно времени:
а = dv/dt
Однако решение дифференциальных уравнений, как и алгебраических, не всегда оказывается простым, вернее никогда. Если неизвестная функция зависит от единственной переменной, они называются обыкновенными дифференциальными уравнениями. Например, производная от функции синуса у = sin х равна у’ = cos х, где у’ обозначает первую производную. Эта последняя функция может быть дифференцирована, в свою очередь, для получения у" = -sin х> из чего можно вывести дифференциальное уравнение у" = -у. Это – дифференциальное уравнение второго порядка, поскольку появляется вторая производная.
Другой пример дифференциального уравнения второго порядка – второй закон Ньютона: F = m x а («сила равна произведению массы на ускорение»),
а = dv/dt = d²x /dt²,
где ускорение – это первая производная от скорости, но также вторая производная от положения, если x(t) обозначает положение движущегося тела в зависимости от времени.
Обратная ситуация – если неизвестная функция зависит от более чем одной переменной и появляются производные относительно этих переменных: это называется уравнениями в частных производных. Предположим, объем газа V – это функция от его температуры Т и давления на него Р, то есть V(T,Р). Когда Тили Р изменяются, V тоже изменяется. Производная V(T, Р) относительно Т называется частной производной относительно Т и записывается как
∂V(T,Р)/∂T.
Точно так же
∂V(T,Р)/∂P
является частной производной относительно Р. Как и в случае с обыкновенными производными, существуют вторая, третья и так далее частные производные; так, в качестве примера
∂2V(T,Р)/∂P2
представляет собой вторую частную производную относительно Р. Но дифференциальные уравнения, в которых участвуют частные производные, имеют особенные черты, принципиально отличающие их от обыкновенных. В изучении естественных явлений уравнения в частных производных появляются так же часто, как и обыкновенные дифференциальные уравнения, но обычно их намного сложнее решать.
В XVIII веке изучение физического явления в сущности было примерно тем же самым, что и нахождение дифференциального уравнения, которое им управляет. Так, после открытия Ньютоном знаменитого дифференциального уравнения «сила равна произведению массы на ускорение», которое управляет движением систем точек и твердых упругих тел, швейцарский математик Леонард Эйлер (1707-1783) сформулировал систему уравнений в частных производных, описывающую движение сплошных сред (воды, воздуха и других флюидов), не обладающих вязкостью. Через некоторое время французский математик Жозеф-Луи Лагранж (1736-1813) сосредоточился на музыке, на уравнении в частных производных, которое показывает распространение звуковых волн. Позже Жан-Батист Фурье (1768-1830) обратился к потоку тепла, предложив другое уравнение в частных производных, описывающее его распространение. В разгаре XIX века уравнения Навье – Стокса описало движение вязких флюидов, а уравнения Максвелла – электромагнетизм. Вся природа – твердые тела, флюиды, звук, тепло, свет, электричество – оказалась смоделированной посредством уравнений в частных производных. Но одно дело – найти уравнения рассматриваемого явления, а другое – решить их.
Физика слишком сложна для физиков.
Давид Гильберт
Парадигматические уравнения в частных производных – это три уравнения, полученные в области математической физики: уравнение волн, уравнение тепла и уравнение Лапласа.
Прежде чем рассмотреть последнее, введем обозначение, которое чрезвычайно упрощает его запись: лапласианом функции u = u(х,y,z,t) от пространственных координат и времени называют сумму следующих производных относительно х,y,z:
∆u = ∂²u/∂x² + ∂²u/∂y² + ∂²u/∂z²
Эту группу частных дифференциалов лапласианом назвал Джеймс Клерк Максвелл (1831-1879), хотя обозначение заглавной греческой буквой дельта восходит к трактату 1833 года.
В данных обстоятельствах ∆u = 0 – это уравнение Лапласа, или уравнение непрерывности, выражающее, что идеальный флюид, в котором нет завихрений, неразрушим. Это уравнение математически кодирует прописную истину: если флюид несжимаем, из сколь угодно малого объема в момент времени должно выйти столько же жидкости, сколько ее содержится в нем. Однако французский математик и физик Пьер-Симон Лаплас (1749-1827) обнаружил его в небесной механике, изучая гравитационный потенциал, то есть функцию, измеряющую гравитационную силу, с которой тело – какой бы формы оно ни было – притягивает внешнюю точечную частицу. В результате это уравнение Лапласа также получило название уравнения потенциала. Как уже можно догадаться, один из гениальных вкладов Гильберта в анализ был связан со строгим решением этого уравнения в частных производных.
УРАВНЕНИЕ ВОЛН И УРАВНЕНИЕ ТЕПЛА
Уравнение волн, которое описывает распространение волн звука или света, а также физических волн, производимых колеблющейся струной или мембраной, следующее:
∂²u/∂t² = c²∆u .
В свою очередь, уравнение тепла, которое регулирует распространение тепла (то, как оно движется из зон, где температура выше, в зоны, где она ниже), соответствует следующему виду:
∂u/∂t = k∆u .
Оба уравнения кажутся обманчиво похожими, за исключением того, что в первом вместо первой производной появляется вторая производная относительно времени. Эта тонкая математическая разница имеет чрезвычайное значение для физики: уравнение волн обратимо – в том смысле, что оно остается неизменным, если мы изменим направление течения времени. Математически: если мы заменим t на -t, уравнение останется прежним, поскольку при двойном дифференцировании знаки отрицания взаимно уничтожаются. Следовательно, уравнение не упорядочивает решения с течением времени, в связи с чем можно восстановить информацию о прошлом (по этой причине мы используем световые или звуковые сигналы для общения). Уравнение тепла, наоборот, необратимо (если заменить t на -t, мы не получим то же самое уравнение). Распространение тепла ориентировано темпорально, оно зависит от оси времени. Эта необратимость проявляется в том, что уравнение упорядочивает решения стечением времени, поэтому обычно невозможно восстановить информацию о прошлом (решение, соответствующее пику тепла, в итоге смягчается таким образом, что через некоторое время невозможно узнать, где и как возник взрыв или пожар, поскольку тепло распространилось по всему пространству).
ОТ ПРОБЛЕМЫ К ПРИНЦИПУ ДИРИХЛЕ
Одной из проблем уравнения Лапласа, которая не давала покоя математикам и физикам XIX века, была так называемая проблема Дирихле, названная в честь немецкого математика Петера Густава Лежёна Дирихле (1805-1859). Она состояла в том, чтобы найти гармоническую функцию в области пространства, то есть функцию u, удовлетворяющую уравнению Лапласа Δu = 0 в этой области пространства, при этом на границе области (см. рисунок 1) она принимает заданные значения (например, u = ƒ на границе). То есть если обозначить область как Ω и границу области как γ,
Δu = 0 в Ω
u = ƒ в γ
РИС. 1
В проблеме Дирихле ищут функцию и, которая принимает определенные значения на границе, и лапласиан, которой равен нулю внутри области.
Эта математическая проблема была связана со множеством физических проблем. Одна из них заключалась в ее решении. Представим себе упругую мембрану, равномерно растянутую над областью плоскости Ω, ограниченную кривой γ. Теперь предположим, что контур деформируется так, что каждая точка γ занимает некоторый уровень, заданный функцией ƒ. Естественно, вследствие деформации контура мембрана изогнется и начнет колебаться. Если позволить ей свободно колебаться, по истечении некоторого времени она достигнет равновесия, приняв некоторое положение (см. рисунок 2). Требуется вычислить величину деформации каждой точки внутри мембраны относительно плоскости, то есть высоту, которую сейчас занимает то, что переместилось. Функция u(х, у), измеряющая эти величины, соответствует проблеме Дирихле (в двух измерениях).
С точки зрения физики должна существовать функция u, являющаяся решением проблемы, кроме того, она должна быть единственной, поскольку рано или поздно мембрана остановится, и произойдет это единственным способом. Однако математически вопрос не настолько очевиден. В лекциях по данной теме Дирихле – как и Гаусс, Джордж Грин (1793-1841) и Уильям Томсон (1824-1907) – разработал метод решения проблемы и нахождения неизвестной функции и. Риман позже назвал этот метод принципом Дирихле.
Дирихле допустил, что в положении стабильного равновесия решение – функция u – должно обладать наименьшей энергией, то есть давать наименьшее значение для следующего интеграла {энергия Дирихле):
РИС. 2
Возможное положение равновесия мембраны через некоторое время.
Другими словами, функция, которую мы ищем, должна давать – в сравнении со всеми возможными функциями, определяющими то же самое граничное условие, – наименьшее возможное значение для энергии. На физических основаниях оказывается возможным, что при любой заданной замкнутой кривой в пространстве существует поверхность с наименьшей энергией, которая ее заполняет, поскольку любая поверхность или мембрана будет стремиться принять конфигурацию, требующую наименьшей энергии.
Так как интегрируемое J(u) всегда положительно (является суммой квадратов), интеграл J(u) всегда больше или равен нулю. Поэтому Дирихле показалось рациональным, что должна существовать функция u, которая имела бы наименьшее значение. Заметьте, что если бы не было этой нижней границы, предполагающей нуль, могло бы оказаться так, что получаемые значения с каждым разом становились бы все меньше (0, -1, -2, -3...), причем это необязательно должно быть наименьшее значение. Предполагая существование этой минимизирующей функции u из J(u)> Дирихле доказал, что функция u гармоническая и, следовательно, удовлетворяет исходной проблеме, которую нужно решить.
Но оставалось неясно, действительно ли существует этот минимум, эта функция u, в которой интеграл Дирихле достигал бы своего наименьшего значения. Стоит подумать, например, о множестве всех действительных положительных чисел: они все больше или равны нулю, но нет ни одного, которое было бы наименьшим (для любого выбранного нами числа всегда будет меньшее число). Нижней границы множества (нуля) невозможно достичь в рамках самого множества (положительных чисел), так что нет и минимума. Усилия Вейерштрасса и его математической школы, направленные на строгое обоснование существования u, разбились об этот вопрос. Однако физики продолжали считать, что так называемый принцип Дирихле гарантирует решение проблемы Дирихле.
И лишь Гильберту – около 1904 года – удалось возродить принцип и доказать несомненное существование минимума. Но чтобы объяснить его доказательство, мы должны погрузиться в пограничную область вариационного исчисления, которое стремится определить, какие функции делают интеграл наименьшим.
ВАРИАЦИОННОЕ ИСЧИСЛЕНИЕ
Проблема брахистохроны, или кривой с самым быстрым спуском, исторически была первой проблемой в развитии вариационного исчисления. Среди всех кривых, соединяющих две точки, нужно найти ту, вдоль которой частица, двигаясь под действием силы тяжести, падает за меньшее время. При рассмотрении всех возможных кривых, соединяющих точку А с точкой Ву ищется минимизирующая время падения, что может быть выражено в виде интеграла. То есть ведется поиск кривой или функции, которая делает наименьшим значение этого интеграла. Данная проблема была предложена в 1696 году Иоганном Бернулли (1667-1748) и была решена независимо Ньютоном, Лейбницем, Иоганном и Якобом Бернулли. Решением оказалась не прямая линия и не дуга окружности, а дуга кривой под названием циклоида (см. рисунок 3).
Базовые понятия новой ветви анализа принадлежат Эйлеру и Лагранжу. Первый ввел название вариационное исчисление, а второй создал «метод вариации», который позволяет решить многие проблемы в рамках этой дисциплины. Основа вариационных проблем следующая: предполагается множество С любых элементов (чисел, геометрических точек, функций и так далее), которые обозначаются как м, и каждому элементу и назначается число F(u). Если С – это числовое множество, то F(u) – это функция от одной переменной; если С – это множество точек на плоскости, то F(u) – это функция от двух переменных, и так далее. Но если С – это множество функций, то F(u) – это то, что называется функционалоМу который в одной из различных функций, входящих в состав множества, может принимать значение экстремума (максимума или минимума).
Чтобы решить проблему вариационного исчисления, сравнивали пробную функцию и со всеми ближайшими функциями, то есть с теми, которые получаются при легком варьировании пробной функции и (отсюда название «вариационное исчисление»), и вычисляли функционал F для каждой функции. Для функции, являющейся решением, характерно, что функционал для всех ближайших функций всегда больше (если мы ищем минимум). В этом суть «метода вариации». Эйлер и Лагранж обнаружили: для того чтобы функция и множества С предоставляла экстремальное значение (максимум или минимум) функционалу, F(ü) должно удовлетворять некоторому дифференциальному уравнению (уравнениям Эйлера – Лагранжа). Однако удовлетворение данному уравнению – необходимое, но недостаточное условие.
РИС. 3:
Дуга циклоиды между А и В.
РИС. 4:
Какую из трех возможных траекторий выберет частица, чтобы из А попасть в В? Принцип наименьшего действия устанавливает, что это траектория, минимизирующая величину под названием действие.
Мерой успеха этой плеяды идей является то, что многие математики XVIII и XIX веков стремились истолковать появлявшиеся в физике дифференциальные уравнения как экстремальные условия определенных функционалов. Законы физики можно было переписать в терминах принципов минимума, поскольку природа всегда стремится к оптимизации. Эту же цель преследовали Пьер Луи де Мопертюи (1698-1859) в механике по принципу наименьшего действия (см. рисунок 4), а также Пьер де Ферма (1601-1665) в оптике: траектория, которой следует луч света, проходя из точки А в другую точку В другой среды, – это траектория, требующая наименьшего времени. Физические трактаты конца XIX века были полны подобных принципов, утверждающих, что определенные физические процессы всегда протекают так, чтобы минимизировалось некое количество. Это были так называемые вариационные принципы.
Данная уважаемая область анализа была видом продолжения анализа бесконечно малых. Если традиционный анализ показывал, как найти максимумы или минимумы функции, вариационное исчисление демонстрировало, как определить функцию, максимизирующую или минимизирующую определенный функционал, который обычно выражен в виде интеграла. Однако эта проблема оказалась намного сложнее, и в конце XIX века еще нельзя было определить ряд критериев, гарантировавших существование экстремума (максимума или минимума). Таким образом, неудивительно, что вариационное исчисление касается 3 из 23 проблем Гильберта.
В то время как в проблеме 23 Гильберт задался вопросом о возможном обобщении вариационных методов, в проблемах 19 и 20 он озаботился свойствами и существованием решений проблем вариационного исчисления. Два вопроса оставались открытыми. Первый – существование или отсутствие решения (проблема 20), и второй – свойства, которым в случае своего существования это решение удовлетворяет. Если отбросить техническую оболочку, в проблеме 19 Гильберт спрашивал, должны ли физические проблемы, которые обычно позиционируются как проблемы вариационного исчисления (проблема Дирихле, например), всегда иметь решения с наилучшим поведением: всегда ли решения такие же плавные и регулярные, как аналитические функции (которые можно продифференцировать бесконечное число раз)? Эта проблема была решена в 1904 году российским математиком Сергеем Бернштейном (1880-1968) в его докторской диссертации (одним из руководителей которой был Гильберт). Бернштейн доказал, что решения уравнений в частных, интересовавших Гильберта производных (включая решения уравнения потенциала Лапласа), были, в случае их существования, регулярными, с идеальным поведением, если они удовлетворяли некоторым довольно простым условиям об их трех первых производных. Становилось очевидным, что, например, если интеграл Дирихле достигал своего минимума, то происходило это обязательно в допустимой функции.
Но в том же 1904 году Гильберт удивил математический мир, восстановив доверие к принципу Дирихле, которое тот утратил после критики Вейерштрасса. До Вейерштрасса предполагалось, что в вариационном исчислении у любого функционала есть минимум. Гильберт доказал, что в конкретном случае энергии ДирихлеJ(u) действительно есть минимум. Он построил минимизирующую последовательность функций, значения которой для интеграла были каждый раз все более низкими и сходились к наименьшему значению. И на ее основе он получил минимум, то есть функцию иу которая де факто достигала этого наименьшего значения. Физики и математики могли вздохнуть с облегчением.
НАУКА НА РАСПУТЬЕ
В конце XIX века физики работали в рамках совместного опыта. Классическая механика (созданная Ньютоном) и классическая электродинамика (завершенная Максвеллом) предоставляли абсолютно удовлетворительный для понимания окружающего нас мира материал. С увеличением точности измерительных приборов и возможности осуществлять все более сложные эксперименты физики начали изучать явления в не самых привычных условиях: при очень высоких скоростях (близких к скорости света) и на макрокосмическом или микроскопическом уровне. Именно тогда стали возникать расхождения с прогнозами, которые давала классическая физика, что привело к пересмотру ее оснований и породило две великие физические теории прошлого века: теорию относительности и квантовую теорию. Первая ставила своей целью объяснить явления, происходящие при высоких скоростях (специальная теория относительности) и космических масштабах (общая теория относительности), вторая же изучала явления атомного масштаба (квантовая механика).
К 1900 году ясность классической физики скрывали всего четыре тучи – проблемы, которые она не могла объяснить: излучение черного тела, фотоэлектрический эффект, спектры химических элементов и эфирный ветер. Первые три проблемы дали дорогу квантовой, а последняя – релятивистской физике. Классический принцип относительности, обязанный своим рождением Галилею, не был способен дать объяснение некоторым электромагнитным явлениям, измеряемым интерферометром (эксперимент Майкельсона – Морли). В 1905 году Альберт Эйнштейн (1879-1955) заложил основы специальной теории относительности в своей статье «К электродинамике движущихся тел». Чтобы решить мнимое противоречие, которое проявлялось при изучении поведения уравнений Максвелла в трансформациях Галилея (не прибегая к гипотетическому эфирному ветру), Эйнштейн предложил поддержать теорию Максвелла, изменив механику Ньютона. Нужно было оставить трансформации Галилея, заменив их на трансформации Лоренца, и принять революционную гипотезу: инвариантность скорости света. Среди его выводов были следующие: отказ от эфира, относительность одновременности, сжатие пространства, замедление времени и так далее. Специальная теория относительности вмиг перечеркнула иллюзию об абсолюте пространства и времени классической физики.
Специальная теория относительности, хотя и была чрезвычайно дерзкой с позиции физики, не требовала математики, неизвестной на тот момент физикам и лежавшей в основе работ Пуанкаре и Хендрика Лоренца (1853-1928). В своем озарении Эйнштейн применил не очень требовательную математику. Однако некоторые физики и математики посчитали, что столь радикальные физические и философские идеи должны быть подкреплены новыми математическими формулировками. И здесь вступил в игру старый товарищ Гильберта, Герман Минковский.
ГИПОТЕЗА ВАРИНГА
Как для Минковского, так и для Гильберта теория чисел была самым чудесным порождением человеческой мысли. В 1908 году, взяв перерыв в работе, чтобы поправить здоровье, Гильберт доказал гипотезу, предложенную британским математиком Эдуардом Варингом (1734-1798):
«Любое целое число представимо как сумма максимум девяти кубов; любое число можно представить в виде не более 19 четвертых степеней, и так далее». Другими словами, без каких– либо доказательств утверждалось, что для любой степени к существует некоторое минимальное число таких степеней (назовем его g(k), поскольку оно зависит от степени выбранного к), которое позволяет выразить любое число л в виде суммы ровно g(k) к-х степеней:
n =х1k + х2k + ... + xg(k)k.
В 1770 году Жозеф-Луи Лагранж доказал, что любое число – это сумма четырех квадратов, то есть что g(2) = 4. Но до Гильберта прогресса в этом вопросе не наблюдалось. Для некоторых конкретных значений k(k = 3, 4, 5, 6, 7 и 8) удалось ограничить значение g(k); так доказали, что g(4)≤53, но было еще далеко до доказательства, что для записи любого числа достаточно всего 19 четвертых степеней, то есть что g(4) = 19.
Эдуард Варинг.
Заслуженная премия
Гильберт напрямую не оценивал значения g(k) (это было сделано в XX веке) и косвенно доказал, что функция g(k) четко определена, то есть для каждого к она принимает конечное значение (никогда не принимает бесконечных значений, из чего можно сделать вывод: всегда существует минимальное число степеней, необходимых для записи любого числа). Это достижение принесло ему в 1910 году премию Яноша Бойяи. Как член жюри Пуанкаре отдал должное работе немецкого математика не только потому, что она относилась к теории чисел, но и за широкий спектр затронутых в ней тем: инварианты, аксиоматические основания геометрии, принцип Дирихле и так далее. Он также оценил строгость и простоту примененных методов, в которых проявился талант Гильберта как преподавателя.
Друзья снова встретились в 1902 году. Гильберт отказался от кафедры в Берлине, чтобы остаться в Гёттингене, но добился должности для своего дорогого коллеги. Гёттинген в одночасье превратился в Мекку для математиков. Здесь жили сразу три пророка – Клейн, Гильберт и Минковский. С 1902 по 1909 год последние двое вместе читали несколько курсов по математической физике, в частности по электродинамике движущихся тел (сегодня известной как теория относительности). Минковский очень внимательно отнесся к пререлятивистским теориям Пуанкаре и Лоренца и сразу же откликнулся на подход Эйнштейна. Его очень удивило, что этот революционный подход принадлежит его бывшему ученику в Цюрихе, в математических знаниях которого он несколько сомневался.
Минковский рассматривал время как четвертое измерение. Между пространством и временем есть нерушимая связь, они формируют единое целое – пространство-время. Все, что у Эйнштейна казалось туманным, в псевдоевклидовом четырехмерном мире, который вообразил Минковский, становилось ясным. Это геометрическое обрамление способствовало распространению специальной теории относительности. Его воздействие было очень сильным, хотя его приняли не сразу (настораживал тот факт, что чтобы оперировать физическими понятиями, требовалось обращаться к геометрии с ее отрицательными векторами). Эйнштейну это показалось поверхностной эрудицией, и в ответ Гильберт возразил: «Любой мальчик на улицах Гёттингена понимает в четырехмерной геометрии больше, чем Эйнштейн». Минковский изложил свою позицию в нескольких лекциях 1908 года, но не дождался их публикации и не успел насладиться успехом: в 1909 году ученый умер в результате осложнений после операции по удалению аппендикса. Эта потеря усилила депрессию, в которой Гильберт находился из-за нервного истощения.