Текст книги "Вначале была аксиома. Гильберт. Основания математики"
Автор книги: авторов Коллектив
Жанры:
Математика
,сообщить о нарушении
Текущая страница: 6 (всего у книги 9 страниц)
∞
∑hpqSqn = EnSpn. [1]
q=1
С другой стороны, в волновой механике пытались решить волновое уравнение Шрёдингера Ηψ = Εψ, определяя собственные значения, являющиеся решением. Если в уравнение ввести собственную функцию ψn, назначенную собственному значению Еn , получается:
Ηψn = Εnψn. [2]
Как Гильберт, так и Дирак, переформулировав обе проблемы в таком виде, перешли к их сравнению и заметили, что [1] и [2] представляют собой схожую структуру: Гамильтониан x ΧΥΖ = Энергия x ΧΥΖ. Следовательно, вопрос, которым они задались, звучал так: какие условия следует допустить, чтобы приравнять член к члену уравнения [1] матричной механики к уравнению [2] волновой механики? Так как «интегрирование» в царстве непрерывного – это аналог «сложения» в царстве дискретного (символ ∫ происходит от последовательной деформации прописной S), они решили: то, что должно заменить (при переходе от дискретного к непрерывному) первый член в [1], будет выглядеть как ∫h(х,у)ψn(у)d(у). Значит, объединение между обеими квантовыми механиками было бы достигнуто, если бы последнее выражение совпадало с первым членом в [2] в виде:
Ηψn(x) =∫h(x,у)ψn(у)dy,
то есть если бы любой оператор Гамильтона мог быть записан как интегральный оператор.
Но это было невозможно даже для такого простого оператора, как тождество (определяемое как Ηψ = ψ для любой волновой функции). Дирак не спасовал перед трудностями и, чтобы преодолеть их, прибегнул к функции δ. Эта своеобразная функция определена δ(z)=0 для любого z≠0[3] и, как ни парадоксально, ∫δ(z)dz= 1 [4]. Как представить себе функцию, которая равна 0 во всех точках, кроме одной, и интегрирует 1?
Итак, приняв эту функцию и рассматривая h(x,y)=δ(x-y) как ядро вышеприведенного интегрального уравнения, можно выразить тождество, например, как интегральный оператор, просто применив магические свойства δ:
[3] [4]
Ηψ(x)=∫h(х,у)ψ(у)dy=∫δ(х-у)ψ(у)dy= ψ(x)∫δ(x-y)dy=ψ(x)·1=ψ(x).
С помощью подобных вычислений можно доказать, что любой оператор может быть представлен как интегральный оператор, так что обе квантовые механики оказываются принудительно унифицированными.
Схематическая диаграмма дельты Дирака: «функция», которая равна 0 во всех своих точках, кроме начала, где она равна бесконечности, чтобы таким образом интегрировать 1.
Для того чтобы все преобразования между представлениями квантовой механики работали корректно, Дирак был вынужден прибегнуть к использованию вымышленной математической сущности – дельта-функции, которая на самом деле функцией не была. Для физиков это стало полезной идеализацией, привести которую к строгому виду должны были математики. Для математиков, наоборот, это понятие оказалось подозрительным и не обладающим математической реальностью, его использование оправдывалось только физическими применениями. Дельта-функцию Дирака ждала печальная участь, поскольку лишь в 1950 году она нашла свое место в рамках теории распределений, созданной Лораном Шварцем (1915-2002). До этого из-за отсутствия у нее строгости она оставляла равнодушными математиков Гёттингена.
И именно тогда в Гёттинген приехал молодой Джон фон Нейман, чтобы поработать в качестве помощника Гильберта. Блестяще защитив докторскую диссертацию по теории множеств, он начал читать лекции по функциональному анализу вместе с Эрхардом Шмидтом в Берлине. В то время Гильберт пытался найти рациональную математическую модель для квантовой механики; но его аксиоматический подход развивался медленно, потому что ученый страдал злокачественной анемией (смертельным заболеванием, от которого он исцелился благодаря нетрадиционным методам). В 1926-1927 году Гильберт попросил своего ассистента по физике Лотара Нордгейма разложить для него по полочкам суть последних исследований, чтобы иметь возможность читать курс квантовой механики, применяя свой любимый аксиоматический метод. Фон Нейман вдохнул жизнь в проект. Под предводительством Гильберта они втроем ринулись искать строгое математическое оформление. Так, в 1927 году они вместе написали статью «Об основаниях квантовой механики». Гильберт хотел заставить работать интегральную формулировку физических проблем, более практичную, чем дифференциальный вариант, выраженный посредством волнового уравнения или дискретной версии в матричных терминах. Так же как и венгерский физик Корнелий Ланцош (1893-1974) в 1926 году (что любопытно, за месяц до того, как Шрёдингер опубликовал свое знаменитое уравнение), Гильберт, Нордгейм и фон Нейман разработали квантовую механику, пользуясь интегральными уравнениями. Однако результат этого первого приближения не был удовлетворительным, поскольку они не смогли избежать тупика дельты Дирака, чтобы перейти от одной формулировки к другой.
Фон Нейман закончил работу по аксиоматическому обоснованию квантовой механики в одиночку. Он сделал это в период с 1928 по 1932 год, опубликовав серию из пяти статей и монументальный трактат «Математические обоснования квантовой механики». Чтобы придать прочную математическую основу квантовой теории, он отказался от использования дельта-функций Дирака и от предпочтения интегральных уравнений Гильберта. У него было другое оружие: функциональный анализ. Он создал абстрактное аксиоматическое обрамление, гильбертово пространство, которое включало в себя частные матричный и волновой случаи.
«ОСНАЩЕННЫЕ» ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА
Квантовая механика фон Неймана, безупречная для математиков, столкнулась с тем, что физики предпочитали квантовую механику Дирака, которая оказалась более полезной, несмотря на отсутствие строгости. Благодаря работам Лорана Шварца и Александра Гротендика по функциональному анализу, в 1950-1960 годы дельта-функции приобрели статус математической природы, формализовавшись как обобщенные функции, или распределения. Так формализм Дирака перестал быть математически подозрительным, поскольку вошел в состав «оснащенных»гильбертовых пространств (или триплетов Гельфанда). Идея состоит в том, чтобы связать лучшее в формализме фон Неймана (строгое гильбертово пространство) и лучшее в формализме Дирака (полезная дельта-функция) внутри одной непротиворечивой математической структуры. С этой целью пытаются пойти дальше гильбертова пространства и включить такие своеобразные объекты, как дельта-функция, но не теряя в то же время хорошей геометрии гильбертова пространства. Решение заключается в рассмотрении структуры вокруг пространства, следуя духу теории распределений: взять обычное гильбертово пространство и оснастить его двумя другими пространствами – одним поменьше и другим побольше, – которые содержат соответственно все хорошие функции (тестовые функции) и все плохие функции (своеобразные функции, такие как δ Дирака). Множество из этих трех пространств называют«оснащенным»гильбертовым пространством, или триплетом Гельфанда.
Математические пространства, на которых были построены матричная и волновая механика, были очень разными: одно было дискретным и алгебраическим, другое – непрерывным и аналитическим. Как убедился фон Нейман, нет ничего удивительного в том, что их унификация не может быть достигнута без некоторого насилия над формализмом и математикой. Однако он заметил, что пространства функций, определенных в них, были в основном идентичными. Состояния атома были представлены в матричной механике посредством последовательностей чисел суммируемого квадрата, так что функциональное пространство, которое стояло за этим, было i2, то есть гильбертовым пространством по определению. Волновые функции волновой механики всегда относились к интегрируемому квадрату, то есть принадлежали функциональному пространству Lr И для этих двух пространств действовала теорема Фишера – Риса, хорошо известная математикам с 1907 года и гласящая, что оба эти пространства изоморфны. Так фон Нейман решил головоломку математической эквивалентности квантовых механик, показав, что механика Гейзенберга (сосредоточенная на матрицах и суммах) и механика Шрёдингера (сосредоточенная на функциях и интегралах) математически эквивалентны, поскольку являются вычислениями в двух изоморфных, идентичных гильбертовых пространствах.
До этого времени под гильбертовым пространством понималось одно из двух конкретных пространств £2 или Lr Фон Нейман первым задумал абстрактное гильбертово пространство в современном его понимании. Избегая конкретных представлений, он работал с понятиями, полученными из аксиом, и пришел к распространению спектральной теории Гильберта в соответствии с квантовыми потребностями.
Гильберт еще в начале века установил основы пространства бесконечной размерности. Но волей судеб такая абстрактная математическая теория, задуманная с опережением в 20 лет, подошла к замку квантовой механики. С тех пор математическая структура квантовой физики сопряжена с гильбертовым пространством. Описание состояния квантовой системы делается через вектор этого пространства. И физические величины изучаются с помощью операторов, определенных в гильбертовом пространстве. В результате появления квантовой механики теория гильбертовых пространств оказалась аксиоматически обоснованной, чему Гильберт был свидетелем.
ГЛАВА 4
Кризис оснований
С развитием математической логики и теории множеств удалось приблизиться к понятию, которое до той поры казалось бесполезным, – бесконечность. Но при этом углубилась трещина, проходящая по основанию математики. Наличие многочисленных парадоксов показало, что здание математики построено на песке. Тогда математики включились в гонку переоснования своей науки. Некоторые ученые встали на сторону логицизма Фреге и Рассела, другие разделились на две непримиримые группы: лидером интуиционистов стал Брауэр, а формалистов возглавил Гильберт.
В 1920 году Гильберт направился в беспокойные воды оснований математики и до конца карьеры развивал исключительно эту область. В некоторой степени ученый с удвоенными усилиями возобновил свое исследование оснований математики, хотя на этот раз он был немного более амбициозен, чем 20 лет назад. Он действовал не в одиночку. Его верными оруженосцами стали Пауль Бернайс (1888-1977), один из его ассистентов в Гёттингене, и Вильгельм Аккерман (1896-1962), преподаватель средней школы, его бывший ученик (Гильберт отказался дать ему должность в университете, узнав, что тот намеревается обзавестись семьей, поскольку, по его мнению, это отвлекло бы его от исследовательской деятельности). Важной составляющей этой работы в долгий межвоенный период стали оживленные дискуссии немецкого математика и его ближайших коллег с виднейшими европейскими математиками, которые придерживались противоположных взглядов.
Началом размышлений вокруг предмета математики исторически считается последняя четверть XIX века. Однако любопытство в отношении природы математического знания не ново, ему 2000 лет. Первый кризис оснований произошел в Древней Греции, когда разрушилась пифагорова арифметика. Пифагорейцы полагали, что все числа рациональны, но вскоре выяснилось, что существуют также иррациональные числа (как V2). Открытие этих неизмеримых чисел вызвало раскол в их математике. Рациональные числа не полностью описывали действительность. Континуум действительных чисел (например, прямая) образован не дискретным набором индивидуальных атомов. Работы Евдокса (IV век до н.э.) по обоснованиям примирили сознание с иррациональной бесконечностью и заложили фундамент, на котором была воздвигнута евклидова геометрия.
Работы, связанные со вторым кризисом оснований, уже в XX веке разъясняли, в чем заключаются метод, строгость и истина новой математики – скорее аксиоматичной, чем интуитивной, скорее экзистенциальной, чем конструктивной. Нужно понимать, что не избежал Гильберт и подводных камней. В их числе выделим ряд антагонических понятий математики, которые возникли не из ничего, а уходят корнями в историю развития самой точной из наук. Распространение математического анализа с начала XIX века, наряду с зачатками теории множеств и математической логики, – это путеводная нить дисциплины, которая стала называться философией, или основаниями математики. Но вернемся на некоторое время к истокам.
БОГ – МАТЕМАТИК?
Платонизм – изначальная философия математики. Приверженцами этой позиции среди прочих были Платон, Кантор, Гёдель... Любопытно, что первым платоником был не Платон, а Пифагор, который слепо верил, будто все есть число и математические объекты реально существуют. Как числа, так и треугольники или окружности существуют сами по себе, независимо от их толкования и нашего представления о них. Неоплатоники во главе с Блаженным Августином (IV век) утверждали, что бесконечное количество чисел в действительности существует в божественном разуме. И кому хватило бы глупости утверждать, будто Бог прекращает счет на каком-то числе, каким бы большим оно ни было?
Перенесение термина платонизм из области философии в математику произошло на лекции, которую в 1934 году читал Пауль Бернайс, первый помощник Гильберта. Бернайс хотел дать возбуждающее интерес название способу восприятия современной математики, в которой математические объекты не строятся, а понимаются как заданные. Для Кантора, например, реальность чисел была намного ощутимее реальности чувственного мира, поскольку числа существуют в виде вечных идей божественного интеллекта. Гёдель пошел еще дальше и рассматривал математические множества как объекты настолько же реальные, как и физические тела. Математики-платоники, имя которым легион, не изобретают математические теоремы, а открывают их.
Недостаток платонизма заключается в том, что он перенаселяет небеса. Платонизм хорош, когда необходимо утверждать, будто реально существуют простые математические сущности (треугольник в целом, квадрат в целом или общее количество натуральных чисел). Но он рушится, едва мы оставляем в стороне объекты античной математики и обращаемся к надуманным объектам современной математики – классам, множествам, функциям и сложным абстрактным структурам, которые выходили на первый план в XIX веке.
ЛАБИРИНТ ВЫЧИСЛЕНИЙ
Греки основали геометрию и подчинили ей арифметику. Но благодаря алгебре постепенно арифметика стала независимой от геометрии, что 2000 лет спустя дало возможность осуществить обратное приведение. Геометрия нашла свое место в алгебре, которая, в свою очередь, располагалась в арифметике, усиленная новым исчислением Ньютона и Лейбница. Но арифметизацию математики, произошедшую между XVII и XVIII веками, требовалось вернуть к греческой строгости и положить конец фокусам исчисления бесконечно малых.
В начале XIX века мрак математического анализа был почти абсолютным. Огюстен-Луи Коши (1789-1857) порвал с традицией бесконечно малых и переосновал анализ на понятиях предела и функции. Понятие функции было уточнено одновременно с развитием теорий дифференцирования и интегрирования. Но «Курс анализа» Коши, который увидел свет в 1821 году, строился на понятии непрерывности. Как вычисление пределов, так и работа с функциями требовали выверенного определения континуума чисел, на основе которого производились операции. Но что же представляет собой континуум? Доказательствам основных теорем анализа требовалось предварительное доказательство непрерывности прямой действительных чисел. Те, кто преподавал анализ, не знали верных доказательств теорем и пытались сделать так, чтобы официальные мистические операции принимались на веру. Это происходило даже с базовой теоремой Больцано, гласящей, что если функция непрерывна на определенном отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где эта функция равна нулю. Нечто подобное происходило в то время и с геометрией, и именно Гильберт прояснил понятие непрерывности.
В середине XIX века основная проблема состояла в том, чтобы построить действительные числа (континуум) на основе рациональных чисел, поскольку было известно, как построить последние на основе целых, а целые – на основе натуральных. Натуральные, целые, рациональные, действительные... всю математику. В 1872 году были предложены несколько теорий построения действительных чисел. Во-первых, это теория действительных чисел: ее смогли воспроизвести на основе конспектов занятий Вейерштрасса, который идентифицировал каждое действительное число с бесконечной суммой рациональных чисел. Во-вторых, это теория Кантора, аналогичная теории Шарля Мерэ (1835-1911), в которой каждое действительное число – предел последовательности рациональных чисел. И наконец, это теория Дедекинда, в которой действительное число – всего лишь сечение, оно подразумевает разделение всех точек прямой на два класса: расположенные слева и справа от сечения. Для любого сечения на прямой всегда есть действительное число, которое делит прямую на две части. Если Платон утверждал, что бог вечно геометризует, то Дедекинд объявил, что человек вечно арифметизирует. Все числа свелись, по сути, к натуральным. Это настоящий интеллектуальный подвиг. Но что такое натуральные числа?
ЛОГИКА КАК УНИВЕРСАЛЬНЫЙ КЛЮЧ К МАТЕМАТИКЕ
Поскольку арифметика напоминала дерево, которое безустанно растет вверх, в то время как его корни уходят вглубь, возникло первое течение, связанное с основаниями, – логицизм. Познакомимся с ним и с его первым идеологом, Готлобом Фреге (1848-1925). Этот немецкий математик отстаивал идею, что вся математика базируется на натуральных числах. Но как их построить? Ключ был, по его мнению, в области логики.
Всю жизнь Фреге был угрюмым преподавателем в Йенском университете. Учеников у него было так мало, что регулярно его занятия посещали только двое: один философ и один военнослужащий в отставке, который учился для души. Он был неспособен говорить на другие темы, кроме логики и математики, и всегда тактично сводил любой разговор к ним. Результатом этой одержимости была «Концептография», опубликованная с подзаголовком «Подражающий арифметике формальный язык чистого мышления» в 1879 году. Фреге наполнил новым вином старые бурдюки логики, создав «математическую логику».
Традиционная логика пребывала не в лучшем состоянии, несмотря на то что, по-видимому, исчерпала себя еще при Аристотеле. Но логика начала лукавить с математикой. Раймунд Луллий (1232-1315) в Ars Magna и Хуан Карамуэль (1606– 1682) в Mathesis Audax задумали вид логической алгебры, в которой все рациональные истины понимались в рамках вида вычислений универсальной записи, названной Лейбницем как calculus ratiocinator. Философы больше не испытывали необходимости в полемике, иначе они решали бы их, как будто их можно вычислить. Они усаживались бы за свои столы, брали в руки перья и говорили друг другу: посчитаем! Эти семена проросли в алгебру логики, которую Джордж Буль (1815-1864) вывел в своих «Законах мышления» в 1854 году.
Но Фреге больше интересовался логикой алгебры, чем алгеброй логики, и в своей «Концептографии» формализовал логику пропозиций и предикатов (логику первого порядка), то есть рассуждений о некоторых объектах и свойствах, удовлетворяющих этим объектам, но не о свойствах, которые проверяют такие свойства (это епархия логики второго порядка). Позже в «Основах арифметики» (1884) он заложил базу программы логицизма, которую последовательно изложил в томах «Основных законов арифметики, выведенных концептографически» (1893-1903). Фреге утверждал, что логика предшествует математике и, следовательно, математические понятия должны быть сведены к логическим. Математика – лишь дополнение к логике.
Значит, арифметика была логикой в последней инстанции, и арифметические понятия должны быть проанализированы в чисто логических терминах: «вычислить значит вывести». Говоря словами Фреге, «арифметические предложения – это логические законы, хотя не первичные, а производные». Если упростить окаменелую строгость работ Фреге, в которых педантичности и точности поровну, можно сказать, что он пришел к определению чисел с помощью классов, то есть с помощью множеств, или ансамблей. Каждому натуральному числу соответствовал класс всех классов, которые были подобны (равномощны) заданному. Например, число 3 – это то, что есть общего у всех следующих классов: лепестки трилистника, цвета светофора и так далее. Таким образом, число 3 может быть идентифицировано классом всех этих классов. В целом Фреге идентифицировал число 0 с классом всех пустых классов, 1 – с классом всех одночленных классов, и так далее. И поскольку есть только одно пустое множество (которое обозначается как перечеркнутый кружок, здесь заменен Ǿ), 0 = Ǿ. Тогда число 1 определяется как класс из всех классов, равномощных классу [Ǿ], обладающий единственным элементом. Аналогично определялись остальные числа.
АКСИОМЫ ПЕАНО
В 1888 году Рихард Дедекинд опубликовал книгу с привкусом логицизма «Что такое числа и для чего они служат»(Гильберт прочитал ее в молодости). Однако Дедекинд определил натуральные числа принципиально иначе, чем Фреге. В 1889 году в книге под названием «Принципы арифметики, изложенные согласно новому методу» итальянский математик Джузеппе Пеано подтвердил аргументы Дедекинда, хотя и не был знаком с его работой, и определил натуральные числа посредством трех первоначальных понятий (нуль, функция последующего члена и равенство) и пяти аксиом.
1. Нуль есть натуральное число.
2. Следующее за натуральным числом есть натуральное число.
3. Нуль не следует ни за каким натуральным числом.
4. Всякое натуральное число следует только за одним натуральным числом.
5. Если какое-либо предложение доказано для нуля и если из допущения, что оно верно для натурального числа А, вытекает, что оно верно для следующего за А натурального числа, то это предложение верно для всех натуральных чисел.
Пятая аксиома получила название принципа индукции и является основополагающей для доказательства теоремы о натуральных числах без необходимости проверять каждое из них по одному. Принцип формализует интуитивное представление о том, что когда все фишки домино выстроены в одну линию, падение первой из них (нуля) предполагает падение всех остальных (всех натуральных чисел). На основе этих аксиом можно определить сложение и умножение натуральных чисел, а также расположить их в упорядоченном виде. Результат известен как арифметика Пеано.
Джузеппе Пеано, около 1910 года.
К несчастью, смелая программа Фреге была поставлена под сомнение из-за обилия логических парадоксов. В своих работах Фреге всегда исходил из принципа выделения, согласно которому каждому понятию можно назначить его расширение, то есть любое свойство определяет класс элементов, которые удовлетворяют этому свойству. Аксиома существования классов была «Базовым Законом V» «Основных законов арифметики», и именно ею объясняется широкое распространение логицизма Фреге. В письме от 16 июня 1902 года молодой математик Бертран Рассел (1872-1970) проинформировал преподавателя Фреге о том, что в рамках его системы на основе этого несчастного закона может быть выведено противоречие. Парадокс Рассела показывал, что назначение каждому свойству связанного с ним класса было делом рискованным. Узнав об этом противоречии, Фреге добавил приложение ко второму тому «Основных законов арифметики», в котором попытался спасти свой огромный труд, ограничив применение принципа выделения. Вскоре он понял, что от этого мало проку, и остановил публикацию третьего тома своей главной работы. Он так и не оправился от удара. Погрузившись в меланхолию, без всякой надежды, но и без страха он признавал катастрофу:
«Нет для ученого ничего ужаснее, чем выяснить, что все основание его работы рушится, именно в тот момент, когда он эту работу заканчивает. Меня в эту ситуацию поставило письмо господина Рассела, моя работа была почти готова к печати».
Продемонстрировав интеллектуальную целостность, которой Рассел восхищался всю жизнь, Фреге ответил последнему, что арифметика, а с ней и вся математика вновь пошатнулись. Здравого смысла не было достаточно для поддержания безопасности математики перед лицом угроз, исходящих от логики.
ОБИЛИЕ ПАРАДОКСОВ
До весны 1901 года, когда Рассел обнаружил свой парадокс, согласно Фреге, считалось, что каждому свойству соответствует один класс, который образован сущностями, обладающими этим свойством. Рассел изучал поведение собственных классов, то есть тех, которые являются членами самих себя. Например, класс всех классов (который, являясь другим классом, принадлежит сам себе) или класс всех понятий (являясь другим понятием, также принадлежит сам себе). Логические огрехи неизбежны: если в библиотеке поместить имеющий черную обложку каталог всех книг в библиотеке, у которых имеется черная обложка, этот каталог каталогизирует сам себя.
Возьмем класс R всех классов, которые обладают свойством не быть членами самих себя, формально: R = [х: х /ϵ х], где ϵ – символ принадлежности (/ϵ здесь замена перечеркнутого ϵ). И зададимся вопросом, является ли R членом самого себя, если R ϵ R. Мы выясним, что любой ответ сразу же предполагает противоположный ответ. Если это так, то это не так. Если это не так, то это так. Действительно, если R ϵ R, то есть если R принадлежит самому себе, то, по определению, R /ϵ R, то есть R не принадлежит самому себе, поскольку это класс всех классов с этим свойством. Но и наоборот, если R /ϵ R, то R ϵ R, поскольку оно выполняет свойство, определяющее класс всех классов, которые не являются членами самих себя. В итоге получается противоречие: R ϵ R только тогда, когда R /ϵ R. Класс R принадлежит самому себе только тогда, когда он не принадлежит самому себе. Рассел был в недоумении от абсурда, с которым он столкнулся. Этому противоречию он затем дал название парадокса брадобрея: цирюльник в деревушке утверждает, что бреет всех мужчин, которые не бреются сами, и никого больше. В один прекрасный день, проснувшись, он задается вопросом, кто же бреет его, и в замешательстве осознает, что бреет сам себя тогда и только тогда, если не бреет сам себя. Бедный цирюльник попадает в настоящее логическое болото.
Французский математик Анри Пуанкаре был первым, кто указал на то, что источник парадоксов, атакующих логику, заключается в цикличности, в виде автореференции или принадлежности самому себе. Парадоксы держались на использовании непредикативных определений – тех, в которых определяемое входит в состав определения. Позже Рассел назвал это принципом порочного круга. Неудивительно, что нарушение этого принципа ведет к парадоксам, антиномиям и противоречиям, многие из которых признаются даже вне формальных языков, в естественных языках. В качестве примера служит хорошо известный парадокс лжеца, приписываемый Эпимениду Критскому (в своих письмах о нем упоминает даже святой Павел). В одном из стихотворений Эпименид порицает критян, называя их лжецами. Но поскольку он сам критянин, его утверждение, относящееся к самому себе, преобразуется в «я лгу». В этом случае то, что он говорит, не может быть правдой, значит, критяне не лгут. Но если они не лгут, то и Эпименид тоже, поэтому получается, что критяне лгут, и так далее.
Математическая логика, как ее стали называть вслед за Пеано, создавала одни только неприятности. И Пуанкаре, который считал ее бесполезной, смеялся: «Она уже не стерильна, она порождает противоречия». Несмотря ни на что логистическая программа, составленная Фреге, получила развитие благодаря бесцеремонности Бертрана Рассела и Альфреда Норта Уайтхеда (1861-1947).
В 1900 году на международном конгрессе по философии, проходившем в Париже, Рассел столкнулся с символической реформой Пеано. В 1889 году Пеано представил свои «Принципы арифметики», содержащие знаменитые пять аксиом (включая принцип индукции) для натуральных чисел, используя новую символику, которую разработал сам. В сообществе логиков и математиков одномерная символика Пеано была принята лучше, чем двумерная символика Фреге (за исключением его учеников, которые взбунтовались и не успокоились, даже когда Пеано предложил поставить всем зачет). В 1902 году, верный логицизму Фреге и символизму Пеано, Рассел опубликовал «Принципы математики». Но медовый месяц логики был коротким, потому что незадолго до публикации он открыл парадокс, который сегодня носит его имя. До 1910 года Рассел работал с Уайтхедом, и оба стремились справиться с противоречиями, которые вскрыл парадокс. В книге Principia mathematica (1911-1913) они глубже, чем кто-либо на сегодняшний день, погрузились в основания математики. Эта блестящая работа стала, говоря словами Гильберта, «коронацией аксиоматизации».
БЕСКОНЕЧНЫЙ ОТЕЛЬ ГИЛЬБЕРТА
Гёттингенский профессор придумал метафору, которая просто и ясно объясняет некоторые парадоксы, связанные с бесконечностью и открытые математиками одновременно с логическими парадоксами. Несмотря на то что это кажется невероятным, в отеле с бесконечным числом номеров всегда есть место для новых гостей, хотя все номера заняты. Действительно, если мы переселим гостя из первого номера во второй, того, что во втором, – в четвертый, того, что в третьем, – в шестой, и так далее, мы освободим все нечетные номера. Поскольку существует бесконечное количество нечетных чисел, есть место не только для нового постояльца, который подойдет к гостиничной стойке, но также и для бесконечного числа постояльцев. Из этой же самой ситуации мы могли бы сделать больше удивительных выводов...
– В отеле заняты все номера, и один гость уезжает. Тогда число постояльцев остается тем же самым (бесконечным).
– Если уезжают все гости, занимающие четные номера, то число постояльцев остается тем же самым (бесконечным).
– Однако если из отеля уедут все гости, занимающие номера, например с пятого и далее, то число постояльцев не будет тем же самым (в этот раз их число будет конечным).
Все это наводит нас на мысль о гибкости математической бесконечности и об осторожности, с которой нужно высказываться о ней.
Чтобы избежать парадоксов, Рассел и Уайтхед сформировали теорию типов, в которой для того, чтобы X ϵ Y было правильно составленной формулой, требуется, чтобы тип значения Y был непосредственно выше типа значений X. Таким образом, пропозиция «класс всех стульев не является стулом» – не истинная и не ложная, а попросту лишена смысла, поскольку стульями могут быть только объекты, а не классы объектов. Другими словами, ошибочно распространять свойство одного типа на другой. При применении этой хитроумной теории авторы могли утверждать, что формулировки, ведущие к парадоксу Рассела, перестают иметь смысл: R ϵ R теперь являлось неправильно составленной формулой, поскольку в ней было задействовано не больше одного типа.